Pub Date : 2024-10-30eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1421591
Ángela Pérez-Benito, José Manuel García-Aznar, María José Gómez-Benito, María Ángeles Pérez
Prostate cancer (PCa) is a major world-wide health concern. Current diagnostic methods involve Prostate-Specific Antigen (PSA) blood tests, biopsies, and Magnetic Resonance Imaging (MRI) to assess cancer aggressiveness and guide treatment decisions. MRI aligns with in silico medicine, as patient-specific image biomarkers can be obtained, contributing towards the development of digital twins for clinical practice. This work presents a novel framework to create a personalized PCa model by integrating clinical MRI data, such as the prostate and tumour geometry, the initial distribution of cells and the vasculature, so a full representation of the whole prostate is obtained. On top of the personalized model construction, our approach simulates and predicts temporal tumour growth in the prostate through the Finite Element Method, coupling the dynamics of tumour growth and the transport of oxygen, and incorporating cellular processes such as proliferation, differentiation, and apoptosis. In addition, our approach includes the simulation of the PSA dynamics, which allows to evaluate tumour growth through the PSA patient's levels. To obtain the model parameters, a multi-objective optimization process is performed to adjust the best parameters for two patients simultaneously. This framework is validated by means of data from four patients with several MRI follow-ups. The diagnosis MRI allows the model creation and initialization, while subsequent MRI-based data provide additional information to validate computational predictions. The model predicts prostate and tumour volumes growth, along with serum PSA levels. This work represents a preliminary step towards the creation of digital twins for PCa patients, providing personalized insights into tumour growth.
{"title":"Patient-specific prostate tumour growth simulation: a first step towards the digital twin.","authors":"Ángela Pérez-Benito, José Manuel García-Aznar, María José Gómez-Benito, María Ángeles Pérez","doi":"10.3389/fphys.2024.1421591","DOIUrl":"10.3389/fphys.2024.1421591","url":null,"abstract":"<p><p>Prostate cancer (PCa) is a major world-wide health concern. Current diagnostic methods involve Prostate-Specific Antigen (PSA) blood tests, biopsies, and Magnetic Resonance Imaging (MRI) to assess cancer aggressiveness and guide treatment decisions. MRI aligns with <i>in silico</i> medicine, as patient-specific image biomarkers can be obtained, contributing towards the development of digital twins for clinical practice. This work presents a novel framework to create a personalized PCa model by integrating clinical MRI data, such as the prostate and tumour geometry, the initial distribution of cells and the vasculature, so a full representation of the whole prostate is obtained. On top of the personalized model construction, our approach simulates and predicts temporal tumour growth in the prostate through the Finite Element Method, coupling the dynamics of tumour growth and the transport of oxygen, and incorporating cellular processes such as proliferation, differentiation, and apoptosis. In addition, our approach includes the simulation of the PSA dynamics, which allows to evaluate tumour growth through the PSA patient's levels. To obtain the model parameters, a multi-objective optimization process is performed to adjust the best parameters for two patients simultaneously. This framework is validated by means of data from four patients with several MRI follow-ups. The diagnosis MRI allows the model creation and initialization, while subsequent MRI-based data provide additional information to validate computational predictions. The model predicts prostate and tumour volumes growth, along with serum PSA levels. This work represents a preliminary step towards the creation of digital twins for PCa patients, providing personalized insights into tumour growth.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1499308
Alkmini T Anastasiadi, Konstantinos Stamoulis, Anastasios G Kriebardis, Vassilis L Tzounakas
The development of red blood cell (RBC) storage lesion during hypothermic storage has long posed challenges for blood transfusion efficacy. These alterations are primarily driven by oxidative stress, concern both structural and biochemical aspects of RBCs, and affect their interactions with the recipient's tissues post-transfusion. Efforts to counteract these effects focus on improving the antioxidant capacity within stored RBCs, reducing oxygen exposure, and scavenging harmful molecules that accumulate during storage. Various supplements, such as ascorbic acid, N-acetylcysteine, polyphenolic compounds, and specific metabolites have shown the potential to improve RBC quality by reducing oxidative lesions and lysis phenomena, and enhancing antioxidant, energy, or proteostasis networks. Accordingly, anaerobic storage has emerged as a promising strategy, demonstrating improved RBC storability and recovery in both animal models and preliminary human studies. Finally, targeted scavenging of harmful storage-related phenotypes and molecules, like removal signals, oxidized proteins, and extracellular hemoglobin, while not so studied, also has the potential to benefit both the unit and the patient in need. Omics technologies have aided a lot in these endeavors by revealing biomarkers of superior storability and, thus, potential novel supplementation strategies. Nonetheless, while the so far examined storage modifications show significant promise, there are not many post-transfusion studies (either in vitro, in animal models, or humans) to evaluate RBC efficacy in the transfusion setting. Looking ahead, the future of blood storage and transfusion will likely depend on the optimization of these interventions to extend the shelf-life and quality of stored RBCs, as well as their therapeutic outcome.
