首页 > 最新文献

Frontiers in Neural Circuits最新文献

英文 中文
Shaping the olfactory map: cell type-specific activity patterns guide circuit formation 塑造嗅觉图谱:细胞类型特异性活动模式引导电路形成
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-05-27 DOI: 10.3389/fncir.2024.1409680
Ai Nakashima, Haruki Takeuchi
The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.
大脑会构建有空间组织的感官图谱来表示感官信息。感官图谱的形成历来被认为取决于神经元的同步活动。然而,最近来自嗅觉系统的证据表明,细胞类型特异的自发活动时间模式在形成嗅觉肾小球图谱的过程中起着指导作用。这些发现挑战了传统观点,凸显了研究神经活动时空动态以了解复杂神经回路发展的重要性。这篇综述讨论了嗅觉系统新发现的意义,并概述了未来的研究方向。
{"title":"Shaping the olfactory map: cell type-specific activity patterns guide circuit formation","authors":"Ai Nakashima, Haruki Takeuchi","doi":"10.3389/fncir.2024.1409680","DOIUrl":"https://doi.org/10.3389/fncir.2024.1409680","url":null,"abstract":"The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hormonal and circuit mechanisms controlling female sexual behavior 控制女性性行为的荷尔蒙和回路机制
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-05-01 DOI: 10.3389/fncir.2024.1409349
Sayaka Inoue
Sexual behavior is crucial for reproduction in many animals. In many vertebrates, females exhibit sexual behavior only during a brief period surrounding ovulation. Over the decades, studies have identified the roles of ovarian sex hormones, which peak in levels around the time of ovulation, and the critical brain regions involved in the regulation of female sexual behavior. Modern technical innovations have enabled a deeper understanding of the neural circuit mechanisms controlling this behavior. In this review, I summarize our current knowledge and discuss the neural circuit mechanisms by which female sexual behavior occurs in association with the ovulatory phase of their cycle.
性行为对许多动物的繁殖至关重要。在许多脊椎动物中,雌性动物只有在排卵前后的短暂时期才会表现出性行为。几十年来,研究发现了卵巢性激素的作用(其水平在排卵前后达到峰值),以及参与调节雌性性行为的关键脑区。现代技术创新使我们能够更深入地了解控制这种行为的神经回路机制。在这篇综述中,我总结了我们目前的知识,并讨论了女性性行为与排卵周期阶段相关的神经回路机制。
{"title":"Hormonal and circuit mechanisms controlling female sexual behavior","authors":"Sayaka Inoue","doi":"10.3389/fncir.2024.1409349","DOIUrl":"https://doi.org/10.3389/fncir.2024.1409349","url":null,"abstract":"Sexual behavior is crucial for reproduction in many animals. In many vertebrates, females exhibit sexual behavior only during a brief period surrounding ovulation. Over the decades, studies have identified the roles of ovarian sex hormones, which peak in levels around the time of ovulation, and the critical brain regions involved in the regulation of female sexual behavior. Modern technical innovations have enabled a deeper understanding of the neural circuit mechanisms controlling this behavior. In this review, I summarize our current knowledge and discuss the neural circuit mechanisms by which female sexual behavior occurs in association with the ovulatory phase of their cycle.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of the connectivity of the posterior intralaminar thalamic nucleus and peripeduncular nucleus in rats and mice 比较大鼠和小鼠丘脑后束内核和周核的连接性
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-26 DOI: 10.3389/fncir.2024.1384621
Hui-Ru Cai, Sheng-Qiang Chen, Xiao-Jun Xiang, Xue-Qin Zhang, Run-Zhe Ma, Ge Zhu, Song-Lin Ding
The posterior intralaminar thalamic nucleus (PIL) and peripeduncular nucleus (PP) are two adjoining structures located medioventral to the medial geniculate nucleus. The PIL-PP region plays important roles in auditory fear conditioning and in social, maternal and sexual behaviors. Previous studies often lumped the PIL and PP into single entity, and therefore it is not known if they have common and/or different brain-wide connections. In this study, we investigate brain-wide efferent and afferent projections of the PIL and PP using reliable anterograde and retrograde tracing methods. Both PIL and PP project strongly to lateral, medial and anterior basomedial amygdaloid nuclei, posteroventral striatum (putamen and external globus pallidus), amygdalostriatal transition area, zona incerta, superior and inferior colliculi, and the ectorhinal cortex. However, the PP rather than the PIL send stronger projections to the hypothalamic regions such as preoptic area/nucleus, anterior hypothalamic nucleus, and ventromedial nucleus of hypothalamus. As for the afferent projections, both PIL and PP receive multimodal information from auditory (inferior colliculus, superior olivary nucleus, nucleus of lateral lemniscus, and association auditory cortex), visual (superior colliculus and ectorhinal cortex), somatosensory (gracile and cuneate nuclei), motor (external globus pallidus), and limbic (central amygdaloid nucleus, hypothalamus, and insular cortex) structures. However, the PP rather than PIL receives strong projections from the visual related structures parabigeminal nucleus and ventral lateral geniculate nucleus. Additional results from Cre-dependent viral tracing in mice have also confirmed the main results in rats. Together, the findings in this study would provide new insights into the neural circuits and functional correlation of the PIL and PP.
