Introduction: Acetaminophen (paracetamol) is a commonly used analgesic and antipyretic agent, which is safe in therapeutic doses. Acetaminophen poisoning due to self-harm or repeated supratherapeutic ingestion is a common cause of acute liver injury. Acetylcysteine has been a mainstay of treatment for acetaminophen poisoning for decades and is efficacious if administered early. However, treatment failures occur if administered late, in 'massive' overdoses or in high-risk patients.
Areas covered: This review provides an overview of the mechanisms of toxicity of acetaminophen poisoning (metabolic and oxidative phase) and how this relates to the assessment and treatment of the acetaminophen poisoned patient. The review focuses on how these advances offer further insight into the utility of novel biomarkers and the role of proposed adjunct treatments.
Expert opinion: Advances in our understanding of acetaminophen toxicity have allowed the development of novel biomarkers and a better understanding of how adjunct treatments may prevent acetaminophen toxicity. Newly proposed adjunct treatments like fomepizole are being increasingly used without robust clinical trials. Novel biomarkers (not yet clinically available) may provide better assessment of these newly proposed adjunct treatments, particularly in clinical trials. These advances in our understanding of acetaminophen toxicity and liver injury hold promise for improved diagnosis and treatment.
Introduction: Phosphoinositide 3-kinase delta (PI3Kδ) inhibitors are a class of novel agents that are mainly used to treat B-cell malignancies. They function by inhibiting one or more enzymes which are part of the PI3K/AKT/mTOR pathway. Idelalisib is a first-in-class PI3Kδ inhibitor effective in patients with B-cell lymphoid malignancies.
Areas covered: This article reviews the chemical structure, mechanism of action, and metabolic and toxicological properties of PI3Kδ inhibitors and discusses their clinical applications in monotherapy and in combination with other agents for the treatment of chronic lymphocytic leukemia (CLL). A search was conducted of PubMed, Web of Science, and Google Scholar for articles in English.
Results/conclusion: PI3Kδ inhibitors hold potential for the treatment of B-cell malignancies, including CLL. However, their use is also associated with severe toxicities, including pneumonia, cytopenias, hepatitis, and rash. Newer drugs are in development to reduce toxicity with novel schedules and/or combinations.
Expert opinion: The development of novel PI3Kδ inhibitors might help to reduce toxicity and improve efficacy in patients with CLL and other B-cell lymphoid malignancies.