首页 > 最新文献

Frontiers in Cellular Neuroscience最新文献

英文 中文
Editorial: New insights into intracellular pathways and therapeutic targets in CNS diseases. 社论:中枢神经系统疾病细胞内通路和治疗靶点的新见解。
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1559821
Lisa Gherardini
{"title":"Editorial: New insights into intracellular pathways and therapeutic targets in CNS diseases.","authors":"Lisa Gherardini","doi":"10.3389/fncel.2025.1559821","DOIUrl":"10.3389/fncel.2025.1559821","url":null,"abstract":"","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1559821"},"PeriodicalIF":4.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tight junction proteins in glial tumors development and progression.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1541885
Jakub Moskal, Slawomir Michalak

Tight junctions form a paracellular barrier in epithelial and endothelial cells, and they regulate the diffusion of fluids, molecules, and the penetration of cells across tissue compartments. Tight junctions are composed of a group of integral membrane proteins, which include the claudin family, tight junction-associated Marvel protein family, junctional adhesion molecule family, and proteins that anchor the cytoskeleton, such as zonula occludens proteins and the cingulin family. Several factors, such as neurotransmitters or cytokines, and processes like ischemia/hypoxia, inflammation, tumorigenesis, phosphorylation/dephosphorylation, ubiquitination, and palmitoylation, regulate tight junction proteins. Claudins are involved in tumorigenesis processes that lead to glioma formation. In gliomas, there is a noticeable dysregulation of claudins, occludin, and zonula occludens-1 abundance, and their dislocation has been observed. The weakening of intercellular adhesion and cell detachment is responsible for glioma infiltration into surrounding tissues. Furthermore, the paracellular permeability of the blood-brain barrier, formed with the involvement of tight junction proteins, influences the development of peritumoral edema - and, simultaneously, the rate of drug delivery to the glial tumor. Understanding the junctional and paracellular environments in brain tumors is crucial to predicting glial tumor progression and the feasibility of chemotherapeutic drug delivery. This knowledge may also illuminate differences between high and low-grade gliomas.

{"title":"Tight junction proteins in glial tumors development and progression.","authors":"Jakub Moskal, Slawomir Michalak","doi":"10.3389/fncel.2025.1541885","DOIUrl":"10.3389/fncel.2025.1541885","url":null,"abstract":"<p><p>Tight junctions form a paracellular barrier in epithelial and endothelial cells, and they regulate the diffusion of fluids, molecules, and the penetration of cells across tissue compartments. Tight junctions are composed of a group of integral membrane proteins, which include the claudin family, tight junction-associated Marvel protein family, junctional adhesion molecule family, and proteins that anchor the cytoskeleton, such as <i>zonula occludens</i> proteins and the cingulin family. Several factors, such as neurotransmitters or cytokines, and processes like ischemia/hypoxia, inflammation, tumorigenesis, phosphorylation/dephosphorylation, ubiquitination, and palmitoylation, regulate tight junction proteins. Claudins are involved in tumorigenesis processes that lead to glioma formation. In gliomas, there is a noticeable dysregulation of claudins, occludin, and <i>zonula occludens-1</i> abundance, and their dislocation has been observed. The weakening of intercellular adhesion and cell detachment is responsible for glioma infiltration into surrounding tissues. Furthermore, the paracellular permeability of the blood-brain barrier, formed with the involvement of tight junction proteins, influences the development of peritumoral edema - and, simultaneously, the rate of drug delivery to the glial tumor. Understanding the junctional and paracellular environments in brain tumors is crucial to predicting glial tumor progression and the feasibility of chemotherapeutic drug delivery. This knowledge may also illuminate differences between high and low-grade gliomas.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1541885"},"PeriodicalIF":4.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N 1-methylnicotinamide promotes age-related cochlear damage via the overexpression of SIRT1.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1542164
Toru Miwa, Akihito Tarui, Teppei Kouga, Yasunori Asai, Hideaki Ogita, Taro Fujikawa, Nobuhiro Hakuba