{"title":"Molecular modifications to mitigate oxidative stress and improve red blood cell storability.","authors":"Alkmini T Anastasiadi, Konstantinos Stamoulis, Anastasios G Kriebardis, Vassilis L Tzounakas","doi":"10.3389/fphys.2024.1499308","DOIUrl":"10.3389/fphys.2024.1499308","url":null,"abstract":"<p><p>The development of red blood cell (RBC) storage lesion during hypothermic storage has long posed challenges for blood transfusion efficacy. These alterations are primarily driven by oxidative stress, concern both structural and biochemical aspects of RBCs, and affect their interactions with the recipient's tissues post-transfusion. Efforts to counteract these effects focus on improving the antioxidant capacity within stored RBCs, reducing oxygen exposure, and scavenging harmful molecules that accumulate during storage. Various supplements, such as ascorbic acid, N-acetylcysteine, polyphenolic compounds, and specific metabolites have shown the potential to improve RBC quality by reducing oxidative lesions and lysis phenomena, and enhancing antioxidant, energy, or proteostasis networks. Accordingly, anaerobic storage has emerged as a promising strategy, demonstrating improved RBC storability and recovery in both animal models and preliminary human studies. Finally, targeted scavenging of harmful storage-related phenotypes and molecules, like removal signals, oxidized proteins, and extracellular hemoglobin, while not so studied, also has the potential to benefit both the unit and the patient in need. Omics technologies have aided a lot in these endeavors by revealing biomarkers of superior storability and, thus, potential novel supplementation strategies. Nonetheless, while the so far examined storage modifications show significant promise, there are not many post-transfusion studies (either <i>in vitro</i>, in animal models, or humans) to evaluate RBC efficacy in the transfusion setting. Looking ahead, the future of blood storage and transfusion will likely depend on the optimization of these interventions to extend the shelf-life and quality of stored RBCs, as well as their therapeutic outcome.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557539/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1473501
Yue Zhang, Jing Li, Jiamei Pan, Shengli Deng
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
{"title":"Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury.","authors":"Yue Zhang, Jing Li, Jiamei Pan, Shengli Deng","doi":"10.3389/fphys.2024.1473501","DOIUrl":"https://doi.org/10.3389/fphys.2024.1473501","url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1440307
Ah Young Leem, Hee Tae Yu, MinDong Sung, Kyung Soo Chung, Yeonkyeong Kim, Ala Woo, Song Yee Kim, Moo Suk Park, Young Sam Kim, Young Ho Yang, Ha Eun Kim, Jin Gu Lee, Kyuseok Kim, Kyu Bom Kim, Boyoung Joung, Junbeom Park, Su Hwan Lee
Introduction: End-stage lung disease causes cardiac remodeling and induces electrocardiogram (ECG) changes. On the other way, whether lung transplantation (LTx) in end-stage lung disease patients are associated with ECG change is unknown. The object of this study was to investigate ECG changes before and after LTx in end-stage lung disease patients and whether these changes had clinical significance.