丘脑后束内核(PIL)和丘脑周围核(PP)是位于内侧膝状核内侧的两个相邻结构。PIL-PP 区域在听觉恐惧条件反射以及社交、母性和性行为中发挥着重要作用。以往的研究往往将 PIL 和 PP 混为一谈,因此不知道它们是否有共同和/或不同的全脑连接。在本研究中,我们采用可靠的顺行和逆行追踪方法研究了 PIL 和 PP 的全脑传出和传入投射。PIL和PP都强烈地投射到杏仁核的外侧、内侧和前基底内侧、后腹纹状体(丘脑和外侧苍白球)、杏仁体过渡区、内侧区、上丘脑和下丘脑以及外侧皮层。然而,PP 比 PIL 向下丘脑区域(如视前区/核、下丘脑前核和下丘脑腹内侧核)发出更强的投射。至于传入投射,PIL 和 PP 都接收来自听觉(下丘、上橄榄核、外侧半月板核和联想听皮层)的多模态信息、视觉(上丘和外侧皮层)、躯体感觉(砾核和楔核)、运动(外侧苍白球)和边缘(杏仁核中央、下丘脑和岛叶皮层)结构。然而,PP 而不是 PIL 从视觉相关结构副侧神经核和腹外侧膝状核接收强烈的投射。小鼠 Cre 依赖性病毒追踪的其他结果也证实了大鼠的主要结果。总之,本研究的这些发现将为我们了解 PIL 和 PP 的神经回路和功能相关性提供新的视角。
{"title":"Comparison of the connectivity of the posterior intralaminar thalamic nucleus and peripeduncular nucleus in rats and mice","authors":"Hui-Ru Cai, Sheng-Qiang Chen, Xiao-Jun Xiang, Xue-Qin Zhang, Run-Zhe Ma, Ge Zhu, Song-Lin Ding","doi":"10.3389/fncir.2024.1384621","DOIUrl":"https://doi.org/10.3389/fncir.2024.1384621","url":null,"abstract":"The posterior intralaminar thalamic nucleus (PIL) and peripeduncular nucleus (PP) are two adjoining structures located medioventral to the medial geniculate nucleus. The PIL-PP region plays important roles in auditory fear conditioning and in social, maternal and sexual behaviors. Previous studies often lumped the PIL and PP into single entity, and therefore it is not known if they have common and/or different brain-wide connections. In this study, we investigate brain-wide efferent and afferent projections of the PIL and PP using reliable anterograde and retrograde tracing methods. Both PIL and PP project strongly to lateral, medial and anterior basomedial amygdaloid nuclei, posteroventral striatum (putamen and external globus pallidus), amygdalostriatal transition area, zona incerta, superior and inferior colliculi, and the ectorhinal cortex. However, the PP rather than the PIL send stronger projections to the hypothalamic regions such as preoptic area/nucleus, anterior hypothalamic nucleus, and ventromedial nucleus of hypothalamus. As for the afferent projections, both PIL and PP receive multimodal information from auditory (inferior colliculus, superior olivary nucleus, nucleus of lateral lemniscus, and association auditory cortex), visual (superior colliculus and ectorhinal cortex), somatosensory (gracile and cuneate nuclei), motor (external globus pallidus), and limbic (central amygdaloid nucleus, hypothalamus, and insular cortex) structures. However, the PP rather than PIL receives strong projections from the visual related structures parabigeminal nucleus and ventral lateral geniculate nucleus. Additional results from Cre-dependent viral tracing in mice have also confirmed the main results in rats. Together, the findings in this study would provide new insights into the neural circuits and functional correlation of the PIL and PP.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"312 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunolabeling-compatible PEGASOS tissue clearing for high-resolution whole mouse brain imaging 用于高分辨率小鼠全脑成像的免疫标记兼容 PEGASOS 组织清除技术
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-17 DOI: 10.3389/fncir.2024.1345692
Pan Gao, Matthew Rivera, Xiaoxiao Lin, Todd C. Holmes, Hu Zhao, Xiangmin Xu
Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer’s disease, facilitating the comprehensive whole-brain study of pathological features.
