Background: To assess whether a trifocal intraocular lens (IOL) with neutral spherical aberration (SA) provides better visual and refractive outcomes than a trifocal IOL with negative SA after hyperopic corneal laser ablation.
Methods: This is a retrospective comparative study. Patients were classified according to the IOL implanted after cataract or clear lens phacoemulsification [group 1, PhysIOL FineVision Pod-F (negative SA); group 2, Rayner RayOne Trifocal (neutral SA)]. We evaluated uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), uncorrected near visual acuity (UNVA), predictability, safety, efficacy, and satisfaction.
Results: 198 eyes of 119 patients met the inclusion criteria. Group 1 comprised 120 eyes and group 2 comprised 78 eyes. At completion, the refractive and predictability results were significantly better in group 1 than in group 2 for manifest refraction spherical equivalent (MRSE) (P < 0.001). Differences were not significant for UDVA (P = 0.647), CDVA (P = 0.343), UIVA (P = 0.059), UNVA (P = 0.382), binocular UIVA (P = 0.157), or binocular UNVA (P = 0.527). Safety and efficacy indices in refractive lens exchange (RLE) eyes were 0.96 and 0.91, and 0.89 and 0.93 in groups 1 and 2, respectively (P = 0.254 and 0.168). Patient satisfaction was similar in both groups (P > 0.05, all items).
Conclusion: In eyes previously treated with hyperopic corneal ablation, implantation of a trifocal IOL with neutral SA provided better efficacy and safety outcomes but worse predictability outcomes than those obtained with a trifocal model with negative SA.
Background: The shape and microstructure of the human crystalline lens alter with ageing, and this has an effect on the optical properties of the eye. The aim of this study was to characterise the age-related differences in the morphology and transparency of the eye lenses of healthy subjects through the optical signal discontinuity (OSD) zones in optical coherence tomography (OCT) images. We also investigated the association of those changes with the optical quality of the eye and visual function.
Methods: OCT images of the anterior segment of 49 eyes of subjects (9-78 years) were acquired, and the OSD zones (nucleus, C1-C4 cortical zones) were identified. Central thickness, curvature and optical density were measured. The eye's optical quality was evaluated by the objective scatter index (OSI). Contrast sensitivity and visual acuity tests were performed. The correlation between extracted parameters and age was assessed.
Results: The increase in lens thickness with age was dominated by the thickening of the cortical zone C3 (0.0146 mm/year). The curvature radii of the anterior lens surface and both anterior and posterior nucleo-cortical interfaces decreased with age (- 0.053 mm/year, - 0.013 mm/year and - 0.006 mm/year, respectively), and no change was observed for the posterior lens radius. OCT-based densitometry revealed significant correlations with age for all zones except for C1β, and the highest increase in density was in the C2-C4 zones (R = 0.45, 0.74, 0.56, respectively, P < 0.001). Increase in OSI was associated with the degradation of visual function.
Conclusions: OCT enables the identification of OSD zones of the crystalline lens. The most significant age-related changes occur in the C3 zone as it thickens with age at a faster rate and becomes more opaque than other OSD zones. The changes are associated with optical quality deterioration and reduction of visual performance. These findings contribute to a better understanding of the structure-function relationship of the ageing lens and offer insights into both pathological and aging alterations.
Background: To investigate the control effect on the axial length elongation using corneal refractive therapy (CRT) with different optical zone diameters (BOZDs). We also sought to compare the difference in higher-order aberrations (HOAs), treatment zone (TZ) size and Zernike defocus coefficient with different BOZDs and seek the optimal parameter for predicting axial elongation.
Methods: This prospective cohort study included 7- to 14-year-olds fitted with orthokeratology (ortho-K) lenses of 5-mm (5-mm group) or 6-mm BOZD (6-mm group). Axial length (AL), corneal topography, HOAs and Zernike defocus coefficient were obtained at baseline, and 1, 3, 6, 9 and 12 months follow-up visits. Multivariate regression analyses were used to explore the association between AL change and ocular biometric parameters. Receiver operating characteristic (ROC) curve analysis was used to determine the best diagnostic value for AL change in ocular biometric parameters.