Age-related hearing loss (ARHL) is a complex condition with genetic, aging, and environmental influences. Sirtuins, particularly SIRT1, are NAD-dependent protein deacetylases critical to aging and stress responses. SIRT1 is modulated by nicotinamide N-methyltransferase (NNMT) and its product, N1-methylnicotinamide (MNAM), which influence ARHL progression. While SIRT1 is protective under certain conditions, its overexpression may paradoxically exacerbate hearing loss. This study examines MNAM supplementation's impact on SIRT1 expression and ARHL in low-fat diet (LFD)-fed B6 and CBA mice. Mice were divided into LFD and LFD + MNAM groups and evaluated for auditory function, cochlear morphology, metabolic profiles, and SIRT1 expression at 3, 6, and 12 months of age. MNAM supplementation accelerated ARHL in both strains, with B6 mice showing more pronounced and earlier disease progression. Auditory brainstem response (ABR) thresholds were significantly elevated, and distortion-product otoacoustic emissions (DPOAE) indicated outer hair cell dysfunction. Cochlear histology revealed reduced hair cell and spiral ganglion cell counts, as well as decreased Na+/K+-ATPase α1 expression and endocochlear potential. MNAM increased SIRT1 protein levels in the cochlea without altering Sirt1 mRNA, suggesting post-transcriptional regulation. Metabolomic analysis revealed disrupted mitochondrial and oxidative pathways, including fatty acid oxidation and gluconeogenesis. Tricarboxylic acid (TCA) cycle dysregulation was evident, particularly in B6 mice, with elevated pyruvate, fumarate, and lactate levels. Despite similar metabolic trends in CBA mice, their slower aging profiles mitigated ARHL progression. These results suggest that while moderate SIRT1 expression protects against ARHL, overexpression disrupts metabolic homeostasis, accelerating cochlear aging and dysfunction. The dual role of SIRT1 emphasizes the need for precise modulation of its expression for effective therapeutic interventions. Future research should explore mechanisms underlying SIRT1-induced cochlear damage and strategies to maintain balanced SIRT1 expression. This study highlights MNAM's detrimental effects on ARHL, underscoring its significance for developing targeted approaches to delay ARHL onset and preserve auditory function.

{"title":"<i>N</i> <sup>1</sup>-methylnicotinamide promotes age-related cochlear damage via the overexpression of SIRT1.","authors":"Toru Miwa, Akihito Tarui, Teppei Kouga, Yasunori Asai, Hideaki Ogita, Taro Fujikawa, Nobuhiro Hakuba","doi":"10.3389/fncel.2025.1542164","DOIUrl":"10.3389/fncel.2025.1542164","url":null,"abstract":"<p><p>Age-related hearing loss (ARHL) is a complex condition with genetic, aging, and environmental influences. Sirtuins, particularly SIRT1, are NAD-dependent protein deacetylases critical to aging and stress responses. SIRT1 is modulated by nicotinamide N-methyltransferase (NNMT) and its product, N<sup>1</sup>-methylnicotinamide (MNAM), which influence ARHL progression. While SIRT1 is protective under certain conditions, its overexpression may paradoxically exacerbate hearing loss. This study examines MNAM supplementation's impact on SIRT1 expression and ARHL in low-fat diet (LFD)-fed B6 and CBA mice. Mice were divided into LFD and LFD + MNAM groups and evaluated for auditory function, cochlear morphology, metabolic profiles, and SIRT1 expression at 3, 6, and 12 months of age. MNAM supplementation accelerated ARHL in both strains, with B6 mice showing more pronounced and earlier disease progression. Auditory brainstem response (ABR) thresholds were significantly elevated, and distortion-product otoacoustic emissions (DPOAE) indicated outer hair cell dysfunction. Cochlear histology revealed reduced hair cell and spiral ganglion cell counts, as well as decreased Na<sup>+</sup>/K<sup>+</sup>-ATPase α1 expression and endocochlear potential. MNAM increased SIRT1 protein levels in the cochlea without altering Sirt1 mRNA, suggesting post-transcriptional regulation. Metabolomic analysis revealed disrupted mitochondrial and oxidative pathways, including fatty acid oxidation and gluconeogenesis. Tricarboxylic acid (TCA) cycle dysregulation was evident, particularly in B6 mice, with elevated pyruvate, fumarate, and lactate levels. Despite similar metabolic trends in CBA mice, their slower aging profiles mitigated ARHL progression. These results suggest that while moderate SIRT1 expression protects against ARHL, overexpression disrupts metabolic homeostasis, accelerating cochlear aging and dysfunction. The dual role of SIRT1 emphasizes the need for precise modulation of its expression for effective therapeutic interventions. Future research should explore mechanisms underlying SIRT1-induced cochlear damage and strategies to maintain balanced SIRT1 expression. This study highlights MNAM's detrimental effects on ARHL, underscoring its significance for developing targeted approaches to delay ARHL onset and preserve auditory function.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1542164"},"PeriodicalIF":4.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing sleep quality in synucleinopathies through physical exercise.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1515922
Jacopo Canonichesi, Laura Bellingacci, Francesco Rivelli, Alessandro Tozzi