新颖的脑部清除方法以高分辨率提高了整个脑部的可视化程度,从而彻底改变了成像技术。然而,将免疫染色感兴趣靶标的标准工具与清除方法相结合的工作却相对滞后。我们将整装免疫染色与 PEGASOS 组织清除技术相结合,称为 iPEGASOS(免疫染色兼容 PEGASOS),以解决清除过程中信号淬灭的难题。此外,我们还展示了 iPEGASOS 在可视化神经化学标记或病毒标签方面的实用性,以增强转基因小鼠品系无法提供的可视化效果。我们的研究包括三种不同的应用,每种应用都展示了这种方法的多功能性和有效性。我们采用整装免疫染色法增强转基因报告基因小鼠系的分子信号,以观察特定细胞群的全脑空间分布。我们还通过增强注入大脑的病毒示踪剂的信号,大大改善了神经回路连接的可视化。最后,我们展示了不使用基因标记物的免疫染色法,以选择性标记阿尔茨海默病小鼠模型中的β-淀粉样蛋白沉积,从而促进对病理特征的全脑综合研究。
{"title":"Immunolabeling-compatible PEGASOS tissue clearing for high-resolution whole mouse brain imaging","authors":"Pan Gao, Matthew Rivera, Xiaoxiao Lin, Todd C. Holmes, Hu Zhao, Xiangmin Xu","doi":"10.3389/fncir.2024.1345692","DOIUrl":"https://doi.org/10.3389/fncir.2024.1345692","url":null,"abstract":"Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer’s disease, facilitating the comprehensive whole-brain study of pathological features.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"47 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural basis for pheromone signal transduction in mice 小鼠信息素信号转导的神经基础
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-15 DOI: 10.3389/fncir.2024.1409994
Ken Murata, Takumi Itakura, Kazushige Touhara
Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.
信息素是用于同一物种内个体间交流的特殊化学信使,在调节行为和生理状态方面起着至关重要的作用。这些信号在外周器官的检测机制及其向大脑的传导一直不清楚。不过,最近对信息素分子、其相应受体的鉴定以及神经科学技术的进步已经开始阐明这些过程。在哺乳动物中,信息素信号的检测和解读主要归功于绒毛膜系统,这是一种专门的嗅觉装置,主要用于解码社会化学线索。在这篇微型综述中,我们旨在描述由小鼠体内特定的绒毛膜受体-配体相互作用启动的绒毛膜信号转导途径。首先,我们对之前确定的信息素配体及其相应的受体对进行了编目,从而对信息素交流中固有的特异性有了基本的了解。随后,我们研究了处理每种信息素信号所涉及的神经回路。我们重点研究了解剖学途径、信号转导的性双态性和生理状态依赖性,以及对信息素线索的行为反应所依赖的神经编码策略。这些见解为先天性回路的形成和可塑性的发展提供了进一步的关键问题。
{"title":"Neural basis for pheromone signal transduction in mice","authors":"Ken Murata, Takumi Itakura, Kazushige Touhara","doi":"10.3389/fncir.2024.1409994","DOIUrl":"https://doi.org/10.3389/fncir.2024.1409994","url":null,"abstract":"Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"16 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models 作为健康和疾病认知控制机制的前额叶活动模式的大规模耦合:来自啮齿动物模型的证据
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-04-04 DOI: 10.3389/fncir.2024.1286111
Ignacio Negrón-Oyarzo, Tatiana Dib, Lorena Chacana-Véliz, Nélida López-Quilodrán, Jocelyn Urrutia-Piñones
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
行为的认知控制对人的健康至关重要,它能让人以目标为导向适应不断变化的环境。在老年人认知能力衰退和病态心理状态下,都能观察到行为认知控制的变化。因此,恢复认知控制能力可能是一种可靠的预防和治疗策略。然而,人们对其神经基础尚不完全了解。认知控制由前额叶皮质支持,它是整合相关信息以适当组织行为的结构。在神经生理学层面,前额叶皮层和分布式神经网络之间的振荡活动模式和神经尖峰活动的局部和大规模同步化支持了认知控制。在这篇综述中,我们主要关注啮齿动物模型,探讨这些前额叶模式的神经元起源,及其与分布式大脑系统协调的认知和行为相关性。我们还研究了认知控制与前额叶皮层神经活动模式之间的关系,以及前额叶皮层在正常认知衰退和病态心理状况中的作用。最后,基于这些证据,我们提出了认知控制行为受损的共同机制。