Method: This was a single-center retrospective cohort study of 280 end-stage lung disease patients who consecutively underwent LTx at a tertiary referral hospital. ECG findings before LTx and within 1 week and 1, 3, and 6 months after LTx were obtained and analyzed. To find clinical meaning, the ECG at 1 month after LTx was analyzed according to 1-year survival (survivor vs non-survivor groups). Survival data were estimated using the Kaplan-Meier method.
Results: Significant differences were observed in the PR interval, QRS duration, QT interval, QTc interval, and heart rate before LTx and 1 month after LTx; the PR interval, QRS duration, QTc interval, and heart rate were decreased. Particularly, the QTc interval was significantly decreased 1 month after LTx, whereas there was no significant change in the QTc interval from 1 to 6 months thereafter. The PR interval, QT interval, QTc interval, and heart rate were significantly different between the survivor and non-survivor groups. The serial changes in QTc interval before LTx and 1 and 3 months after LTx were also significantly different between the survivor and non-survivor groups (p = 0.040 after adjusting for age and body mass index). Upon dividing the patients based on the range of QTc interval change ≤ -8 ms, >-8-10 ms, >10-35 ms, >35 ms), the survival rate was significantly lower in the group whose QTc interval at 1 month after LTx decreased by > 35 m (p = 0.019).
Conclusion: LTx in patients with end-stage lung disease may induce ECG changes. Patients whose QTc interval at 1 month after LTx decreased by > 35 ms have a significantly higher 1-year mortality rate. Hence, these ECG changes may have clinical and prognostic significance.
{"title":"Clinical implication of electrocardiogram change in patients experiencing lung transplantation with end stage lung disease.","authors":"Ah Young Leem, Hee Tae Yu, MinDong Sung, Kyung Soo Chung, Yeonkyeong Kim, Ala Woo, Song Yee Kim, Moo Suk Park, Young Sam Kim, Young Ho Yang, Ha Eun Kim, Jin Gu Lee, Kyuseok Kim, Kyu Bom Kim, Boyoung Joung, Junbeom Park, Su Hwan Lee","doi":"10.3389/fphys.2024.1440307","DOIUrl":"10.3389/fphys.2024.1440307","url":null,"abstract":"<p><strong>Introduction: </strong>End-stage lung disease causes cardiac remodeling and induces electrocardiogram (ECG) changes. On the other way, whether lung transplantation (LTx) in end-stage lung disease patients are associated with ECG change is unknown. The object of this study was to investigate ECG changes before and after LTx in end-stage lung disease patients and whether these changes had clinical significance.</p><p><strong>Method: </strong>This was a single-center retrospective cohort study of 280 end-stage lung disease patients who consecutively underwent LTx at a tertiary referral hospital. ECG findings before LTx and within 1 week and 1, 3, and 6 months after LTx were obtained and analyzed. To find clinical meaning, the ECG at 1 month after LTx was analyzed according to 1-year survival (survivor vs non-survivor groups). Survival data were estimated using the Kaplan-Meier method.</p><p><strong>Results: </strong>Significant differences were observed in the PR interval, QRS duration, QT interval, QTc interval, and heart rate before LTx and 1 month after LTx; the PR interval, QRS duration, QTc interval, and heart rate were decreased. Particularly, the QTc interval was significantly decreased 1 month after LTx, whereas there was no significant change in the QTc interval from 1 to 6 months thereafter. The PR interval, QT interval, QTc interval, and heart rate were significantly different between the survivor and non-survivor groups. The serial changes in QTc interval before LTx and 1 and 3 months after LTx were also significantly different between the survivor and non-survivor groups (<i>p</i> = 0.040 after adjusting for age and body mass index). Upon dividing the patients based on the range of QTc interval change ≤ -8 ms, >-8-10 ms, >10-35 ms, >35 ms), the survival rate was significantly lower in the group whose QTc interval at 1 month after LTx decreased by > 35 m (<i>p</i> = 0.019).</p><p><strong>Conclusion: </strong>LTx in patients with end-stage lung disease may induce ECG changes. Patients whose QTc interval at 1 month after LTx decreased by > 35 ms have a significantly higher 1-year mortality rate. Hence, these ECG changes may have clinical and prognostic significance.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1484489