During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.

{"title":"Enhancing sleep quality in synucleinopathies through physical exercise.","authors":"Jacopo Canonichesi, Laura Bellingacci, Francesco Rivelli, Alessandro Tozzi","doi":"10.3389/fncel.2025.1515922","DOIUrl":"10.3389/fncel.2025.1515922","url":null,"abstract":"<p><p>During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of <i>α</i>-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1515922"},"PeriodicalIF":4.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spatial buildup of nonlinear compression in the cochlea.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-29 eCollection Date: 2024-01-01 DOI: 10.3389/fncel.2024.1450115
Kostas Kondylidis, Anna Vavakou, Marcel van der Heijden

In the mammalian cochlea, the transduction from vibrations to inner hair cell receptor currents is preceded by a stage of mechanical pre-processing that involves a rapid, strongly nonlinear compression. The mechanisms by which the cochlea realizes this dynamic compression are still poorly understood. Previous work by our group suggested that compression does not occur locally, but is realized by a cascade of weakly nonlinear elements along the cochlear partition. The resulting progressive accumulation of nonlinearity was termed the spatial buildup of compression. Here we studied mechanical compression in the basal turn of the sensitive gerbil cochlea using optical coherence tomography. We recorded vibrations at multiple positions along the length of the cochlear partition. Such longitudinal studies were virtually impossible with previous techniques. Using a tailored two-tone stimulus we quantified the spatial profile of compression. We found that the amount of compression grew gradually in an intensity-dependent fashion along our measurement stretch, as we moved apically toward the place of maximum vibration. This gradual buildup of compression was not mirrored by a gradual reduction beyond the peak. In fact the amount of compression accumulated even beyond the peak. This asymmetric pattern supports the view that mechanical compression is realized in a cascaded, distributed fashion which hinges on the traveling wave nature of cochlear vibrations.

{"title":"The spatial buildup of nonlinear compression in the cochlea.","authors":"Kostas Kondylidis, Anna Vavakou, Marcel van der Heijden","doi":"10.3389/fncel.2024.1450115","DOIUrl":"10.3389/fncel.2024.1450115","url":null,"abstract":"<p><p>In the mammalian cochlea, the transduction from vibrations to inner hair cell receptor currents is preceded by a stage of mechanical pre-processing that involves a rapid, strongly nonlinear compression. The mechanisms by which the cochlea realizes this dynamic compression are still poorly understood. Previous work by our group suggested that compression does not occur locally, but is realized by a cascade of weakly nonlinear elements along the cochlear partition. The resulting progressive accumulation of nonlinearity was termed the spatial buildup of compression. Here we studied mechanical compression in the basal turn of the sensitive gerbil cochlea using optical coherence tomography. We recorded vibrations at multiple positions along the length of the cochlear partition. Such longitudinal studies were virtually impossible with previous techniques. Using a tailored two-tone stimulus we quantified the spatial profile of compression. We found that the amount of compression grew gradually in an intensity-dependent fashion along our measurement stretch, as we moved apically toward the place of maximum vibration. This gradual buildup of compression was not mirrored by a gradual reduction beyond the peak. In fact the amount of compression accumulated even beyond the peak. This asymmetric pattern supports the view that mechanical compression is realized in a cascaded, distributed fashion which hinges on the traveling wave nature of cochlear vibrations.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1450115"},"PeriodicalIF":4.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of neurotrophic factors in retinal ganglion cell resiliency.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1536452
Alan K Abraham, Michael Telias

