Gloria Jansen, Daniel Gebert, Tharini Ravindra Kumar, Emily Simmons, Sarah Murphy, Felipe Karam Teixeira
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
像转座元件(TE)这样的自私 DNA 模块在生殖细胞中特别活跃,因为生殖细胞是遗传信息的世代相传者。新的转座元件插入会破坏基因,损害生殖细胞的功能和活力。然而,我们发现,在果蝇P-M杂交致畸中(一种由P-元件DNA转座子引发的不育综合征),尽管生殖细胞会积累DNA双链断裂(DSB)并诱导细胞周期停滞,但却意外地很少有新的TE插入。我们利用一个工程化的 CRISPR-Cas9 系统证明,在沉默的 P 元素或其他非编码序列上产生 DSB 足以诱导生殖细胞缺失,而不受基因破坏的影响。事实上,我们证明了发育中的有丝分裂生殖细胞和成体生殖细胞都对剂量依赖性的 DSBs 敏感。然而,在有丝分裂向减数分裂转变之后,生殖细胞对DSB的耐受性增强,无论基因组损伤累积到什么程度,都能完成卵子生成。我们的发现确定了DNA损伤耐受阈值是生殖细胞发育过程中基因组完整性的重要保障。
{"title":"Tolerance thresholds underlie responses to DNA damage during germline development.","authors":"Gloria Jansen, Daniel Gebert, Tharini Ravindra Kumar, Emily Simmons, Sarah Murphy, Felipe Karam Teixeira","doi":"10.1101/gad.351701.124","DOIUrl":"10.1101/gad.351701.124","url":null,"abstract":"<p><p>Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in <i>P</i>-<i>M</i> hybrid dysgenesis in <i>Drosophila</i>, a sterility syndrome triggered by the <i>P</i>-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced <i>P</i>-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"631-654"},"PeriodicalIF":7.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudio Hetz, Peter Thielen, Soledad Matus, Melissa Nassif, Felipe Court, Roberta Kiffin, Gabriela Martinez, Ana Maria Cuervo, Robert H Brown, Laurie H Glimcher
{"title":"Corrigendum: XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy.","authors":"Claudio Hetz, Peter Thielen, Soledad Matus, Melissa Nassif, Felipe Court, Roberta Kiffin, Gabriela Martinez, Ana Maria Cuervo, Robert H Brown, Laurie H Glimcher","doi":"10.1101/gad.352249.124","DOIUrl":"10.1101/gad.352249.124","url":null,"abstract":"","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"38 15-16","pages":"785"},"PeriodicalIF":7.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142283949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellen Lavorando, Michael C. Owens, Kathy Fange Liu
The X and Y chromosomes play important roles outside of human reproduction; namely, their potential contribution to human sex biases in physiology and disease. While sex biases are often thought to be an effect of hormones and environmental exposures, genes encoded on the sex chromosomes also play a role. Seventeen homologous gene pairs exist on the X and Y chromosomes whose proteins have critical functions in biology, from direct regulation of transcription and translation to intercellular signaling and formation of extracellular structures. In this review, we cover the current understanding of several of these sex chromosome-encoded protein homologs that are involved in transcription and chromatin regulation: SRY/SOX3, ZFX/ZFY, KDM5C/KDM5D, UTX/UTY, and TBL1X/TBL1Y. Their mechanisms of gene regulation are discussed, including any redundancies or divergent roles of the X- and Y-chromosome homologs. Additionally, we discuss associated diseases related to these proteins and any sex biases that exist therein in an effort to drive further research into how these pairs contribute to sexually dimorphic gene regulation in health and disease.