M D Lanzaro, I Padilha, L F C Ramos, A P G Mendez, A Menezes, Y M Silva, M R Martins, M Junqueira, F C S Nogueira, C D AnoBom, G M Dias, F M Gomes, D M P Oliveira
The velvetbean caterpillar Anticarsia gemmatalis is one of the main soybean defoliators in Brazil. Currently, the main biopesticide used to control insect pests worldwide is the bacteria Bacillus thuringiensis (Bt), which produces entomopathogenic Crystal toxins (Cry) that act in the midgut of susceptible insects, leading them to death. The mode of action of Cry toxins in the midgut involves binding to specific receptors present on the brush border of epithelial cells such as aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, and others. Mutations in these receptors, among other factors, may be involved in the development of resistance; identification of functional Cry receptors in the midgut of A. gemmatalis is crucial to develop effective strategies to overcome this possible scenario. This study's goal is to characterize APNs of A. gemmatalis and identify a receptor for Cry1Ac in the midgut. The interaction of Bt spores with the midgut epithelium was observed in situ by immunohistochemistry and total aminopeptidase activity was estimated in brush border membrane vesicle (BBMV) samples, presenting higher activity in challenged individuals than in control ones. Ten APN sequences were found in a A. gemmatalis' transcriptome and subjected to different in silico analysis, such as phylogenetic tree, multiple sequence alignment and identification of signal peptide, activity domains and GPI-anchor signal. BBMV proteins from 5th instar larvae were submitted to a ligand blotting using activated Cry1Ac toxin and a commercial anti-Cry polyclonal antibody; corresponding bands of proteins that showed binding to Cry toxin were excised from the SDS-PAGE gel and subjected to mass spectrometry analysis, which resulted in the identification of seven of those APNs. Quantitative PCR was realized to compare expression levels between individuals subjected to sublethal infection with Bt spores and control ones, presenting up- and downregulations upon Bt infection. From these results, we can infer that aminopeptidases N in A. gemmatalis could be involved in the mode of action of Cry toxins in its larval stage.
{"title":"Cry1Ac toxin binding in the velvetbean caterpillar <i>Anticarsia gemmatalis</i>: study of midgut aminopeptidases N.","authors":"M D Lanzaro, I Padilha, L F C Ramos, A P G Mendez, A Menezes, Y M Silva, M R Martins, M Junqueira, F C S Nogueira, C D AnoBom, G M Dias, F M Gomes, D M P Oliveira","doi":"10.3389/fphys.2024.1484489","DOIUrl":"https://doi.org/10.3389/fphys.2024.1484489","url":null,"abstract":"<p><p>The velvetbean caterpillar <i>Anticarsia gemmatalis</i> is one of the main soybean defoliators in Brazil. Currently, the main biopesticide used to control insect pests worldwide is the bacteria <i>Bacillus thuringiensis</i> (Bt), which produces entomopathogenic Crystal toxins (Cry) that act in the midgut of susceptible insects, leading them to death. The mode of action of Cry toxins in the midgut involves binding to specific receptors present on the brush border of epithelial cells such as aminopeptidase N (APN), alkaline phosphatase (ALP), cadherin, and others. Mutations in these receptors, among other factors, may be involved in the development of resistance; identification of functional Cry receptors in the midgut of <i>A. gemmatalis</i> is crucial to develop effective strategies to overcome this possible scenario. This study's goal is to characterize APNs of <i>A. gemmatalis</i> and identify a receptor for Cry1Ac in the midgut. The interaction of Bt spores with the midgut epithelium was observed <i>in situ</i> by immunohistochemistry and total aminopeptidase activity was estimated in brush border membrane vesicle (BBMV) samples, presenting higher activity in challenged individuals than in control ones. Ten APN sequences were found in a <i>A. gemmatalis</i>' transcriptome and subjected to different <i>in silico</i> analysis, such as phylogenetic tree, multiple sequence alignment and identification of signal