Many retinal diseases are characterized by direct or indirect retinal ganglion cell (RGC) neurodegeneration. In glaucoma and optic nerve neuropathies, RGCs are the primary affected cells, whereas in photoreceptor dystrophies, RGC loss is secondary to the death of rods and cones. The death of RGCs in either case will irreversibly cause loss of vision, as RGCs are the sole output neurons of the retina. RGC neurodegeneration affects certain neurons preferentially, resulting in subpopulations of resilient and susceptible cells. Neurotrophins (NTs) are known to mediate neuronal survival through the downstream activation of various anti-apoptotic pathways. In this review, we summarize the current methods of RGC identification and quantification in animal models of direct or indirect neurodegeneration, and describe the advantages and disadvantages associated with these techniques. Using these techniques, multiple studies have uncovered the potential role of NTs in protecting RGCs during direct neurodegeneration, with BDNF and NGF delivery promoting RGC survival in models of experimental glaucoma. Many fewer studies have addressed similar questions in retinal diseases where RGC loss is secondary to photoreceptor degeneration, yielding conflicting results. Our analysis suggests that these seemingly contradictory results can be explained by the varying onset and geographic distribution of photoreceptor death.

{"title":"The role of neurotrophic factors in retinal ganglion cell resiliency.","authors":"Alan K Abraham, Michael Telias","doi":"10.3389/fncel.2025.1536452","DOIUrl":"10.3389/fncel.2025.1536452","url":null,"abstract":"<p><p>Many retinal diseases are characterized by direct or indirect retinal ganglion cell (RGC) neurodegeneration. In glaucoma and optic nerve neuropathies, RGCs are the primary affected cells, whereas in photoreceptor dystrophies, RGC loss is secondary to the death of rods and cones. The death of RGCs in either case will irreversibly cause loss of vision, as RGCs are the sole output neurons of the retina. RGC neurodegeneration affects certain neurons preferentially, resulting in subpopulations of resilient and susceptible cells. Neurotrophins (NTs) are known to mediate neuronal survival through the downstream activation of various anti-apoptotic pathways. In this review, we summarize the current methods of RGC identification and quantification in animal models of direct or indirect neurodegeneration, and describe the advantages and disadvantages associated with these techniques. Using these techniques, multiple studies have uncovered the potential role of NTs in protecting RGCs during direct neurodegeneration, with BDNF and NGF delivery promoting RGC survival in models of experimental glaucoma. Many fewer studies have addressed similar questions in retinal diseases where RGC loss is secondary to photoreceptor degeneration, yielding conflicting results. Our analysis suggests that these seemingly contradictory results can be explained by the varying onset and geographic distribution of photoreceptor death.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1536452"},"PeriodicalIF":4.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term live-cell imaging of GFAP+ astroglia and laminin+ vessels in organotypic mouse brain slices using microcontact printing. 利用微接触打印技术对小鼠有机脑切片中的 GFAP+星形胶质细胞和层粘连蛋白+血管进行长期活细胞成像。
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI: 10.3389/fncel.2025.1540150
Christian Humpel

Organotypic brain slices are three-dimensional, 150-μm-thick sections derived from postnatal day 10 mice that can be cultured for several weeks in vitro. However, these slices pose challenges for live-cell imaging due to their thickness, particularly without access to expensive two-photon microscopy. In this study, we present an innovative method to label and visualize specific brain cell populations in living slices. Using microcontact printing, antibodies are applied directly onto the slices in a controlled 400-μm-diameter pattern. Astrocytes are labeled with glial fibrillary acidic protein (GFAP), and vessels are labeled with laminin. Subsequently, slices are incubated with secondary fluorescent antibodies (green fluorescent Alexa-488 or red fluorescent Alexa-546) and visualized using an inverted fluorescence microscope. This approach offers a cost-effective and detailed visualization technique for astroglia and vessels in living brain slices, enabling investigation to be conducted over several weeks.

