首页 > 最新文献

Expert Syst. Appl.最新文献

英文 中文
Multi-Objective Traffic Signal Control Using Network-Wide Agent Coordinated Reinforcement Learning 基于全网络智能体协调强化学习的多目标交通信号控制
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4374888
Jie Fang, Ya You, Mengyun Xu, Juan Wang, Sibin Cai
{"title":"Multi-Objective Traffic Signal Control Using Network-Wide Agent Coordinated Reinforcement Learning","authors":"Jie Fang, Ya You, Mengyun Xu, Juan Wang, Sibin Cai","doi":"10.2139/ssrn.4374888","DOIUrl":"https://doi.org/10.2139/ssrn.4374888","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"10 1","pages":"120535"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84929198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of the heterogeneous computing performance of DNNs under typical frameworks on cloud and edge computing platforms 基于云计算和边缘计算平台的典型框架下深度神经网络异构计算性能的综合分析
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4176358
Feiyu Zhao, Xiaoxuan Wang, P. Lin, Yongming Chen
{"title":"Comprehensive analysis of the heterogeneous computing performance of DNNs under typical frameworks on cloud and edge computing platforms","authors":"Feiyu Zhao, Xiaoxuan Wang, P. Lin, Yongming Chen","doi":"10.2139/ssrn.4176358","DOIUrl":"https://doi.org/10.2139/ssrn.4176358","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"113 1","pages":"120475"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78568348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation-centric approach for classification of Consumer Health Questions 消费者健康问题分类的代表中心方法
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4261649
Arezoo Saedi, A. Fatemi, M. Nematbakhsh
{"title":"Representation-centric approach for classification of Consumer Health Questions","authors":"Arezoo Saedi, A. Fatemi, M. Nematbakhsh","doi":"10.2139/ssrn.4261649","DOIUrl":"https://doi.org/10.2139/ssrn.4261649","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"38 1","pages":"120436"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75669655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning 基于重构和微调的高效脑肿瘤分类深度学习模型
Pub Date : 2023-05-01 DOI: 10.48550/arXiv.2305.12844
Md. Alamin Talukder, Md. Manowarul Islam, Md. Ashraf Uddin, Arnisha Akhter, Md. Alamgir Jalil Pramanik, Sunil Aryal, Muhammad Ali Abdullah Almoyad, Khondokar Fida Hasan, M. Moni
Brain tumors are among the most fatal and devastating diseases, often resulting in significantly reduced life expectancy. An accurate diagnosis of brain tumors is crucial to devise treatment plans that can extend the lives of affected individuals. Manually identifying and analyzing large volumes of MRI data is both challenging and time-consuming. Consequently, there is a pressing need for a reliable deep learning (DL) model to accurately diagnose brain tumors. In this study, we propose a novel DL approach based on transfer learning to effectively classify brain tumors. Our novel method incorporates extensive pre-processing, transfer learning architecture reconstruction, and fine-tuning. We employ several transfer learning algorithms, including Xception, ResNet50V2, InceptionResNetV2, and DenseNet201. Our experiments used the Figshare MRI brain tumor dataset, comprising 3,064 images, and achieved accuracy scores of 99.40%, 99.68%, 99.36%, and 98.72% for Xception, ResNet50V2, InceptionResNetV2, and DenseNet201, respectively. Our findings reveal that ResNet50V2 achieves the highest accuracy rate of 99.68% on the Figshare MRI brain tumor dataset, outperforming existing models. Therefore, our proposed model's ability to accurately classify brain tumors in a short timeframe can aid neurologists and clinicians in making prompt and precise diagnostic decisions for brain tumor patients.
脑肿瘤是最致命和最具破坏性的疾病之一,往往导致预期寿命大大缩短。脑肿瘤的准确诊断对于制定治疗计划,延长患者的生命至关重要。人工识别和分析大量MRI数据既具有挑战性又耗时。因此,迫切需要一个可靠的深度学习(DL)模型来准确诊断脑肿瘤。在这项研究中,我们提出了一种新的基于迁移学习的深度学习方法来有效地分类脑肿瘤。我们的新方法结合了广泛的预处理、迁移学习架构重建和微调。我们采用了几种迁移学习算法,包括Xception、ResNet50V2、InceptionResNetV2和DenseNet201。我们的实验使用Figshare MRI脑肿瘤数据集,包含3,064张图像,Xception, ResNet50V2, InceptionResNetV2和DenseNet201的准确率分别达到99.40%,99.68%,99.36%和98.72%。我们的研究结果表明,ResNet50V2在Figshare MRI脑肿瘤数据集上达到了99.68%的最高准确率,优于现有模型。因此,我们提出的模型在短时间内准确分类脑肿瘤的能力可以帮助神经科医生和临床医生对脑肿瘤患者做出及时准确的诊断决策。
{"title":"An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning","authors":"Md. Alamin Talukder, Md. Manowarul Islam, Md. Ashraf Uddin, Arnisha Akhter, Md. Alamgir Jalil Pramanik, Sunil Aryal, Muhammad Ali Abdullah Almoyad, Khondokar Fida Hasan, M. Moni","doi":"10.48550/arXiv.2305.12844","DOIUrl":"https://doi.org/10.48550/arXiv.2305.12844","url":null,"abstract":"Brain tumors are among the most fatal and devastating diseases, often resulting in significantly reduced life expectancy. An accurate diagnosis of brain tumors is crucial to devise treatment plans that can extend the lives of affected individuals. Manually identifying and analyzing large volumes of MRI data is both challenging and time-consuming. Consequently, there is a pressing need for a reliable deep learning (DL) model to accurately diagnose brain tumors. In this study, we propose a novel DL approach based on transfer learning to effectively classify brain tumors. Our novel method incorporates extensive pre-processing, transfer learning architecture reconstruction, and fine-tuning. We