{"title":"Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models","authors":"Ignacio Negrón-Oyarzo, Tatiana Dib, Lorena Chacana-Véliz, Nélida López-Quilodrán, Jocelyn Urrutia-Piñones","doi":"10.3389/fncir.2024.1286111","DOIUrl":"https://doi.org/10.3389/fncir.2024.1286111","url":null,"abstract":"Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"39 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agranular frontal cortical microcircuit underlying cognitive control in macaques 猕猴认知控制背后的额叶皮层微电路
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-03-27 DOI: 10.3389/fncir.2024.1389110
Beatriz Herrera, Jeffrey D. Schall, Jorge J. Riera
The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.
在内侧额叶皮层记录到的错误相关负性和 N2 分量反映了认知控制的核心功能。虽然已知它们源于额叶前部区域,但其潜在的微电路机制仍然难以捉摸。关于微电路功能的大多数见解都来自于所谓的典型微电路模型的变体。这些微电路架构广泛基于对猴子、猫和啮齿动物的颗粒感觉皮层区域的研究。然而,有证据表明,不同物种之间的细胞结构存在显著差异,而且粒状感觉区与粒状感觉区相比,不同皮质层之间的功能关系也存在差异。在本小视图中,我们概述了灵长类动物粒状额叶皮层认知控制的一个初步微电路模型。该模型包含了主要的 GABA 能中间神经元亚类,具有特定的层状排列和锥体细胞上的靶区。我们强调第 5 层锥体细胞在错误和冲突检测中的作用。我们提出了几个必要的具体问题,以建立一个特定的额叶皮层固有微电路模型。
{"title":"Agranular frontal cortical microcircuit underlying cognitive control in macaques","authors":"Beatriz Herrera, Jeffrey D. Schall, Jorge J. Riera","doi":"10.3389/fncir.2024.1389110","DOIUrl":"https://doi.org/10.3389/fncir.2024.1389110","url":null,"abstract":"The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system 丘脑上核的昼夜节律机制及其与嗅觉系统的关系
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-03-25 DOI: 10.3389/fncir.2024.1385908
Yusuke Tsuno, Michihiro Mieda
Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.
动物需要睡眠,而作为昼夜节律中心的嗜上核在决定睡眠时间方面发挥着重要作用。视网膜丘脑上核的主要输入是视网膜丘脑束,其他输入来自膝间小叶通路、剑突的血清素能传入以及其他下丘脑区域。在丘脑上核内部,有两个主要亚型,即血管活性肠多肽(VIP)阳性神经元和精氨酸加压素(AVP)阳性神经元。VIP 神经元对光的调节和嗜上核神经元的同步化非常重要,而 AVP 神经元则对昼夜节律的确定非常重要。丘上核的输出目标包括下丘脑(室旁下区、下丘脑室旁核、视前区和下丘脑内侧)、丘脑(丘脑室旁核)和外侧隔。丘脑上核还通过多个脑区向松果体发送信息。嗅球被认为能够在没有丘脑上核的情况下产生昼夜节律。一些报告指出,嗅球和嗅皮层的昼夜节律在没有嗜上核的情况下也存在,但另一份报告则声称嗜上核有影响。除光刺激外,包括嗅觉在内的其他感觉输入对昼夜节律的调节尚未得到很好的研究,有望取得进一步进展。
{"title":"Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system","authors":"Yusuke Tsuno, Michihiro Mieda","doi":"10.3389/fncir.2024.1385908","DOIUrl":"https://doi.org/10.3389/fncir.2024.1385908","url":null,"abstract":"Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olfactory information processing viewed through mitral and tufted cell-specific channels 通过有丝分裂细胞和簇状细胞特异性通道观察嗅觉信息处理过程
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-03-08 DOI: 10.3389/fncir.2024.1382626
Tatsumi Hirata
Parallel processing is a fundamental strategy of sensory coding. Through this processing, unique and distinct features of sensations are computed and projected to the central targets. This review proposes that mitral and tufted cells, which are the second-order projection neurons in the olfactory bulb, contribute to parallel processing within the olfactory system. Based on anatomical and functional evidence, I discuss potential features that could be conveyed through the unique channel formed by these neurons.