{"title":"Long-term live-cell imaging of GFAP+ astroglia and laminin+ vessels in organotypic mouse brain slices using microcontact printing.","authors":"Christian Humpel","doi":"10.3389/fncel.2025.1540150","DOIUrl":"10.3389/fncel.2025.1540150","url":null,"abstract":"<p><p>Organotypic brain slices are three-dimensional, 150-μm-thick sections derived from postnatal day 10 mice that can be cultured for several weeks <i>in vitro</i>. However, these slices pose challenges for live-cell imaging due to their thickness, particularly without access to expensive two-photon microscopy. In this study, we present an innovative method to label and visualize specific brain cell populations in living slices. Using microcontact printing, antibodies are applied directly onto the slices in a controlled 400-μm-diameter pattern. Astrocytes are labeled with glial fibrillary acidic protein (GFAP), and vessels are labeled with laminin. Subsequently, slices are incubated with secondary fluorescent antibodies (green fluorescent Alexa-488 or red fluorescent Alexa-546) and visualized using an inverted fluorescence microscope. This approach offers a cost-effective and detailed visualization technique for astroglia and vessels in living brain slices, enabling investigation to be conducted over several weeks.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1540150"},"PeriodicalIF":4.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological approaches in drug-resistant pediatric epilepsies caused by pathogenic variants in potassium channel genes.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-24 eCollection Date: 2024-01-01 DOI: 10.3389/fncel.2024.1512365
Ilaria Filareto, Ilaria Mosca, Elena Freri, Francesca Ragona, Laura Canafoglia, Roberta Solazzi, Barbara Castellotti, Giuliana Messina, Cinzia Gellera, Maria Virginia Soldovieri, Paolo Ambrosino, Maurizio Taglialatela, Jacopo C DiFrancesco, Tiziana Granata

Variants in genes encoding for voltage-gated K+ (Kv) channels are frequent cause of drug-resistant pediatric epilepsies. Obtaining a molecular diagnosis gives the opportunity to assess the efficacy of pharmacological strategies based on in vitro features of mutant channels. In this retrospective observational study, we selected patients with drug-resistant pediatric epilepsies caused by variants in potassium channel encoding genes, followed at the Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan, Italy. After the experimental characterization of variants' functional properties in transiently transfected Chinese Hamster Ovary (CHO) cells, we identified drugs to be used as pharmacological approaches. We recruited six patients carrying different missense variants in four Kv channels (Kv7.2, Kv7.3, Kv3.1, and KNa1.1). In vitro experiments demonstrated that variants in Kv7 channels induced loss-of-function (LoF) effects, while those affecting Kv3.1 or KNa1.1 led to gain-of-function (GoF). Moreover, we found that the Kv7 channels activator gabapentin was able to revert the LoF effects caused by Kv7.2/Kv7.3 variants, and the potassium channel-blocker fluoxetine counteracted the GoF effects in Kv3.1 or KNa1.1 variants. According to experimental data, patients carrying Kv7 variants were treated with gabapentin. While this treatment resulted successful in two patients (#1, Kv7.2 G310S variant; #3, Kv7.3 V359L + Kv7.3 D542N), it resulted detrimental in the remaining case (#2, Kv7.2 D535E), requiring drug withdrawal. The application in vivo of fluoxetine to counteract GoF effects induced by Kv3.1 or KNa1.1 variants determined a significant reduction of both seizure frequency and behavior disturbances in patient #4 (Kv3.1 V425M), and in both subjects carrying KNa1.1 variants (#5, S937G and #6, R262Q). However, for the latter case, this drug was halted due to severe behavioral side effects. For most of the patients herein reported, pharmacological strategies, selected according to the in vitro functional properties of Kv-channels pathogenic variants, resulted in a significant improvement of both epileptic and cognitive features.