X 染色体和 Y 染色体在人类生殖之外也发挥着重要作用,即它们在生理和疾病方面对人类性别偏差的潜在贡献。虽然性别偏差通常被认为是激素和环境暴露的影响,但性染色体上编码的基因也发挥着作用。X 和 Y 染色体上有 17 对同源基因,它们的蛋白质在生物学中具有重要功能,包括直接调控转录和翻译、细胞间信号转导和细胞外结构的形成。在这篇综述中,我们将介绍目前对参与转录和染色质调控的性染色体编码蛋白同源物的认识:SRY/SOX3、ZFX/ZFY、KDM5C/KDM5D、UTX/UTY 和 TBL1X/TBL1Y。我们讨论了它们的基因调控机制,包括 X 染色体和 Y 染色体同源物的冗余或不同作用。此外,我们还讨论了与这些蛋白相关的疾病以及其中存在的任何性别偏见,以推动进一步研究这些蛋白对如何在健康和疾病中促进性别二态基因调控。
{"title":"Comparing the roles of sex chromosome-encoded protein homologs in gene regulation","authors":"Ellen Lavorando, Michael C. Owens, Kathy Fange Liu","doi":"10.1101/gad.351890.124","DOIUrl":"https://doi.org/10.1101/gad.351890.124","url":null,"abstract":"The X and Y chromosomes play important roles outside of human reproduction; namely, their potential contribution to human sex biases in physiology and disease. While sex biases are often thought to be an effect of hormones and environmental exposures, genes encoded on the sex chromosomes also play a role. Seventeen homologous gene pairs exist on the X and Y chromosomes whose proteins have critical functions in biology, from direct regulation of transcription and translation to intercellular signaling and formation of extracellular structures. In this review, we cover the current understanding of several of these sex chromosome-encoded protein homologs that are involved in transcription and chromatin regulation: SRY/SOX3, ZFX/ZFY, KDM5C/KDM5D, UTX/UTY, and TBL1X/TBL1Y. Their mechanisms of gene regulation are discussed, including any redundancies or divergent roles of the X- and Y-chromosome homologs. Additionally, we discuss associated diseases related to these proteins and any sex biases that exist therein in an effort to drive further research into how these pairs contribute to sexually dimorphic gene regulation in health and disease.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"23 1","pages":""},"PeriodicalIF":10.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rongwei Zhao, Meng Xu, Xiaoyang Yu, Anne R. Wondisford, Rachel M. Lackner, Jayme Salsman, Graham Dellaire, David M. Chenoweth, Roderick J. O'Sullivan, Xiaolan Zhao, Huaiying Zhang
The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether—and if so, how—SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.
端粒替代性延长(ALT)途径可维持相当一部分癌症的端粒长度,而这些癌症的临床预后较差。因此,有必要更好地了解 ALT 机制,以便为 ALT 癌症制定新的治疗策略。端粒蛋白的SUMO修饰有助于ALT端粒相关PML体(APB)的形成,在APB中端粒聚集,DNA修复蛋白富集,从而促进ALT中同源定向端粒DNA合成。然而,除了APB的形成外,SUMO是否--如果是--如何支持ALT仍是未知数。在这里,我们发现含有DNA修复蛋白的SUMO凝聚物能在没有APB的情况下维持端粒。在缺乏 APB 的 PML 基因敲除 ALT 细胞系中,我们发现 SUMOylation 是独立于 PML 和 APB 的 ALT 特征表现所必需的。化学诱导的端粒靶向 SUMO 在 PML 基因缺失细胞中产生凝集物形成和 ALT 特征。这种效应需要SUMO酰化以及SUMO和SUMO相互作用基序(SIMs)之间的相互作用。从机理上讲,SUMO 诱导的效应与 DNA 修复蛋白(包括 Rad52、Rad51AP1、RPA 和 BLM)在端粒的积累有关。此外,Rad52可以发生相分离,在端粒处富集SUMO,并以SUMO依赖的方式与BLM螺旋酶合作促进端粒DNA合成。总之,我们的研究结果表明,SUMO凝聚物的形成促进了DNA修复因子之间的协作,从而在没有PML的情况下支持ALT端粒的维持。鉴于 SUMOylation 抑制剂在癌症治疗中的良好效果,我们的研究结果表明它们有可能用于干扰 ALT 癌细胞的端粒维持。
{"title":"SUMO promotes DNA repair protein collaboration to support alternative telomere lengthening in the absence of PML","authors":"Rongwei Zhao, Meng Xu, Xiaoyang Yu, Anne R. Wondisford, Rachel M. Lackner, Jayme Salsman, Graham Dellaire, David M. Chenoweth, Roderick J. O'Sullivan, Xiaolan Zhao, Huaiying Zhang","doi":"10.1101/gad.351667.124","DOIUrl":"https://doi.org/10.1101/gad.351667.124","url":null,"abstract":"The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether—and if so, how—SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"35 1","pages":""},"PeriodicalIF":10.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norman Zhu, W Eric Rogers, David K Heidary, Tom Huxford
As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.