peptide, activity domains and GPI-anchor signal. BBMV proteins from 5th instar larvae were submitted to a ligand blotting using activated Cry1Ac toxin and a commercial anti-Cry polyclonal antibody; corresponding bands of proteins that showed binding to Cry toxin were excised from the SDS-PAGE gel and subjected to mass spectrometry analysis, which resulted in the identification of seven of those APNs. Quantitative PCR was realized to compare expression levels between individuals subjected to sublethal infection with Bt spores and control ones, presenting up- and downregulations upon Bt infection. From these results, we can infer that aminopeptidases N in <i>A. gemmatalis</i> could be involved in the mode of action of Cry toxins in its larval stage.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1506684
Rosana Alves, Campbell W Gourlay
{"title":"Editorial: Mitochondrial function and dysfunction in pathogenic fungi.","authors":"Rosana Alves, Campbell W Gourlay","doi":"10.3389/fphys.2024.1506684","DOIUrl":"https://doi.org/10.3389/fphys.2024.1506684","url":null,"abstract":"","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1496569
James A Spudich
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
基础研究在寻求急需的临床治疗方法方面的重要性是一个必须不断重述的故事。美国国立卫生研究院(National Institutes of Health)和其他机构对基础科学的资助是基于这样一个假设,即基础研究最终将导致全球医疗保健水平的提高。了解基础研究与临床发展之间的联系非常重要,但这只是故事的一部分。许多基础科学发现从未在临床环境中见到曙光,因为学术科学家对进入生物技术世界不感兴趣或没有这种倾向和/或支持。即使有兴趣和意愿,如何进入生物技术世界也往往是未知数,阻碍了迈出第一步。年轻的研究人员经常问我,我是如何将生物技术机会融入纯学术研究工作的。在这里,我将讲述我职业生涯中的基础科学和早期事件的故事,这些故事促成了负责开发独特心脏病药物的生物技术公司的成立,其中包括 mavacamten,这是一种首创的人类 β-心肌酶抑制剂,它正在改变肥厚型心肌病患者的生活。
{"title":"From amoeboid myosin to unique targeted medicines for a genetic cardiac disease.","authors":"James A Spudich","doi":"10.3389/fphys.2024.1496569","DOIUrl":"https://doi.org/10.3389/fphys.2024.1496569","url":null,"abstract":"<p><p>The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1323127
María-Ángeles Bonmatí-Carrión, Jesús Vicente-Martínez, Juan Antonio Madrid, Maria Angeles Rol
<p><strong>Introduction: </strong>The interplay among sleep patterns, social habits and environmental cues is becoming increasingly more important for public health and wellbeing due to its connection to circadian desynchronization. This paper explores said connections in Spain (which has an official and solar time mismatch), introducing the "Three Times Score" ‒which is based on questions widely used in the field‒ as a complementary tool for exploring the interplay of daily rhythms.</p><p><strong>Methods: </strong>The questionnaire covers sleep-related habits, social time, and environmental time. The study includes 9,947 participants (34.89 ± 12.15 y/o, mean ± SD; 5,561 women) from different Spanish regions. Sleep parameters were obtained for work and free days, as well as a modified version of the sleep-corrected midsleep on free days (MBFbc) and a parameter similar to social jet lag, both derived from bed time rather than sleep time. A number of indexes were computed to compare bed and work-related habits, together with natural light/dark cycle, along with the Three Times Score. Mixed-effect regression analysis was used to test whether the biological, social and environmental factors included in the study significantly predicted the sleep-related parameters: bedtime, wake-up time, time in bed and mid-bedtime.</p><p><strong>Results and discussion: </strong>Temporal differences were found between work and free days, with waking-up occurring 2 h earlier on work days (7:10 ± 0:01) than on free days (9:15 ± 0:01). Bed times were 1 h earlier on work days (23:46 ± 0:01) than on free days (00:45 ± 0:01), whereas time in bed was over 1 h shorter on work (7 h 23 min) <i>versus</i> free (8 h 29 min) days. Strong correlations were found between work starting time and waking-up and bedtimes on workdays. Women went to bed earlier and woke up later, spending more time in bed. Differences in sleep habits were observed between work and free days across all age groups. The group of younger adults (18-30) reported going to bed later than older and younger groups, especially on free days. Adolescents and young adults also woke-up later than other age groups, especially on free days. Social jet lag (relative to bed time) and desynchronization indexes also varied with age, with younger adult