Mycoheterotrophic plants can derive carbon from fungi rather than from photosynthesis. Habitat destruction and sensitivity to environmental perturbation may result in the loss of biodiversity including genetic variation of mycoheterotrophic plants. Burmannia nepalensis (Miers) Hook.f. (Burmanniaceae) is a mycoheterotrophic plant with a wide distribution across southern China and southern and eastern Asia. As part of our endeavor to reveal population genetic patterns of mycoheterotrophic plants, fifteen microsatellite loci were developed by RAD (restriction site-associated DNA) sequencing in 89 individuals from four populations of B. nepalensis. A total of 49 alleles were amplified. The number of alleles per locus ranged from two to six with an average of 3.3. The observed and expected heterozygosity per population varied from 0.000 to 1.000 and from 0.000 to 0.722, respectively. A transferability test showed that only one to five loci could be cross-amplified successfully in four other congeneric species of Burmannia. These markers can be used to reveal population genetic diversity in B. nepalensis, and will help to elucidate the evolutionary history and to enhance efforts for conservation of mycoheterotrophic plants.
{"title":"Development of microsatellite markers for the mycoheterotrophic species Burmannia nepalensis (Miers) Hook.f. based on RAD sequencing.","authors":"Tong Zeng, Miaomiao Shi, Zhiming Zhong, Dianxiang Zhang","doi":"10.1266/ggs.21-00052","DOIUrl":"https://doi.org/10.1266/ggs.21-00052","url":null,"abstract":"<p><p>Mycoheterotrophic plants can derive carbon from fungi rather than from photosynthesis. Habitat destruction and sensitivity to environmental perturbation may result in the loss of biodiversity including genetic variation of mycoheterotrophic plants. Burmannia nepalensis (Miers) Hook.f. (Burmanniaceae) is a mycoheterotrophic plant with a wide distribution across southern China and southern and eastern Asia. As part of our endeavor to reveal population genetic patterns of mycoheterotrophic plants, fifteen microsatellite loci were developed by RAD (restriction site-associated DNA) sequencing in 89 individuals from four populations of B. nepalensis. A total of 49 alleles were amplified. The number of alleles per locus ranged from two to six with an average of 3.3. The observed and expected heterozygosity per population varied from 0.000 to 1.000 and from 0.000 to 0.722, respectively. A transferability test showed that only one to five loci could be cross-amplified successfully in four other congeneric species of Burmannia. These markers can be used to reveal population genetic diversity in B. nepalensis, and will help to elucidate the evolutionary history and to enhance efforts for conservation of mycoheterotrophic plants.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 6","pages":"293-298"},"PeriodicalIF":1.1,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39709932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.
{"title":"The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development.","authors":"K. Shirane","doi":"10.1266/ggs.21-00069","DOIUrl":"https://doi.org/10.1266/ggs.21-00069","url":null,"abstract":"Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47032906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shadi Sadri, L. Rejali, M. Hadizadeh, H. A. Aghdaei, Chris Young, E. Nazemalhosseini-Mojarad, M. Zali, M. Bonab
Long non-coding RNAs have been proposed as biomarkers for the detection, prevention and screening of various malignancies. In this study, two lncRNAs (ANRIL and BANCR) were assessed for biomarker application in the early detection of colorectal cancer (CRC) through stool specimen testing, as a non-invasive and cost-effective methodology. A total of 40 stool samples were collected from patients referred to the hospital with colorectal cancer or adenomatous polyps as pre-cancerous lesions; patients were diagnosed using colonoscopy and pathology reports were available. Twenty control samples were also obtained from healthy subjects for comparison. RNA extraction and cDNA synthesis were followed by real-time PCR to evaluate lncRNA expression. The up-regulation of ANRIL in 20% of samples taken from polyp patients, combined with up-regulation in 65% of patients with CRC, confirmed the potential usefulness of ANRIL as a prognostic biomarker (AUC 0.95; P < 0.0001). BANCR relative expression analysis illustrated significant up-regulation in polyp (P < 0.04) and tumoural participants (P < 0.03) compared with normal control individuals. The expression patterns of ANRIL and BANCR in polyp cases were significantly correlated according to correlation analysis (r = 0.45, P < 0.045). ANRIL expression patterns in stool specimens of polyp and tumour cases supported the use of ANRIL as a prognostic biomarker for screening patients in the early stages of CRC. Up-regulation of BANCR in pre-cancerous lesions as well as down-regulation of ANRIL may also be a specific marker pair for easy, convenient and fast CRC prognosis.