employ several transfer learning algorithms, including Xception, ResNet50V2, InceptionResNetV2, and DenseNet201. Our experiments used the Figshare MRI brain tumor dataset, comprising 3,064 images, and achieved accuracy scores of 99.40%, 99.68%, 99.36%, and 98.72% for Xception, ResNet50V2, InceptionResNetV2, and DenseNet201, respectively. Our findings reveal that ResNet50V2 achieves the highest accuracy rate of 99.68% on the Figshare MRI brain tumor dataset, outperforming existing models. Therefore, our proposed model's ability to accurately classify brain tumors in a short timeframe can aid neurologists and clinicians in making prompt and precise diagnostic decisions for brain tumor patients.","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"64 1","pages":"120534"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88900612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
A comparison of risk measures for portfolio optimization with cardinality constraints 具有基数约束的投资组合优化风险度量的比较
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4141301
H. Ramos, M. Righi, P. C. Guedes, F. Müller
{"title":"A comparison of risk measures for portfolio optimization with cardinality constraints","authors":"H. Ramos, M. Righi, P. C. Guedes, F. Müller","doi":"10.2139/ssrn.4141301","DOIUrl":"https://doi.org/10.2139/ssrn.4141301","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"126 1","pages":"120412"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83245937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Transfer learning in optimization: Interpretable self-organizing maps driven similarity indices to identify candidate source functions 优化中的迁移学习:可解释的自组织映射驱动的相似性指数,以识别候选源函数
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4295235
Suja Shree Ravichandran, Kannan Sekar, Vinay Ramanath, Palaniappan Ramu
{"title":"Transfer learning in optimization: Interpretable self-organizing maps driven similarity indices to identify candidate source functions","authors":"Suja Shree Ravichandran, Kannan Sekar, Vinay Ramanath, Palaniappan Ramu","doi":"10.2139/ssrn.4295235","DOIUrl":"https://doi.org/10.2139/ssrn.4295235","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"74 1","pages":"120529"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85603171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A reliable region information driven kriging-assisted multiobjective rough fuzzy clustering algorithm for color image segmentation 一种可靠的区域信息驱动kriging辅助多目标粗糙模糊聚类算法用于彩色图像分割
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4202455
F. Zhao, Zihan Tang, Hanqiang Liu, Zhilei Xiao, Jiu-lun Fan
{"title":"A reliable region information driven kriging-assisted multiobjective rough fuzzy clustering algorithm for color image segmentation","authors":"F. Zhao, Zihan Tang, Hanqiang Liu, Zhilei Xiao, Jiu-lun Fan","doi":"10.2139/ssrn.4202455","DOIUrl":"https://doi.org/10.2139/ssrn.4202455","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"1 1","pages":"120419"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83417051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal low-rank plus deep denoising prior for robust image compressed sensing reconstruction 基于非局部低秩加深度去噪的鲁棒图像压缩感知重构
Pub Date : 2023-05-01 DOI: 10.1016/j.eswa.2023.120456
Yunyi Li, Long Gao, Shigang Hu, Guan Gui, Chaoyang Chen
{"title":"Nonlocal low-rank plus deep denoising prior for robust image compressed sensing reconstruction","authors":"Yunyi Li, Long Gao, Shigang Hu, Guan Gui, Chaoyang Chen","doi":"10.1016/j.eswa.2023.120456","DOIUrl":"https://doi.org/10.1016/j.eswa.2023.120456","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"291 1","pages":"120456"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77160004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High accuracy intelligent real-time framework for detecting infant drowning based on deep learning 基于深度学习的婴幼儿溺水检测高精度智能实时框架
Pub Date : 2023-05-01 DOI: 10.2139/ssrn.4308322
Qianen He, Huisheng Zhang, Zhiqiang Mei, Xiuying Xu
{"title":"High accuracy intelligent real-time framework for detecting infant drowning based on deep learning","authors":"Qianen He, Huisheng Zhang, Zhiqiang Mei, Xiuying Xu","doi":"10.2139/ssrn.4308322","DOIUrl":"https://doi.org/10.2139/ssrn.4308322","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"118 1","pages":"120204"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77445519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A power line segmentation model in aerial images based on an efficient multibranch concatenation network 基于高效多支路连接网络的航拍图像电力线分割模型
Pub Date : 2023-05-01 DOI: 10.1016/j.eswa.2023.120359
Guanke Chen, Kun Hao, Beibei Wang, Zhisheng Li, Xiaofang Zhao
{"title":"A power line segmentation model in aerial images based on an efficient multibranch concatenation network","authors":"Guanke Chen, Kun Hao, Beibei Wang, Zhisheng Li, Xiaofang Zhao","doi":"10.1016/j.eswa.2023.120359","DOIUrl":"https://doi.org/10.1016/j.eswa.2023.120359","url":null,"abstract":"","PeriodicalId":12115,"journal":{"name":"Expert Syst. Appl.","volume":"20 1","pages":"120359"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81342184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Expert Syst. Appl.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1