participants exhibiting higher levels. Seasonal differences were limited, with minor variations between winter and summer. According to the multiple regression analysis, social (day type, work start time, alarm clock usage), biological (age, gender, in most cases related to sex) and environmental (sunset time) factors significantly contribute to predicting sleep/bed related schedules. This study provides insights into sleep habits in the Spanish population, introducing the Three Times Score as a complementary tool for exploring the interactions between sleep/bed-related habits, natural darkness and work-related schedules. Understanding this interplay is crucial for developing t
{"title":"The interplay among sleep patterns, social habits, and environmental cues: insights from the Spanish population and implications for aligning daily rhythms.","authors":"María-Ángeles Bonmatí-Carrión, Jesús Vicente-Martínez, Juan Antonio Madrid, Maria Angeles Rol","doi":"10.3389/fphys.2024.1323127","DOIUrl":"https://doi.org/10.3389/fphys.2024.1323127","url":null,"abstract":"<p><strong>Introduction: </strong>The interplay among sleep patterns, social habits and environmental cues is becoming increasingly more important for public health and wellbeing due to its connection to circadian desynchronization. This paper explores said connections in Spain (which has an official and solar time mismatch), introducing the \"Three Times Score\" ‒which is based on questions widely used in the field‒ as a complementary tool for exploring the interplay of daily rhythms.</p><p><strong>Methods: </strong>The questionnaire covers sleep-related habits, social time, and environmental time. The study includes 9,947 participants (34.89 ± 12.15 y/o, mean ± SD; 5,561 women) from different Spanish regions. Sleep parameters were obtained for work and free days, as well as a modified version of the sleep-corrected midsleep on free days (MBFbc) and a parameter similar to social jet lag, both derived from bed time rather than sleep time. A number of indexes were computed to compare bed and work-related habits, together with natural light/dark cycle, along with the Three Times Score. Mixed-effect regression analysis was used to test whether the biological, social and environmental factors included in the study significantly predicted the sleep-related parameters: bedtime, wake-up time, time in bed and mid-bedtime.</p><p><strong>Results and discussion: </strong>Temporal differences were found between work and free days, with waking-up occurring 2 h earlier on work days (7:10 ± 0:01) than on free days (9:15 ± 0:01). Bed times were 1 h earlier on work days (23:46 ± 0:01) than on free days (00:45 ± 0:01), whereas time in bed was over 1 h shorter on work (7 h 23 min) <i>versus</i> free (8 h 29 min) days. Strong correlations were found between work starting time and waking-up and bedtimes on workdays. Women went to bed earlier and woke up later, spending more time in bed. Differences in sleep habits were observed between work and free days across all age groups. The group of younger adults (18-30) reported going to bed later than older and younger groups, especially on free days. Adolescents and young adults also woke-up later than other age groups, especially on free days. Social jet lag (relative to bed time) and desynchronization indexes also varied with age, with younger adult participants exhibiting higher levels. Seasonal differences were limited, with minor variations between winter and summer. According to the multiple regression analysis, social (day type, work start time, alarm clock usage), biological (age, gender, in most cases related to sex) and environmental (sunset time) factors significantly contribute to predicting sleep/bed related schedules. This study provides insights into sleep habits in the Spanish population, introducing the Three Times Score as a complementary tool for exploring the interactions between sleep/bed-related habits, natural darkness and work-related schedules. Understanding this interplay is crucial for developing t","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25eCollection Date: 2024-01-01DOI: 10.3389/fphys.2024.1486691
Carlos A Toro, Rita De Gasperi, Katherine Vanselow, Lauren Harlow, Kaitlin Johnson, Abdurrahman Aslan, William A Bauman, Christopher P Cardozo, Zachary A Graham