{"title":"ANRIL as a prognostic biomarker in colon pre-cancerous lesion detection via non-invasive sampling.","authors":"Shadi Sadri, L. Rejali, M. Hadizadeh, H. A. Aghdaei, Chris Young, E. Nazemalhosseini-Mojarad, M. Zali, M. Bonab","doi":"10.1266/ggs.21-00102","DOIUrl":"https://doi.org/10.1266/ggs.21-00102","url":null,"abstract":"Long non-coding RNAs have been proposed as biomarkers for the detection, prevention and screening of various malignancies. In this study, two lncRNAs (ANRIL and BANCR) were assessed for biomarker application in the early detection of colorectal cancer (CRC) through stool specimen testing, as a non-invasive and cost-effective methodology. A total of 40 stool samples were collected from patients referred to the hospital with colorectal cancer or adenomatous polyps as pre-cancerous lesions; patients were diagnosed using colonoscopy and pathology reports were available. Twenty control samples were also obtained from healthy subjects for comparison. RNA extraction and cDNA synthesis were followed by real-time PCR to evaluate lncRNA expression. The up-regulation of ANRIL in 20% of samples taken from polyp patients, combined with up-regulation in 65% of patients with CRC, confirmed the potential usefulness of ANRIL as a prognostic biomarker (AUC 0.95; P < 0.0001). BANCR relative expression analysis illustrated significant up-regulation in polyp (P < 0.04) and tumoural participants (P < 0.03) compared with normal control individuals. The expression patterns of ANRIL and BANCR in polyp cases were significantly correlated according to correlation analysis (r = 0.45, P < 0.045). ANRIL expression patterns in stool specimens of polyp and tumour cases supported the use of ANRIL as a prognostic biomarker for screening patients in the early stages of CRC. Up-regulation of BANCR in pre-cancerous lesions as well as down-regulation of ANRIL may also be a specific marker pair for easy, convenient and fast CRC prognosis.","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45869571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toki Takeishi, K. Fujiwara, N. Osada, Akihiko Mita, T. Takada, T. Shiroishi, Hitoshi Suzuki
While the house mouse (Mus musculus), widely distributed in Eurasia, is known to have substantial coat color variation between and within local populations, in both primary and secondary distribution areas, including the Japanese archipelago, the evolutionary history of the color variation is poorly understood. To address the ventral fur color variation, we quantified the lightness of museum skin specimens, and found that the southern subspecies, M. m. castaneus (CAS), has high and low lightness in dry and rainy geographic regions, respectively. The northern subspecies, M. m. musculus (MUS), has low and high levels of lightness in the high and middle latitudes of northern Eurasia, respectively. We examined sequence variation of the agouti signaling protein gene (Asip), which is known to be responsible for the ventral fur color. We performed phylogenetic analyses with 196 haplotype sequences of Asip (~180 kb) generated by phasing the whole-genome data of 98 wild mice reported previously. Network and phylogenetic tree construction revealed clustering of haplotypes representing the two subspecies, MUS and CAS. A number of subclusters with geographic affinities appeared within the subspecies clusters, in which the essential results were consistent with those reconstructed with whole mitochondrial genome data, indicating that the phased haplotype genome sequences of the nuclear genome can be a useful tool for tracing the dispersal of geographical lineages. The results of phylogeographic analysis showed that CAS mice with darker ventral fur possessed similar Asip haplotypes across the geographic distribution, suggesting that these haplotypes are major causes of the historical introduction of Asip haplotypes for darker ventral fur in mice from northern India to the peripheral areas, including the Japanese archipelago. Similarly, MUS in East Asia, which has a white abdomen, formed an Asip haplogroup with that from northern Iran, also with a white abdomen.