为了了解核 IκB 在 NF-κB 依赖性基因表达中的功能,我们报告了 IκBζ ankyrin 重复结构域与 NF-κB p50 同源二聚体的二聚化结构域复合的 X 射线晶体结构。IκBζ 具有一个 N 端 α 螺旋,可保持结构域折叠的稳定性。复合物的亲和力和特异性取决于核定位信号处的一小部分 p50。该模型表明,只有一个 p50 亚基支持与 IκBζ 结合,而生化实验证实 IκBζ 与 DNA 结合的 NF-κB p50:RelA 异二聚体有联系。IκBζ:p50 和 p50:κB DNA 复合物晶体学模型的比较表明,IκBζ和 p50 与 DNA 形成三元复合物需要结构重排。
{"title":"Structural and biochemical analyses of the nuclear IκBζ protein in complex with the NF-κB p50 homodimer.","authors":"Norman Zhu, W Eric Rogers, David K Heidary, Tom Huxford","doi":"10.1101/gad.351892.124","DOIUrl":"10.1101/gad.351892.124","url":null,"abstract":"<p><p>As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"528-535"},"PeriodicalIF":7.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madison A Honer, Benjamin I Ferman, Zach H Gray, Elena A Bondarenko, Johnathan R Whetstine
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
{"title":"Epigenetic modulators provide a path to understanding disease and therapeutic opportunity.","authors":"Madison A Honer, Benjamin I Ferman, Zach H Gray, Elena A Bondarenko, Johnathan R Whetstine","doi":"10.1101/gad.351444.123","DOIUrl":"10.1101/gad.351444.123","url":null,"abstract":"<p><p>The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"473-503"},"PeriodicalIF":7.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison E Daly, George Yeh, Sofia Soltero, Stephen T Smale
The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including Il6, Il1b, Nos2, Lcn2, and Batf, are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.
{"title":"Selective regulation of a defined subset of inflammatory and immunoregulatory genes by an NF-κB p50-IκBζ pathway.","authors":"Allison E Daly, George Yeh, Sofia Soltero, Stephen T Smale","doi":"10.1101/gad.351630.124","DOIUrl":"10.1101/gad.351630.124","url":null,"abstract":"<p><p>The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including <i>Il6</i>, <i>Il1b</i>, <i>Nos2</i>, <i>Lcn2,</i> and <i>Batf,</i> are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"536-553"},"PeriodicalIF":7.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Guan, Vignesh Viswanathan, Yuyan Jiang, Sivakamasundari Vijayakumar, Hongbin Cao, Junfei Zhao, Deana Rae Crystal Colburg, Patrick Neuhöfer, Yiru Zhang, Jinglong Wang, Yu Xu, Eyiwunmi E Laseinde, Rachel Hildebrand, Mobeen Rahman, Richard Frock, Christina Kong, Philip A Beachy, Steven Artandi, Quynh-Thu Le
Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.
{"title":"Tert-expressing cells contribute to salivary gland homeostasis and tissue regeneration after radiation therapy.","authors":"Li Guan, Vignesh Viswanathan, Yuyan Jiang, Sivakamasundari Vijayakumar, Hongbin Cao, Junfei Zhao, Deana Rae Crystal Colburg, Patrick Neuhöfer, Yiru Zhang, Jinglong Wang, Yu Xu, Eyiwunmi E Laseinde, Rachel Hildebrand, Mobeen Rahman, Richard Frock, Christina Kong, Philip A Beachy, Steven Artandi, Quynh-Thu Le","doi":"10.1101/gad.351577.124","DOIUrl":"10.1101/gad.351577.124","url":null,"abstract":"<p><p>Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (Tert<sup>High</sup>) cell population located in the ductal region of the adult SMG. These Tert<sup>High</sup> cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. Tert<sup>High</sup> cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of \"cell cycling\" and \"oxidative stress response\" pathways in Tert<sup>High</sup> cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of Tert<sup>High</sup> cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"569-582"},"PeriodicalIF":7.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
基因组的完整性依赖于 DNA 新陈代谢的准确性,但四十多年来人们一直意识到,转录会提高突变和重组频率。最近的研究证明,RNA 和 DNA 新陈代谢之间存在着一种以前未曾预见的联系,这种联系往往与 DNA-RNA 杂交和 R 环的积累有关。除了生理作用外,R-环还会干扰 DNA 复制和修复,为基因组不稳定性的起源提供了分子方案。在此,我们回顾了目前关于多种 RNA 因子的知识,这些因子可防止或解决 R 环以及由此产生的转录-复制冲突,从而成为基因组动态的调节因子。
{"title":"RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity.","authors":"Rosa Luna, Belén Gómez-González, Andrés Aguilera","doi":"10.1101/gad.351853.124","DOIUrl":"10.1101/gad.351853.124","url":null,"abstract":"<p><p>Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"504-527"},"PeriodicalIF":7.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}