Johannes Boltze, Christoph Kleinschnitz, Klaus G Reymann, Georg Reiser, Daniel-Christoph Wagner, Alexander Kranz, Dominik Michalski
The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood-brain barrier, recent findings regarding the pathomechanism of Alzheimer's disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.
{"title":"Neurovascular pathophysiology in cerebral ischemia, dementia and the ageing brain - current trends in basic, translational and clinical research.","authors":"Johannes Boltze, Christoph Kleinschnitz, Klaus G Reymann, Georg Reiser, Daniel-Christoph Wagner, Alexander Kranz, Dominik Michalski","doi":"10.1186/2040-7378-4-14","DOIUrl":"https://doi.org/10.1186/2040-7378-4-14","url":null,"abstract":"<p><p> The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood-brain barrier, recent findings regarding the pathomechanism of Alzheimer's disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 ","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2012-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30826483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Photothrombosis was introduced as a model of ischemic stroke by Watson et al. in 1985. In the present paper, we describe a protocol to induce photothrombotic infarcts in rats.
Findings: The photosensitive dye Bengal Rose is intravenously administered and a laser beam is stereotactically positioned onto the skull. Illumination through the intact skull leads to local activation of Bengal Rose, which results in free radical formation, disturbance of endothelial function and thrombus formation in illuminated small cortical vessels.
Conclusions: Photochemically induced infarcts cause long-term sensorimotor deficits, allow long-term survival and are particularly suitable to assess the effectiveness of neuroregenerative therapies in chronic stroke studies.
{"title":"Photochemically induced ischemic stroke in rats.","authors":"Antje Schmidt, Maike Hoppen, Jan-Kolja Strecker, Kai Diederich, Wolf-Rüdiger Schäbitz, Matthias Schilling, Jens Minnerup","doi":"10.1186/2040-7378-4-13","DOIUrl":"https://doi.org/10.1186/2040-7378-4-13","url":null,"abstract":"<p><strong>Background: </strong>Photothrombosis was introduced as a model of ischemic stroke by Watson et al. in 1985. In the present paper, we describe a protocol to induce photothrombotic infarcts in rats.</p><p><strong>Findings: </strong>The photosensitive dye Bengal Rose is intravenously administered and a laser beam is stereotactically positioned onto the skull. Illumination through the intact skull leads to local activation of Bengal Rose, which results in free radical formation, disturbance of endothelial function and thrombus formation in illuminated small cortical vessels.</p><p><strong>Conclusions: </strong>Photochemically induced infarcts cause long-term sensorimotor deficits, allow long-term survival and are particularly suitable to assess the effectiveness of neuroregenerative therapies in chronic stroke studies.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2012-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-13","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30822909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Westermaier, Christian Stetter, Furat Raslan, Giles Hamilton Vince, Ralf-Ingo Ernestus
Background: Severe brain edema is observed in a number of patients suffering from subarachnoid hemorrhage (SAH). Little is known about its pathogenesis and time-course in the first hours after SAH. This study was performed to investigate the development of brain edema and its correlation with brain perfusion after experimental SAH.
Methods: Male Sprague-Dawley rats, randomly assigned to one of six groups (n = 8), were subjected to SAH using the endovascular filament model or underwent a sham operation. Animals were sacrificed 15, 30, 60, 180 or 360 minutes after SAH. Intracranial pressure (ICP), mean arterial blood pressure (MABP), cerebral perfusion pressure (CPP) and bilateral local cerebral blood flow (LCBF) were continuously measured. Brain water content (BWC) was determined by the wet/dry-weight method.
Results: After SAH, CPP and LCBF rapidly decreased. The decline of LCBF markedly exceeded the decline of CPP and persisted until the end of the observation period. BWC continuously increased. A significant correlation was observed between the BWC and the extent of the perfusion deficit in animals sacrificed after 180 and 360 minutes.
Conclusions: The significant correlation with the perfusion deficit after SAH suggests that the development of brain edema is related to the extent of ischemia and acute vasoconstriction in the first hours after SAH.