Results: In total, 301 participants completed the one-year follow-up. The mean AL change in the 5-mm group (0.13 ± 0.18 mm) was less than that in the 6-mm group (0.27 ± 0.15 mm) at the 12 months visit. The TZ size and decentration were smaller, while the Zernike defocus coefficient and HOAs were higher in the 5-mm group (all P < 0.05). Older age and smaller TZ size were protective factors against AL elongation in multiple regression. In predicting AL elongation, TZ diameter yielded an area under the ROC curve of 0.684 with a cut-off value of 3.82 mm.
Conclusion: The 5-mm group showed 0.14 mm (51.8%) less axial elongation than the 6-mm group. The 5-mm BOZD produced a smaller TZ size, higher Zernike defocus coefficient and higher HOA after reshaping of the cornea. TZ size was the best predictor of AL elongation. TZ diameter less than 3.82 mm may lead to AL elongation less than 0.2 mm in one year.
Different diagnostic approaches for ectatic corneal diseases (ECD) include screening, diagnosis confirmation, classification of the ECD type, severity staging, prognostic evaluation, and clinical follow-up. The comprehensive assessment must start with a directed clinical history. However, multimodal imaging tools, including Placido-disk topography, Scheimpflug three-dimensional (3D) tomography, corneal biomechanical evaluations, and layered (or segmental) tomography with epithelial thickness by optical coherence tomography (OCT), or digital very high-frequency ultrasound (dVHF-US) serve as fundamental complementary exams for measuring different characteristics of the cornea. Also, ocular wavefront analysis, axial length measurements, corneal specular or confocal microscopy, and genetic or molecular biology tests are relevant for clinical decisions. Artificial intelligence enhances interpretation and enables combining such a plethora of data, boosting accuracy and facilitating clinical decisions. The applications of diagnostic information for individualized treatments became relevant concerning the therapeutic refractive procedures that emerged as alternatives to keratoplasty. The first paradigm shift concerns the surgical management of patients with ECD with different techniques, such as crosslinking and intrastromal corneal ring segments. A second paradigm shift involved the quest for identifying patients at higher risk of progressive iatrogenic ectasia after elective refractive corrections on the cornea. Beyond augmenting the sensitivity to detect very mild (subclinical or fruste) forms of ECD, ectasia risk assessment evolved to characterize the inherent susceptibility for ectasia development and progression. Furthermore, ectasia risk is also related to environmental factors, including eye rubbing and the relational impact of the surgical procedure on the cornea.
Background: Recent studies have indicated a strong correlation between endoplasmic reticulum (ER) stress and myopia and that eyedrops containing the ER stress inducer tunicamycin (Tm) can induce myopic changes in C57BL/6 J mice. Therefore, this study aimed to create a new myopia model using Tm eyedrops and to explore the mechanism of ER stress-mediated myopia development.
Methods: Three-week-old C57BL/6 J mice were treated with different concentrations (0, 25, 50, and 100 μg/mL) and/or number of applications (zero, one, three, and seven) of Tm eyedrops. Refraction and axial length (AL) were measured before and one week after Tm treatment. Scleral collagen alterations were evaluated under polarised light after picrosirius red staining. ER stress-related indicators, such as the expression of collagen I and cleaved collagen were detected using Western blotting.
Results: Compared with the control group, mice administered eyedrops with 50 μg/mL Tm only once showed the greatest myopic shifts in refraction and AL elongation and reduced scleral expression of collagen I. Picrosirius red staining showed a lower percentage of bundled collagen in the Tm group. Expression of ER-stress indicators increased in the Tm groups. Furthermore, optimised administration of Tm induced matrix metalloproteinase-2 (MMP2) expression in the sclera, which plays a major role in collagen degradation.
Conclusions: We have demonstrated that ER stress in the sclera is involved in myopia progression. Tm eyedrops induced myopic changes, loosening of the scleral collagen and decreased expression of collagen I. This process may be associated with ER stress in the sclera, which upregulates the expression of MMP2 leading to collagen degradation.