Traumatic spinal cord injury (SCI) results in the disruption of physiological systems below the level of the spinal lesion. Connexin hemichannels (CxHCs) are membrane-bound, non-selective pore proteins that are lost in mature myofibers but reappear de novo on the sarcolemma after peripheral denervation, chronic SCI, diabetes, and severe systemic stress such as sepsis. Cx43 and Cx45 have been implicated as the major CxHCs present in diseased muscle, and muscle-restricted knockout of these genes reduces muscle atrophy after denervation, likely by reducing excess calcium influx with resultant inflammasome activation. A muscle-restricted Cx43/45 conditional knockout (mKO) mouse model was developed and tested to check whether it would improve outcomes following either a complete spinal cord transection at the level of thoracic vertebrae-9 (T9) or a motor-incomplete T9 impact-contusion SCI. mKO had no effect on the body mass after complete T9 transection. There was reduced atrophy of the plantaris 15 days post-SCI that was not associated with molecular markers of inflammation, hypertrophic/atrophic protein signaling, or protein and mRNA expression related to mitochondrial integrity and function. mKO mice had faster and greater locomotor recovery across 28 days after a motor-incomplete contusion SCI with no differences in spared white matter; male mKO mice generally had greater muscle mass than genotype controls post-injury, but muscle sparing was not observed in female mKO mice post-injury. The data establish a new paradigm where muscle Cx43/45 may contribute to the tissue crosstalk that determines the neuromuscular function of sub-lesional musculature after motor-incomplete SCI in a sex-dependent manner. Our novel findings should promote investigation to develop innovative treatment strategies to improve the function and quality of life for persons with SCI.
{"title":"Muscle-restricted knockout of connexin 43 and connexin 45 accelerates and improves locomotor recovery after contusion spinal cord injury.","authors":"Carlos A Toro, Rita De Gasperi, Katherine Vanselow, Lauren Harlow, Kaitlin Johnson, Abdurrahman Aslan, William A Bauman, Christopher P Cardozo, Zachary A Graham","doi":"10.3389/fphys.2024.1486691","DOIUrl":"https://doi.org/10.3389/fphys.2024.1486691","url":null,"abstract":"<p><p>Traumatic spinal cord injury (SCI) results in the disruption of physiological systems below the level of the spinal lesion. Connexin hemichannels (CxHCs) are membrane-bound, non-selective pore proteins that are lost in mature myofibers but reappear <i>de novo</i> on the sarcolemma after peripheral denervation, chronic SCI, diabetes, and severe systemic stress such as sepsis. Cx43 and Cx45 have been implicated as the major CxHCs present in diseased muscle, and muscle-restricted knockout of these genes reduces muscle atrophy after denervation, likely by reducing excess calcium influx with resultant inflammasome activation. A muscle-restricted Cx43/45 conditional knockout (mKO) mouse model was developed and tested to check whether it would improve outcomes following either a complete spinal cord transection at the level of thoracic vertebrae-9 (T9) or a motor-incomplete T9 impact-contusion SCI. mKO had no effect on the body mass after complete T9 transection. There was reduced atrophy of the plantaris 15 days post-SCI that was not associated with molecular markers of inflammation, hypertrophic/atrophic protein signaling, or protein and mRNA expression related to mitochondrial integrity and function. mKO mice had faster and greater locomotor recovery across 28 days after a motor-incomplete contusion SCI with no differences in spared white matter; male mKO mice generally had greater muscle mass than genotype controls post-injury, but muscle sparing was not observed in female mKO mice post-injury. The data establish a new paradigm where muscle Cx43/45 may contribute to the tissue crosstalk that determines the neuromuscular function of sub-lesional musculature after motor-incomplete SCI in a sex-dependent manner. Our novel findings should promote investigation to develop innovative treatment strategies to improve the function and quality of life for persons with SCI.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}