{"title":"Brain edema formation correlates with perfusion deficit during the first six hours after experimental subarachnoid hemorrhage in rats.","authors":"Thomas Westermaier, Christian Stetter, Furat Raslan, Giles Hamilton Vince, Ralf-Ingo Ernestus","doi":"10.1186/2040-7378-4-8","DOIUrl":"https://doi.org/10.1186/2040-7378-4-8","url":null,"abstract":"<p><strong>Background: </strong>Severe brain edema is observed in a number of patients suffering from subarachnoid hemorrhage (SAH). Little is known about its pathogenesis and time-course in the first hours after SAH. This study was performed to investigate the development of brain edema and its correlation with brain perfusion after experimental SAH.</p><p><strong>Methods: </strong>Male Sprague-Dawley rats, randomly assigned to one of six groups (n = 8), were subjected to SAH using the endovascular filament model or underwent a sham operation. Animals were sacrificed 15, 30, 60, 180 or 360 minutes after SAH. Intracranial pressure (ICP), mean arterial blood pressure (MABP), cerebral perfusion pressure (CPP) and bilateral local cerebral blood flow (LCBF) were continuously measured. Brain water content (BWC) was determined by the wet/dry-weight method.</p><p><strong>Results: </strong>After SAH, CPP and LCBF rapidly decreased. The decline of LCBF markedly exceeded the decline of CPP and persisted until the end of the observation period. BWC continuously increased. A significant correlation was observed between the BWC and the extent of the perfusion deficit in animals sacrificed after 180 and 360 minutes.</p><p><strong>Conclusions: </strong>The significant correlation with the perfusion deficit after SAH suggests that the development of brain edema is related to the extent of ischemia and acute vasoconstriction in the first hours after SAH.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2012-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30589027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominik Michalski, Christopher Weise, Carsten Hobohm, Lea Küppers-Tiedt, Johann Pelz, Dietmar Schneider, Johannes Kacza, Wolfgang Härtig
Background: Since several neuroprotectives failed to reproduce promising preclinical results under clinical conditions, efforts emerged to implement clinically relevant endpoints in animal stroke studies. Thereby, insufficient attention was given on autonomic reactions due to experimental stroke, although clinical trials reported on high functional and prognostic impact. This study focused on autonomic consequences and body weight changes in a translational relevant stroke model and investigated interrelations to different outcome measurements.
Methods: Forty-eight rats underwent thromboembolic middle cerebral artery occlusion (MCAO) while recording heart rate (HR) and mean arterial pressure (MAP). After assessing early functional impairment (Menzies score), animals were assigned to control procedure or potentially neuroprotective treatment with normobaric (NBO) or hyperbaric oxygen (HBO). Four or 24 hours after ischemia onset, functional impairment was re-assessed and FITC-albumin administered intravenously obtaining leakage-related blood-brain barrier (BBB) impairment. Body weight was documented prior to MCAO and 4 or 24 hours after ischemia onset.
Results: During MCAO, HR was found to increase significantly while MAP decreased. The amount of changes in HR was positively correlated with early functional impairment (P = 0.001): Severely affected animals provided an increase of 15.2 compared to 0.8 beats/minute in rats with low impairment (P = 0.048). Regarding body weight, a decrease of 9.4% within 24 hours after MCAO occurred, but treatment-specific alterations showed no significant correlations with respective functional or BBB impairment.
Conclusions: Future studies should routinely include autonomic parameters to allow inter-group comparisons and better understanding of autonomic reactions due to experimental stroke. Prospectively, autonomic consequences might represent a useful outcome parameter enhancing the methodological spectrum of preclinical stroke studies.