{"title":"Pharmacological approaches in drug-resistant pediatric epilepsies caused by pathogenic variants in potassium channel genes.","authors":"Ilaria Filareto, Ilaria Mosca, Elena Freri, Francesca Ragona, Laura Canafoglia, Roberta Solazzi, Barbara Castellotti, Giuliana Messina, Cinzia Gellera, Maria Virginia Soldovieri, Paolo Ambrosino, Maurizio Taglialatela, Jacopo C DiFrancesco, Tiziana Granata","doi":"10.3389/fncel.2024.1512365","DOIUrl":"10.3389/fncel.2024.1512365","url":null,"abstract":"<p><p>Variants in genes encoding for voltage-gated K<sup>+</sup> (Kv) channels are frequent cause of drug-resistant pediatric epilepsies. Obtaining a molecular diagnosis gives the opportunity to assess the efficacy of pharmacological strategies based on <i>in vitro</i> features of mutant channels. In this retrospective observational study, we selected patients with drug-resistant pediatric epilepsies caused by variants in potassium channel encoding genes, followed at the Fondazione IRCCS Istituto Neurologico Carlo Besta of Milan, Italy. After the experimental characterization of variants' functional properties in transiently transfected Chinese Hamster Ovary (CHO) cells, we identified drugs to be used as pharmacological approaches. We recruited six patients carrying different missense variants in four Kv channels (Kv7.2, Kv7.3, Kv3.1, and K<sub>Na</sub>1.1). <i>In vitro</i> experiments demonstrated that variants in Kv7 channels induced loss-of-function (LoF) effects, while those affecting Kv3.1 or K<sub>Na</sub>1.1 led to gain-of-function (GoF). Moreover, we found that the Kv7 channels activator gabapentin was able to revert the LoF effects caused by Kv7.2/Kv7.3 variants, and the potassium channel-blocker fluoxetine counteracted the GoF effects in Kv3.1 or K<sub>Na</sub>1.1 variants. According to experimental data, patients carrying Kv7 variants were treated with gabapentin. While this treatment resulted successful in two patients (#1, Kv7.2 G310S variant; #3, Kv7.3 V359L + Kv7.3 D542N), it resulted detrimental in the remaining case (#2, Kv7.2 D535E), requiring drug withdrawal. The application <i>in vivo</i> of fluoxetine to counteract GoF effects induced by Kv3.1 or K<sub>Na</sub>1.1 variants determined a significant reduction of both seizure frequency and behavior disturbances in patient #4 (Kv3.1 V425M), and in both subjects carrying K<sub>Na</sub>1.1 variants (#5, S937G and #6, R262Q). However, for the latter case, this drug was halted due to severe behavioral side effects. For most of the patients herein reported, pharmacological strategies, selected according to the <i>in vitro</i> functional properties of Kv-channels pathogenic variants, resulted in a significant improvement of both epileptic and cognitive features.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1512365"},"PeriodicalIF":4.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterization of endocytic signals in the SynDIG/PRRT family members SynDIG1 and SynDIG4 in heterologous cells and neurons.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI: 10.3389/fncel.2024.1526034
David J Speca, Chun-Wei He, Christina M Meyer, Erin C Scott, Elva Díaz

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4), also known as Proline-rich transmembrane protein 1 (PRRT1), is an AMPA-type glutamate receptor (AMPAR) auxiliary factor that is necessary for maintaining extra-synaptic pools of GluA1. Loss of SynDIG4, and the subsequent decrease in extra-synaptic GluA1, has been found to significantly impact synaptic plasticity in the hippocampus. However, how SynDIG4 establishes and maintains these pools is unclear. Previous studies suggested that endocytic machinery is important for maintaining a pool of mobile surface AMPARs, and that proteins associated with such cellular machinery are critical for proper protein trafficking and internalization. Given that SynDIG4 co-localizes with GluA1 in early and recycling endosomes in cultured hippocampal neurons, we sought to identify the sorting signals that target SynDIG4 to endosomes to further elucidate the role of SynDIG4 in GluA1 trafficking. In this study, we report that SynDIG4 possesses a YxxΦ sorting motif, 178-YVPV-181, responsible for binding to the AP-2 complex cargo-sorting subunit μ2. This motif appears critical for proper SynDIG4 internalization, as SynDIG4 mutant 178-AVPA-181, which disrupts binding to μ2, induces aberrant SynDIG4 accumulation at the plasma-membrane of heterologous cells and primary rat hippocampal neurons. We also show that SynDIG4 mutants lacking an endocytic signal co-localize with GluA1 but less so with GluA2 on the surface of heterologous cells. Furthermore, we show that another family member, SynDIG1, is enriched in the trans-Golgi network (TGN) and can traffic between the TGN and plasma membrane. We have identified a non-canonical μ2 binding sequence in SynDIG1 that induces aberrant accumulation at the plasma membrane of heterologous cells and primary rat hippocampal neurons, suggesting a conserved role for μ2-mediated endocytosis within the SynDIG family. These results provide important insight into the mechanisms by which SynDIG proteins are targeted to endosomal compartments as a step in understanding SynDIG-mediated regulation of AMPAR trafficking.