并行处理是感觉编码的基本策略。通过这种处理,可以计算出感觉的独特和鲜明特征,并将其投射到中央目标。这篇综述提出,嗅球中的二阶投射神经元--有丝细胞和簇细胞--有助于嗅觉系统内的平行处理。基于解剖学和功能学证据,我将讨论通过这些神经元形成的独特通道传递的潜在特征。
{"title":"Olfactory information processing viewed through mitral and tufted cell-specific channels","authors":"Tatsumi Hirata","doi":"10.3389/fncir.2024.1382626","DOIUrl":"https://doi.org/10.3389/fncir.2024.1382626","url":null,"abstract":"Parallel processing is a fundamental strategy of sensory coding. Through this processing, unique and distinct features of sensations are computed and projected to the central targets. This review proposes that mitral and tufted cells, which are the second-order projection neurons in the olfactory bulb, contribute to parallel processing within the olfactory system. Based on anatomical and functional evidence, I discuss potential features that could be conveyed through the unique channel formed by these neurons.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"36 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An operating principle of the cerebral cortex, and a cellular mechanism for attentional trial-and-error pattern learning and useful classification extraction 大脑皮层的工作原理,以及注意力试错模式学习和有用分类提取的细胞机制
IF 3.5 3区 医学 Q2 NEUROSCIENCES Pub Date : 2024-03-05 DOI: 10.3389/fncir.2024.1280604
Marat M. Rvachev
A feature of the brains of intelligent animals is the ability to learn to respond to an ensemble of active neuronal inputs with a behaviorally appropriate ensemble of active neuronal outputs. Previously, a hypothesis was proposed on how this mechanism is implemented at the cellular level within the neocortical pyramidal neuron: the apical tuft or perisomatic inputs initiate “guess” neuron firings, while the basal dendrites identify input patterns based on excited synaptic clusters, with the cluster excitation strength adjusted based on reward feedback. This simple mechanism allows neurons to learn to classify their inputs in a surprisingly intelligent manner. Here, we revise and extend this hypothesis. We modify synaptic plasticity rules to align with behavioral time scale synaptic plasticity (BTSP) observed in hippocampal area CA1, making the framework more biophysically and behaviorally plausible. The neurons for the guess firings are selected in a voluntary manner via feedback connections to apical tufts in the neocortical layer 1, leading to dendritic Ca2+ spikes with burst firing, which are postulated to be neural correlates of attentional, aware processing. Once learned, the neuronal input classification is executed without voluntary or conscious control, enabling hierarchical incremental learning of classifications that is effective in our inherently classifiable world. In addition to voluntary, we propose that pyramidal neuron burst firing can be involuntary, also initiated via apical tuft inputs, drawing attention toward important cues such as novelty and noxious stimuli. We classify the excitations of neocortical pyramidal neurons into four categories based on their excitation pathway: attentional versus automatic and voluntary/acquired versus involuntary. Additionally, we hypothesize that dendrites within pyramidal neuron minicolumn bundles are coupled via depolarization cross-induction, enabling minicolumn functions such as the creation of powerful hierarchical “hyperneurons” and the internal representation of the external world. We suggest building blocks to extend the microcircuit theory to network-level processing, which, interestingly, yields variants resembling the artificial neural networks currently in use. On a more speculative note, we conjecture that principles of intelligence in universes governed by certain types of physical laws might resemble ours.