{"title":"Phylogeographic study using nuclear genome sequences of Asip to infer the origins of ventral fur color variation in the house mouse Mus musculus.","authors":"Toki Takeishi, K. Fujiwara, N. Osada, Akihiko Mita, T. Takada, T. Shiroishi, Hitoshi Suzuki","doi":"10.1266/ggs.21-00075","DOIUrl":"https://doi.org/10.1266/ggs.21-00075","url":null,"abstract":"While the house mouse (Mus musculus), widely distributed in Eurasia, is known to have substantial coat color variation between and within local populations, in both primary and secondary distribution areas, including the Japanese archipelago, the evolutionary history of the color variation is poorly understood. To address the ventral fur color variation, we quantified the lightness of museum skin specimens, and found that the southern subspecies, M. m. castaneus (CAS), has high and low lightness in dry and rainy geographic regions, respectively. The northern subspecies, M. m. musculus (MUS), has low and high levels of lightness in the high and middle latitudes of northern Eurasia, respectively. We examined sequence variation of the agouti signaling protein gene (Asip), which is known to be responsible for the ventral fur color. We performed phylogenetic analyses with 196 haplotype sequences of Asip (~180 kb) generated by phasing the whole-genome data of 98 wild mice reported previously. Network and phylogenetic tree construction revealed clustering of haplotypes representing the two subspecies, MUS and CAS. A number of subclusters with geographic affinities appeared within the subspecies clusters, in which the essential results were consistent with those reconstructed with whole mitochondrial genome data, indicating that the phased haplotype genome sequences of the nuclear genome can be a useful tool for tracing the dispersal of geographical lineages. The results of phylogeographic analysis showed that CAS mice with darker ventral fur possessed similar Asip haplotypes across the geographic distribution, suggesting that these haplotypes are major causes of the historical introduction of Asip haplotypes for darker ventral fur in mice from northern India to the peripheral areas, including the Japanese archipelago. Similarly, MUS in East Asia, which has a white abdomen, formed an Asip haplogroup with that from northern Iran, also with a white abdomen.","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44521143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasuko Kato, Akiko Sawada, Kazuki Tonai, Hisashi Tatsuno, T. Uenoyama, M. Itoh
A spontaneous mutation, enNK14, was a new allele of engrailed (en) in Drosophila melanogaster. Females of enNK14 have three spermathecae, instead of two in wild type, under a wide range of developmental temperatures, while the males show no abnormal phenotype. Spermathecae of the mutant female can accept inseminated sperms, albeit with a delay of at least an hour until full acceptance compared with wild type. The time course of decrease in the number of stored sperms was thoroughly similar between the mutant and wild type. enNK14 females produced fewer progeny than wild type females despite storing a larger number of sperms. The delay of sperm entry and lower fecundity suggested some functional defects in secretory products of the spermathecae. In addition, some spermathecae in the mutant were accompanied by a mass of brown pigments in the adipose tissue surrounding the capsule. Six contiguous amino acids, Ser340-Ala345, were replaced by one Thr in enNK14. In another mutant, enspt, Ser325 was also shown to be substituted by a Cys. These amino acid changes were located within a serine-rich region, in which Ser325, Ser340 and Thr341 were suggested as targets of Protein Kinase C by an in silico analysis. The splicing pattern of en mRNA did not differ between enNK14 and wild type in embryo, larva, pupa or adult. Our results suggest that en plays an important role in determining the number of spermathecae as well as in sperm storage function in the Drosophila female.
{"title":"A new allele of engrailed, enNK14, causes supernumerary spermathecae in Drosophila melanogaster.","authors":"Yasuko Kato, Akiko Sawada, Kazuki Tonai, Hisashi Tatsuno, T. Uenoyama, M. Itoh","doi":"10.1266/ggs.21-00030","DOIUrl":"https://doi.org/10.1266/ggs.21-00030","url":null,"abstract":"A spontaneous mutation, enNK14, was a new allele of engrailed (en) in Drosophila melanogaster. Females of enNK14 have three spermathecae, instead of two in wild type, under a wide range of developmental temperatures, while the males show no abnormal phenotype. Spermathecae of the mutant female can accept inseminated sperms, albeit with a delay of at least an hour until full acceptance compared with wild type. The time course of decrease in the number of stored sperms was thoroughly similar between the mutant and wild type. enNK14 females produced fewer progeny than wild type females despite storing a larger number of sperms. The delay of sperm entry and lower fecundity suggested some functional defects in secretory products of the spermathecae. In addition, some spermathecae in the mutant were accompanied by a mass of brown pigments in the adipose tissue surrounding the capsule. Six contiguous amino acids, Ser340-Ala345, were replaced by one Thr in enNK14. In another mutant, enspt, Ser325 was also shown to be substituted by a Cys. These amino acid changes were located within a serine-rich region, in which Ser325, Ser340 and Thr341 were suggested as targets of Protein Kinase C by an in silico analysis. The splicing pattern of en mRNA did not differ between enNK14 and wild type in embryo, larva, pupa or adult. Our results suggest that en plays an important role in determining the number of spermathecae as well as in sperm storage function in the Drosophila female.","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47283832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The long-tailed hamster Cricetulus longicaudatus is a dominant rodent in farmland of Shanxi Province, China, but little is known about its genetic diversity and population structure. In this study, the genomic DNAs of individuals from 13 populations captured in different fields of Shanxi were extracted and amplified by six pairs of microsatellite primers and by universal primers for mtDNA COI gene sequences. Our data revealed significant departure from Hardy-Weinberg equilibrium in four of the 13 populations. In all 13 populations, the mean observed heterozygosity was significantly lower than the expected heterozygosity. Meanwhile, the mean inbreeding coefficient was statistically significant, which indicated non-random mating within populations. The pairwise genetic distance and natural logarithm of linear geographical distance were not significantly correlated for any C. longicaudatus populations. However, the correlation between genetic distance and resistance distance based on mountain landscape was significant, suggesting that the mountain landscape is an important factor affecting gene flow of C. longicaudatus. Pairwise FST analysis of population structure showed moderate to high genetic differentiation among populations, and all individuals could be divided into two gene clusters. Phylogenetic analysis based on COI sequences also showed that many individuals originated from a single haplotype, suggesting the existence of gene exchange among these populations at some time in the past. Our research should provide a scientific basis for the analysis of genetic differentiation and gene flow among populations of C. longicaudatus.