{"title":"Autonomic reactions and peri-interventional alterations in body weight as potential supplementary outcome parameters for thromboembolic stroke in rats.","authors":"Dominik Michalski, Christopher Weise, Carsten Hobohm, Lea Küppers-Tiedt, Johann Pelz, Dietmar Schneider, Johannes Kacza, Wolfgang Härtig","doi":"10.1186/2040-7378-4-7","DOIUrl":"https://doi.org/10.1186/2040-7378-4-7","url":null,"abstract":"<p><strong>Background: </strong>Since several neuroprotectives failed to reproduce promising preclinical results under clinical conditions, efforts emerged to implement clinically relevant endpoints in animal stroke studies. Thereby, insufficient attention was given on autonomic reactions due to experimental stroke, although clinical trials reported on high functional and prognostic impact. This study focused on autonomic consequences and body weight changes in a translational relevant stroke model and investigated interrelations to different outcome measurements.</p><p><strong>Methods: </strong>Forty-eight rats underwent thromboembolic middle cerebral artery occlusion (MCAO) while recording heart rate (HR) and mean arterial pressure (MAP). After assessing early functional impairment (Menzies score), animals were assigned to control procedure or potentially neuroprotective treatment with normobaric (NBO) or hyperbaric oxygen (HBO). Four or 24 hours after ischemia onset, functional impairment was re-assessed and FITC-albumin administered intravenously obtaining leakage-related blood-brain barrier (BBB) impairment. Body weight was documented prior to MCAO and 4 or 24 hours after ischemia onset.</p><p><strong>Results: </strong>During MCAO, HR was found to increase significantly while MAP decreased. The amount of changes in HR was positively correlated with early functional impairment (P = 0.001): Severely affected animals provided an increase of 15.2 compared to 0.8 beats/minute in rats with low impairment (P = 0.048). Regarding body weight, a decrease of 9.4% within 24 hours after MCAO occurred, but treatment-specific alterations showed no significant correlations with respective functional or BBB impairment.</p><p><strong>Conclusions: </strong>Future studies should routinely include autonomic parameters to allow inter-group comparisons and better understanding of autonomic reactions due to experimental stroke. Prospectively, autonomic consequences might represent a useful outcome parameter enhancing the methodological spectrum of preclinical stroke studies.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2012-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30580105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fudong Liu, L Christine Turtzo, Jun Li, Jean Regard, Paul Worley, Neer Zeevi, Louise D McCullough
Vascular Early Response Gene (Verge) is an immediate early gene (IEG) that is up-regulated in endothelial cells in response to a number of stressors, including ischemic stroke. Endothelial cell lines that stably express Verge show enhanced permeability. Increased Verge expression has also been associated with blood brain barrier breakdown. In this study we investigated the role of Verge in ischemic injury induced by middle cerebral artery occlusion (MCAO) in both Verge knockout (KO) and wild type (WT) mice. Verge KO mice had significantly less cerebral edema formation after MCAO compared to WT mice. However, stroke outcome (infarct size and neurological deficit scores) evaluated at either 24 or 72 hours after stroke showed no differences between the two genotypes. Verge deletion leads to decreased edema formation after ischemia; however acute stroke outcomes were unchanged.
{"title":"Loss of vascular early response gene reduces edema formation after experimental stroke.","authors":"Fudong Liu, L Christine Turtzo, Jun Li, Jean Regard, Paul Worley, Neer Zeevi, Louise D McCullough","doi":"10.1186/2040-7378-4-12","DOIUrl":"https://doi.org/10.1186/2040-7378-4-12","url":null,"abstract":"<p><p> Vascular Early Response Gene (Verge) is an immediate early gene (IEG) that is up-regulated in endothelial cells in response to a number of stressors, including ischemic stroke. Endothelial cell lines that stably express Verge show enhanced permeability. Increased Verge expression has also been associated with blood brain barrier breakdown. In this study we investigated the role of Verge in ischemic injury induced by middle cerebral artery occlusion (MCAO) in both Verge knockout (KO) and wild type (WT) mice. Verge KO mice had significantly less cerebral edema formation after MCAO compared to WT mice. However, stroke outcome (infarct size and neurological deficit scores) evaluated at either 24 or 72 hours after stroke showed no differences between the two genotypes. Verge deletion leads to decreased edema formation after ischemia; however acute stroke outcomes were unchanged.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2012-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30677680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kim A Radermacher, Kirstin Wingler, Pamela Kleikers, Sebastian Altenhöfer, Johannes Jr Hermans, Christoph Kleinschnitz, Harald Hhw Schmidt
As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation.
{"title":"The 1027th target candidate in stroke: Will NADPH oxidase hold up?","authors":"Kim A Radermacher, Kirstin Wingler, Pamela Kleikers, Sebastian Altenhöfer, Johannes Jr Hermans, Christoph Kleinschnitz, Harald Hhw Schmidt","doi":"10.1186/2040-7378-4-11","DOIUrl":"https://doi.org/10.1186/2040-7378-4-11","url":null,"abstract":"<p><p> As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30642756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Christian Crumrine, Victor J Marder, G McLeod Taylor, Joseph C LaManna, Constantinos P Tsipis, Valery Novokhatny, Philip Scuderi, Stephen R Petteway, Vikram Arora
Background: Tissue type plasminogen activator is the only approved thrombolytic agent for the treatment of ischemic stroke. However, it carries the disadvantage of a 10-fold increase in symptomatic and asymptomatic intracranial hemorrhage. A safer thrombolytic agent may improve patient prognosis and increase patient participation in thrombolytic treatment. A novel direct-acting thrombolytic agent, Δ(K2-K5) plasmin, promising an improved safety profile was examined for safety in the snare ligature model of stroke in the rat.