{"title":"Functional characterization of endocytic signals in the SynDIG/PRRT family members SynDIG1 and SynDIG4 in heterologous cells and neurons.","authors":"David J Speca, Chun-Wei He, Christina M Meyer, Erin C Scott, Elva Díaz","doi":"10.3389/fncel.2024.1526034","DOIUrl":"10.3389/fncel.2024.1526034","url":null,"abstract":"<p><p>The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4), also known as Proline-rich transmembrane protein 1 (PRRT1), is an AMPA-type glutamate receptor (AMPAR) auxiliary factor that is necessary for maintaining extra-synaptic pools of GluA1. Loss of SynDIG4, and the subsequent decrease in extra-synaptic GluA1, has been found to significantly impact synaptic plasticity in the hippocampus. However, how SynDIG4 establishes and maintains these pools is unclear. Previous studies suggested that endocytic machinery is important for maintaining a pool of mobile surface AMPARs, and that proteins associated with such cellular machinery are critical for proper protein trafficking and internalization. Given that SynDIG4 co-localizes with GluA1 in early and recycling endosomes in cultured hippocampal neurons, we sought to identify the sorting signals that target SynDIG4 to endosomes to further elucidate the role of SynDIG4 in GluA1 trafficking. In this study, we report that SynDIG4 possesses a YxxΦ sorting motif, 178-YVPV-181, responsible for binding to the AP-2 complex cargo-sorting subunit μ2. This motif appears critical for proper SynDIG4 internalization, as SynDIG4 mutant 178-AVPA-181, which disrupts binding to μ2, induces aberrant SynDIG4 accumulation at the plasma-membrane of heterologous cells and primary rat hippocampal neurons. We also show that SynDIG4 mutants lacking an endocytic signal co-localize with GluA1 but less so with GluA2 on the surface of heterologous cells. Furthermore, we show that another family member, SynDIG1, is enriched in the trans-Golgi network (TGN) and can traffic between the TGN and plasma membrane. We have identified a non-canonical μ2 binding sequence in SynDIG1 that induces aberrant accumulation at the plasma membrane of heterologous cells and primary rat hippocampal neurons, suggesting a conserved role for μ2-mediated endocytosis within the SynDIG family. These results provide important insight into the mechanisms by which SynDIG proteins are targeted to endosomal compartments as a step in understanding SynDIG-mediated regulation of AMPAR trafficking.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1526034"},"PeriodicalIF":4.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interneuronal modulations as a functional switch for cortical computations: mechanisms and implication for disease.
IF 4.2 3区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI: 10.3389/fncel.2024.1479579
Yann Zerlaut, Alexandra Tzilivaki

Understanding cortical inhibition and its diverse roles remains a key challenge in neurophysiological research. Traditionally, inhibition has been recognized for controlling the stability and rhythmicity of network dynamics, or refining the spatiotemporal properties of cortical representations. In this perspective, we propose that specific types of interneurons may play a complementary role, by modulating the computational properties of neural networks. We review experimental and theoretical evidence, mainly from rodent sensory cortices, that supports this view. Additionally, we explore how dysfunctions in these interneurons may disrupt the network's ability to switch between computational modes, impacting the flexibility of cortical processing and potentially contributing to various neurodevelopmental and psychiatric disorders.

{"title":"Interneuronal modulations as a functional switch for cortical computations: mechanisms and implication for disease.","authors":"Yann Zerlaut, Alexandra Tzilivaki","doi":"10.3389/fncel.2024.1479579","DOIUrl":"10.3389/fncel.2024.1479579","url":null,"abstract":"<p><p>Understanding cortical inhibition and its diverse roles remains a key challenge in neurophysiological research. Traditionally, inhibition has been recognized for controlling the stability and rhythmicity of network dynamics, or refining the spatiotemporal properties of cortical representations. In this perspective, we propose that specific types of interneurons may play a complementary role, by modulating the computational properties of neural networks. We review experimental and theoretical evidence, mainly from rodent sensory cortices, that supports this view. Additionally, we explore how dysfunctions in these interneurons may disrupt the network's ability to switch between computational modes, impacting the flexibility of cortical processing and potentially contributing to various neurodevelopmental and psychiatric disorders.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1479579"},"PeriodicalIF":4.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Cellular Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1