智能动物大脑的一个特点是能够学会用与行为相适应的活跃神经元输出集合对活跃神经元输入集合做出反应。在此之前,有人提出了一种假设,说明这种机制是如何在新皮层锥体神经元的细胞水平上实现的:顶端突起或周围突起输入启动 "猜测 "神经元搏动,而基底树突则根据兴奋的突触簇识别输入模式,并根据奖赏反馈调整簇的兴奋强度。这种简单的机制能让神经元以令人惊讶的智能方式学会对输入进行分类。在这里,我们对这一假设进行了修正和扩展。我们修改了突触可塑性规则,使之与在海马 CA1 区观察到的行为时标突触可塑性(BTSP)相一致,从而使该框架在生物物理和行为学上更加合理。猜测发射的神经元通过与新皮层第 1 层顶端束的反馈连接,以自愿的方式进行选择,从而导致树突 Ca2+ 穗状突发性发射,这被假定为注意力和意识处理的神经关联。神经元输入的分类一旦学会,就会在没有自主或有意识控制的情况下执行,从而实现分类的分层递增学习,这在我们固有的可分类世界中非常有效。除了自主性之外,我们还提出锥体神经元突发性发射也可以是非自主性的,也是通过顶端簇输入启动的,从而将注意力吸引到新奇和有害刺激等重要线索上。我们根据神经皮质锥体神经元的兴奋途径将其分为四类:注意与自动、自愿/后天与非自愿。此外,我们还假设锥体神经元小柱束内的树突通过去极化交叉诱导耦合在一起,从而使小柱功能得以实现,如创建强大的分层 "超神经元 "和外部世界的内部表征。我们提出了将微电路理论扩展到网络级处理的构建模块,有趣的是,这将产生类似于目前使用的人工神经网络的变体。从更推测性的角度来看,我们猜想,在受某些类型物理定律支配的宇宙中,智能的原理可能与我们的宇宙相似。
{"title":"An operating principle of the cerebral cortex, and a cellular mechanism for attentional trial-and-error pattern learning and useful classification extraction","authors":"Marat M. Rvachev","doi":"10.3389/fncir.2024.1280604","DOIUrl":"https://doi.org/10.3389/fncir.2024.1280604","url":null,"abstract":"A feature of the brains of intelligent animals is the ability to learn to respond to an ensemble of active neuronal inputs with a behaviorally appropriate ensemble of active neuronal outputs. Previously, a hypothesis was proposed on how this mechanism is implemented at the cellular level within the neocortical pyramidal neuron: the apical tuft or perisomatic inputs initiate “guess” neuron firings, while the basal dendrites identify input patterns based on excited synaptic clusters, with the cluster excitation strength adjusted based on reward feedback. This simple mechanism allows neurons to learn to classify their inputs in a surprisingly intelligent manner. Here, we revise and extend this hypothesis. We modify synaptic plasticity rules to align with behavioral time scale synaptic plasticity (BTSP) observed in hippocampal area CA1, making the framework more biophysically and behaviorally plausible. The neurons for the guess firings are selected in a voluntary manner via feedback connections to apical tufts in the neocortical layer 1, leading to dendritic Ca<jats:sup>2+</jats:sup> spikes with burst firing, which are postulated to be neural correlates of attentional, aware processing. Once learned, the neuronal input classification is executed without voluntary or conscious control, enabling hierarchical incremental learning of classifications that is effective in our inherently classifiable world. In addition to voluntary, we propose that pyramidal neuron burst firing can be involuntary, also initiated via apical tuft inputs, drawing attention toward important cues such as novelty and noxious stimuli. We classify the excitations of neocortical pyramidal neurons into four categories based on their excitation pathway: attentional versus automatic and voluntary/acquired versus involuntary. Additionally, we hypothesize that dendrites within pyramidal neuron minicolumn bundles are coupled via depolarization cross-induction, enabling minicolumn functions such as the creation of powerful hierarchical “hyperneurons” and the internal representation of the external world. We suggest building blocks to extend the microcircuit theory to network-level processing, which, interestingly, yields variants resembling the artificial neural networks currently in use. On a more speculative note, we conjecture that principles of intelligence in universes governed by certain types of physical laws might resemble ours.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Neural Circuits
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1