Methods: Male spontaneously hypertensive rats were subjected to 6 hours middle cerebral artery occlusion followed by 18 hours reflow. Beginning 1 minute before reflow, they were dosed with saline, vehicle, Δ(K2-K5) plasmin (0.15, 0.5, 1.5, and 5 mg/kg) or recombinant tissue-type plasminogen activator (10 and 30 mg/kg) by local intra-arterial infusion lasting 10 to 60 minutes. The rats were assessed for bleeding score, infarct volume, modified Bederson score and general behavioral score. In a parallel study, temporal progression of infarct volume was determined. In an in vitro study, whole blood clots from humans, canines and rats were exposed to Δ(K2-K5). Clot lysis was monitored by absorbance at 280 nm.
Results: The main focus of this study was intracranial hemorrhage safety. Δ(K2-K5) plasmin treatment at the highest dose caused no more intracranial hemorrhage than the lowest dose of recombinant tissue type plasminogen activator, but showed at least a 5-fold superior safety margin. Secondary results include: temporal infarct volume progression shows that the greatest expansion of infarct volume occurs within 2-3 hours of middle cerebral artery occlusion in the spontaneously hypertensive rat. A spike in infarct volume was observed at 6 hours ischemia with reflow. Δ(K2-K5) plasmin tended to reduce infarct volume and improve behavior compared to controls. In vitro data suggests that Δ(K2-K5) plasmin is equally effective at lysing clots from humans, canines and rats.
Conclusions: The superior intracranial hemorrhage safety profile of the direct-acting thrombolytic Δ(K2-K5) plasmin compared with recombinant tissue type plasminogen activator makes this agent a good candidate for clinical evaluation in the treatment of acute ischemic stroke.
{"title":"Safety evaluation of a recombinant plasmin derivative lacking kringles 2-5 and rt-PA in a rat model of transient ischemic stroke.","authors":"R Christian Crumrine, Victor J Marder, G McLeod Taylor, Joseph C LaManna, Constantinos P Tsipis, Valery Novokhatny, Philip Scuderi, Stephen R Petteway, Vikram Arora","doi":"10.1186/2040-7378-4-10","DOIUrl":"https://doi.org/10.1186/2040-7378-4-10","url":null,"abstract":"<p><strong>Background: </strong>Tissue type plasminogen activator is the only approved thrombolytic agent for the treatment of ischemic stroke. However, it carries the disadvantage of a 10-fold increase in symptomatic and asymptomatic intracranial hemorrhage. A safer thrombolytic agent may improve patient prognosis and increase patient participation in thrombolytic treatment. A novel direct-acting thrombolytic agent, Δ(K2-K5) plasmin, promising an improved safety profile was examined for safety in the snare ligature model of stroke in the rat.</p><p><strong>Methods: </strong>Male spontaneously hypertensive rats were subjected to 6 hours middle cerebral artery occlusion followed by 18 hours reflow. Beginning 1 minute before reflow, they were dosed with saline, vehicle, Δ(K2-K5) plasmin (0.15, 0.5, 1.5, and 5 mg/kg) or recombinant tissue-type plasminogen activator (10 and 30 mg/kg) by local intra-arterial infusion lasting 10 to 60 minutes. The rats were assessed for bleeding score, infarct volume, modified Bederson score and general behavioral score. In a parallel study, temporal progression of infarct volume was determined. In an in vitro study, whole blood clots from humans, canines and rats were exposed to Δ(K2-K5). Clot lysis was monitored by absorbance at 280 nm.</p><p><strong>Results: </strong>The main focus of this study was intracranial hemorrhage safety. Δ(K2-K5) plasmin treatment at the highest dose caused no more intracranial hemorrhage than the lowest dose of recombinant tissue type plasminogen activator, but showed at least a 5-fold superior safety margin. Secondary results include: temporal infarct volume progression shows that the greatest expansion of infarct volume occurs within 2-3 hours of middle cerebral artery occlusion in the spontaneously hypertensive rat. A spike in infarct volume was observed at 6 hours ischemia with reflow. Δ(K2-K5) plasmin tended to reduce infarct volume and improve behavior compared to controls. In vitro data suggests that Δ(K2-K5) plasmin is equally effective at lysing clots from humans, canines and rats.</p><p><strong>Conclusions: </strong>The superior intracranial hemorrhage safety profile of the direct-acting thrombolytic Δ(K2-K5) plasmin compared with recombinant tissue type plasminogen activator makes this agent a good candidate for clinical evaluation in the treatment of acute ischemic stroke.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30622749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Lindner, Alexander Sigrüner, Franziska Walther, Ulrich Bogdahn, Pierre O Couraud, Gert Schmitz, Felix Schlachetzki