{"title":"Genetic diversity and population structure of the long-tailed hamster Cricetulus longicaudatus in Shanxi Province, China.","authors":"Xin'gen Yang, Tinglin Wang, Hongfang Guo, Jing Yang, Bo Zou, Jianzhen Zhang","doi":"10.1266/ggs.20-00060","DOIUrl":"https://doi.org/10.1266/ggs.20-00060","url":null,"abstract":"<p><p>The long-tailed hamster Cricetulus longicaudatus is a dominant rodent in farmland of Shanxi Province, China, but little is known about its genetic diversity and population structure. In this study, the genomic DNAs of individuals from 13 populations captured in different fields of Shanxi were extracted and amplified by six pairs of microsatellite primers and by universal primers for mtDNA COI gene sequences. Our data revealed significant departure from Hardy-Weinberg equilibrium in four of the 13 populations. In all 13 populations, the mean observed heterozygosity was significantly lower than the expected heterozygosity. Meanwhile, the mean inbreeding coefficient was statistically significant, which indicated non-random mating within populations. The pairwise genetic distance and natural logarithm of linear geographical distance were not significantly correlated for any C. longicaudatus populations. However, the correlation between genetic distance and resistance distance based on mountain landscape was significant, suggesting that the mountain landscape is an important factor affecting gene flow of C. longicaudatus. Pairwise F<sub>ST</sub> analysis of population structure showed moderate to high genetic differentiation among populations, and all individuals could be divided into two gene clusters. Phylogenetic analysis based on COI sequences also showed that many individuals originated from a single haplotype, suggesting the existence of gene exchange among these populations at some time in the past. Our research should provide a scientific basis for the analysis of genetic differentiation and gene flow among populations of C. longicaudatus.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 5","pages":"237-246"},"PeriodicalIF":1.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39685139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23Epub Date: 2021-11-07DOI: 10.1266/ggs.21-00046
Tomoya Suzuki, Kanto Nishikawa, Yukuto Sato, Mamoru Toda
Species identification using molecular techniques has recently become common for various taxa. Loop-mediated isothermal amplification (LAMP) is one of the easiest and least expensive molecular identification methods. Although few studies have developed LAMP assays for amphibians, we believe that LAMP is also useful for identifying endangered amphibians. Hynobius tokyoensis and H. lichenatus occur in Honshu, Japan, and have parapatric distributions. They are similar morphologically, especially at early developmental stages, including eggs and larvae. Hynobius tokyoensis has been listed as a national endangered species in Japan since 2020, and unambiguous identification of these species is therefore important for their conservation and management. In this study, we developed a LAMP primer set for the mitochondrial cytochrome b region to detect H. tokyoensis, and we evaluated the LAMP assay using total genomic DNA from four H. tokyoensis and three H. lichenatus individuals from across most of their ranges. Our LAMP primer set could distinguish these two species. This study should help to establish LAMP assays for other endangered species and morphologically similar species.