Background: Rapid reperfusion following ischemia is the most effective therapy in stroke therapy. However, the success may be compromised by ischemia & reperfusion (I/R) injury and at the human blood-brain barrier (BBB), therefore the effects on transendothelial transport are of special interest. Current studies suggest the ATP-binding cassette (ABC) transporters to be regulated upon ischemic stroke in a way that impedes the effects of drug therapy. The immortalised human brain microvascular endothelial cell line hCMEC/D3 provides most of the unique properties of the BBB with respect to transport and might be a reliable in vitro model to study transendothelial transport after I/R.
Methods: We exposed hCMEC/D3 cells to 24 hours of hypoxia alone and to hypoxia followed by 60 min of reoxygenisation as an in vitro model for I/R. Western blot showed mild upregulation of hypoxia inducible factor (HIF-1α) after hypoxia alone and RNA lysates were analysed with a well-established real-time RT-PCR-based TaqMan low-density array detecting 47 of 48 known human ABC transporters.
Results: No significant increases of ABC mRNA expression levels were detected neither in hypoxic nor in I/R samples. However, slight decrease of ABCC1 in hypoxic and I/R samples and of ABCA10 and ABCD3 in I/R samples was observed.
Conclusion: Our data suggests that hCMEC/D3 cell line and - at the moment - in vitro models in general are a poor basis for stroke research but may be enhanced by co-culturing more cells of the neurovascular unit inducing an overall ischemic response at the BBB.
{"title":"ATP-binding cassette transporters in immortalised human brain microvascular endothelial cells in normal and hypoxic conditions.","authors":"Christian Lindner, Alexander Sigrüner, Franziska Walther, Ulrich Bogdahn, Pierre O Couraud, Gert Schmitz, Felix Schlachetzki","doi":"10.1186/2040-7378-4-9","DOIUrl":"https://doi.org/10.1186/2040-7378-4-9","url":null,"abstract":"<p><strong>Background: </strong>Rapid reperfusion following ischemia is the most effective therapy in stroke therapy. However, the success may be compromised by ischemia & reperfusion (I/R) injury and at the human blood-brain barrier (BBB), therefore the effects on transendothelial transport are of special interest. Current studies suggest the ATP-binding cassette (ABC) transporters to be regulated upon ischemic stroke in a way that impedes the effects of drug therapy. The immortalised human brain microvascular endothelial cell line hCMEC/D3 provides most of the unique properties of the BBB with respect to transport and might be a reliable in vitro model to study transendothelial transport after I/R.</p><p><strong>Methods: </strong>We exposed hCMEC/D3 cells to 24 hours of hypoxia alone and to hypoxia followed by 60 min of reoxygenisation as an in vitro model for I/R. Western blot showed mild upregulation of hypoxia inducible factor (HIF-1α) after hypoxia alone and RNA lysates were analysed with a well-established real-time RT-PCR-based TaqMan low-density array detecting 47 of 48 known human ABC transporters.</p><p><strong>Results: </strong>No significant increases of ABC mRNA expression levels were detected neither in hypoxic nor in I/R samples. However, slight decrease of ABCC1 in hypoxic and I/R samples and of ABCA10 and ABCD3 in I/R samples was observed.</p><p><strong>Conclusion: </strong>Our data suggests that hCMEC/D3 cell line and - at the moment - in vitro models in general are a poor basis for stroke research but may be enhanced by co-culturing more cells of the neurovascular unit inducing an overall ischemic response at the BBB.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2012-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30589455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Furat Raslan, Christiane Albert-Weißenberger, Ralf-Ingo Ernestus, Christoph Kleinschnitz, Anna-Leena Sirén
The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.