{"title":"Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for quick identification of the Japanese salamander Hynobius tokyoensis.","authors":"Tomoya Suzuki, Kanto Nishikawa, Yukuto Sato, Mamoru Toda","doi":"10.1266/ggs.21-00046","DOIUrl":"https://doi.org/10.1266/ggs.21-00046","url":null,"abstract":"<p><p>Species identification using molecular techniques has recently become common for various taxa. Loop-mediated isothermal amplification (LAMP) is one of the easiest and least expensive molecular identification methods. Although few studies have developed LAMP assays for amphibians, we believe that LAMP is also useful for identifying endangered amphibians. Hynobius tokyoensis and H. lichenatus occur in Honshu, Japan, and have parapatric distributions. They are similar morphologically, especially at early developmental stages, including eggs and larvae. Hynobius tokyoensis has been listed as a national endangered species in Japan since 2020, and unambiguous identification of these species is therefore important for their conservation and management. In this study, we developed a LAMP primer set for the mitochondrial cytochrome b region to detect H. tokyoensis, and we evaluated the LAMP assay using total genomic DNA from four H. tokyoensis and three H. lichenatus individuals from across most of their ranges. Our LAMP primer set could distinguish these two species. This study should help to establish LAMP assays for other endangered species and morphologically similar species.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 5","pages":"247-252"},"PeriodicalIF":1.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39685854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23Epub Date: 2021-12-15DOI: 10.1266/ggs.21-00031
Ningning Zhang, Mengyun Qin, Shixin Zhu, Ziyang Huang, Hao Dong, Yang Yang, Lili Yang, Yang Lu
Rhododendron purdomii (Ericaceae) is an endangered ornamental species endemic to the Qinling Mountains of China. Due to the impact of climate change and human disturbance, R. purdomii is threatened by habitat loss, and conservation of this species is urgently needed. In this study, we developed and characterized 13 novel microsatellite markers for R. purdomii based on next-generation sequencing data. For the 13 microsatellite markers in three R. purdomii populations, the number of alleles ranged from two to 12, the number of effective alleles was from 1.000 to 8.892, Shannon's information index was from 0.000 to 2.320, and the observed and expected heterozygosity were from 0.000 to 1.000 and from 0.000 to 0.888, respectively. Private alleles were found in all three populations. Moderate differentiation between population pairs was indicated by pairwise FST values. The microsatellite markers developed in this study will provide opportunities for examining the genetic diversity and population structure of R. purdomii and contribute to the effective conservation of this species.
{"title":"Development and characterization of microsatellite markers for Rhododendron purdomii (Ericaceae) using next-generation sequencing.","authors":"Ningning Zhang, Mengyun Qin, Shixin Zhu, Ziyang Huang, Hao Dong, Yang Yang, Lili Yang, Yang Lu","doi":"10.1266/ggs.21-00031","DOIUrl":"https://doi.org/10.1266/ggs.21-00031","url":null,"abstract":"<p><p>Rhododendron purdomii (Ericaceae) is an endangered ornamental species endemic to the Qinling Mountains of China. Due to the impact of climate change and human disturbance, R. purdomii is threatened by habitat loss, and conservation of this species is urgently needed. In this study, we developed and characterized 13 novel microsatellite markers for R. purdomii based on next-generation sequencing data. For the 13 microsatellite markers in three R. purdomii populations, the number of alleles ranged from two to 12, the number of effective alleles was from 1.000 to 8.892, Shannon's information index was from 0.000 to 2.320, and the observed and expected heterozygosity were from 0.000 to 1.000 and from 0.000 to 0.888, respectively. Private alleles were found in all three populations. Moderate differentiation between population pairs was indicated by pairwise F<sub>ST</sub> values. The microsatellite markers developed in this study will provide opportunities for examining the genetic diversity and population structure of R. purdomii and contribute to the effective conservation of this species.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 5","pages":"253-257"},"PeriodicalIF":1.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39841107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23Epub Date: 2021-10-29DOI: 10.1266/ggs.21-00041
Soichi Inagaki
Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.
{"title":"Silencing and anti-silencing mechanisms that shape the epigenome in plants.","authors":"Soichi Inagaki","doi":"10.1266/ggs.21-00041","DOIUrl":"https://doi.org/10.1266/ggs.21-00041","url":null,"abstract":"<p><p>Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 5","pages":"217-228"},"PeriodicalIF":1.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39577638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-23Epub Date: 2021-09-16DOI: 10.1266/ggs.21-00040
Nobutoshi Yamaguchi
Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.
{"title":"Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression.","authors":"Nobutoshi Yamaguchi","doi":"10.1266/ggs.21-00040","DOIUrl":"https://doi.org/10.1266/ggs.21-00040","url":null,"abstract":"<p><p>Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"96 5","pages":"229-235"},"PeriodicalIF":1.1,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39422220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}