{"title":"Focal brain trauma in the cryogenic lesion model in mice.","authors":"Furat Raslan, Christiane Albert-Weißenberger, Ralf-Ingo Ernestus, Christoph Kleinschnitz, Anna-Leena Sirén","doi":"10.1186/2040-7378-4-6","DOIUrl":"https://doi.org/10.1186/2040-7378-4-6","url":null,"abstract":"<p><p> The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"4 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2012-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30556043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantin Hockel, Raimund Trabold, Karsten Schöller, Elisabeth Török, Nikolaus Plesnila
Background: Anesthesia is indispensable for in vivo research but has the intrinsic potential to alter study results. The aim of the current study was to investigate the impact of three common anesthesia protocols on physiological parameters and outcome following the most common experimental model for subarachnoid hemorrhage (SAH), endovascular perforation.
Methods: Sprague-Dawley rats (n = 38) were randomly assigned to (1) chloral hydrate, (2) isoflurane or (3) midazolam/medetomidine/fentanyl (MMF) anesthesia. Arterial blood gases, intracranial pressure (ICP), mean arterial blood pressure (MAP), cerebral perfusion pressure (CPP), and regional cerebral blood flow (rCBF) were monitored before and for 3 hours after SAH. Brain water content, mortality and rate of secondary bleeding were also evaluated.
Results: Under baseline conditions isoflurane anesthesia resulted in deterioration of respiratory parameters (arterial pCO2 and pO2) and increased brain water content. After SAH, isoflurane and chloral hydrate were associated with reduced MAP, incomplete recovery of post-hemorrhagic rCBF (23 ± 13% and 87 ± 18% of baseline, respectively) and a high anesthesia-related mortality (17 and 50%, respectively). Anesthesia with MMF provided stable hemodynamics (MAP between 100-110 mmHg), high post-hemorrhagic rCBF values, and a high rate of re-bleedings (> 50%), a phenomenon often observed after SAH in humans.
Conclusion: Based on these findings we recommend anesthesia with MMF for the endovascular perforation model of SAH.
{"title":"Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats.","authors":"Konstantin Hockel, Raimund Trabold, Karsten Schöller, Elisabeth Török, Nikolaus Plesnila","doi":"10.1186/2040-7378-4-5","DOIUrl":"https://doi.org/10.1186/2040-7378-4-5","url":null,"abstract":"<p><strong>Background: </strong>Anesthesia is indispensable for in vivo research but has the intrinsic potential to alter study results. The aim of the current study was to investigate the impact of three common anesthesia protocols on physiological parameters and outcome following the most common experimental model for subarachnoid hemorrhage (SAH), endovascular perforation.</p><p><strong>Methods: </strong>Sprague-Dawley rats (n = 38) were randomly assigned to (1) chloral hydrate, (2) isoflurane or (3) midazolam/medetomidine/fentanyl (MMF) anesthesia. Arterial blood gases, intracranial pressure (ICP), mean arterial blood pressure (MAP), cerebral perfusion pressure (CPP), and regional cerebral blood flow (rCBF) were monitored before and for 3 hours after SAH. Brain water content, mortality and rate of secondary bleeding were also evaluated.</p><p><strong>Results: </strong>Under baseline conditions isoflurane anesthesia resulted in deterioration of respiratory parameters (arterial pCO2 and pO2) and increased brain water content. After SAH, isoflurane and chloral hydrate were associated with reduced MAP, incomplete recovery of post-hemorrhagic rCBF (23 ± 13% and 87 ± 18% of baseline, respectively) and a high anesthesia-related mortality (17 and 50%, respectively). Anesthesia with MMF provided stable hemodynamics (MAP between 100-110 mmHg), high post-hemorrhagic rCBF values, and a high rate of re-bleedings (> 50%), a phenomenon often observed after SAH in humans.</p><p><strong>Conclusion: </strong>Based on these findings we recommend anesthesia with MMF for the endovascular perforation model of SAH.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":" ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2012-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-4-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40162209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}