Pub Date : 2024-03-28DOI: 10.1007/s11783-024-1842-1
Hao Qin, Wenbo Nie, Duo Yi, Dongxu Yang, Mengli Chen, Tao Liu, Yi Chen
Constructed wetlands (CWs) are widely applied for decentralized wastewater treatment. However, achieving efficient removal of ammonia (({rm{N}}{{rm{H}}_4}^ + - {rm{N}})) has proven challenging due to insufficient oxygen. In this study, natural hematite (Fe2O3) was employed as a CW substrate (H-CWs) for the first time to drive anaerobic ammonia oxidation coupled with iron(III) reduction (Feammox). Compared to gravel constructed wetlands (G-CWs), ammonia removal was enhanced by 38.14% to 54.03% and nitrous oxide (N2O) emissions were reduced by 34.60% in H-CWs. The synergistic removal of ammonia and nitrate by H-CWs also resulted in the absence of ammoxidation by-products. Inhibitor and 15N isotope tracer incubations showed that Feammox accounting for approximately 40% of all ammonia removal in the H-CWs. The enrichment of iron phosphate (Fe3Fe4(PO4)6) promoted the accumulation of the Feammox intermediate compound FeOOH. Microbial nanowires were observed on the surface of H-CW substrates as well, suggesting that the observed biological ammoxidation was most likely related to extracellular electron transfer (EET). Microbial and metagenomics analysis revealed that H-CWs elevated the integrity and enhanced the abundance of functional microorganisms and genes associated with nitrogen metabolism. Overall, the efficient ammonia removal in the absence of O2 together with a reduction in N2O emissions as described in this study may provide useful guidance for hematite-mediated anaerobic ammonia removal in CWs.
{"title":"Hematite-facilitated microbial ammoxidation for enhanced nitrogen removal in constructed wetlands","authors":"Hao Qin, Wenbo Nie, Duo Yi, Dongxu Yang, Mengli Chen, Tao Liu, Yi Chen","doi":"10.1007/s11783-024-1842-1","DOIUrl":"https://doi.org/10.1007/s11783-024-1842-1","url":null,"abstract":"<p>Constructed wetlands (CWs) are widely applied for decentralized wastewater treatment. However, achieving efficient removal of ammonia (<span>({rm{N}}{{rm{H}}_4}^ + - {rm{N}})</span>) has proven challenging due to insufficient oxygen. In this study, natural hematite (Fe<sub>2</sub>O<sub>3</sub>) was employed as a CW substrate (H-CWs) for the first time to drive anaerobic ammonia oxidation coupled with iron(III) reduction (Feammox). Compared to gravel constructed wetlands (G-CWs), ammonia removal was enhanced by 38.14% to 54.03% and nitrous oxide (N<sub>2</sub>O) emissions were reduced by 34.60% in H-CWs. The synergistic removal of ammonia and nitrate by H-CWs also resulted in the absence of ammoxidation by-products. Inhibitor and <sup>15</sup>N isotope tracer incubations showed that Feammox accounting for approximately 40% of all ammonia removal in the H-CWs. The enrichment of iron phosphate (Fe<sub>3</sub>Fe<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>) promoted the accumulation of the Feammox intermediate compound FeOOH. Microbial nanowires were observed on the surface of H-CW substrates as well, suggesting that the observed biological ammoxidation was most likely related to extracellular electron transfer (EET). Microbial and metagenomics analysis revealed that H-CWs elevated the integrity and enhanced the abundance of functional microorganisms and genes associated with nitrogen metabolism. Overall, the efficient ammonia removal in the absence of O<sub>2</sub> together with a reduction in N<sub>2</sub>O emissions as described in this study may provide useful guidance for hematite-mediated anaerobic ammonia removal in CWs.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"7 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1007/s11783-024-1840-3
Ru Zheng, Kuo Zhang, Lingrui Kong, Sitong Liu
Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions, among which biological nitrogen removal of wastewater is an important contributor to carbon emissions. However, traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources. Consequently, the development of innovative low-carbon nitrate removal technologies is necessary. This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment. The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane in situ. Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal. Specifically, the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal. Then, the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying photoelectron transfer mechanisms are discussed. Finally, we summarize and prospect these technologies, highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment. This review has important guiding significance for the design of low-carbon wastewater treatment systems.
{"title":"Research progress and prospect of low-carbon biological technology for nitrate removal in wastewater treatment","authors":"Ru Zheng, Kuo Zhang, Lingrui Kong, Sitong Liu","doi":"10.1007/s11783-024-1840-3","DOIUrl":"https://doi.org/10.1007/s11783-024-1840-3","url":null,"abstract":"<p>Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions, among which biological nitrogen removal of wastewater is an important contributor to carbon emissions. However, traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources. Consequently, the development of innovative low-carbon nitrate removal technologies is necessary. This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment. The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane <i>in situ</i>. Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal. Specifically, the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal. Then, the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying photoelectron transfer mechanisms are discussed. Finally, we summarize and prospect these technologies, highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment. This review has important guiding significance for the design of low-carbon wastewater treatment systems.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"40 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1007/s11783-024-1832-3
Abstract
The “dual-carbon” strategy promotes the development of the wastewater treatment sector and is an important tool for leading science and technology innovations. Based on the global climate change and the new policies introduced by China, this paper described the new needs for the development of wastewater treatment science and technology. It offered a retrospective analysis of the historical trajectory of scientific and technological advancements in this field. Utilizing bibliometrics, it delineated the research hotspots within wastewater treatment, notably highlighting materials genomics, artificial intelligence, and synthetic biology. Furthermore, it posited that, in the future, the field of wastewater treatment should follow the paths of technological innovations with multi-dimensional needs, such as carbon reduction, pollution reduction, health, standardisation, and intellectualisation. The purpose of this paper was to provide references and suggestions for scientific and technological innovations in the field of wastewater treatment, and to contribute to the common endeavor of moving toward a Pollution-Free Planet.
{"title":"Scientific and technological innovations of wastewater treatment in China","authors":"","doi":"10.1007/s11783-024-1832-3","DOIUrl":"https://doi.org/10.1007/s11783-024-1832-3","url":null,"abstract":"<h3>Abstract</h3> <p>The “dual-carbon” strategy promotes the development of the wastewater treatment sector and is an important tool for leading science and technology innovations. Based on the global climate change and the new policies introduced by China, this paper described the new needs for the development of wastewater treatment science and technology. It offered a retrospective analysis of the historical trajectory of scientific and technological advancements in this field. Utilizing bibliometrics, it delineated the research hotspots within wastewater treatment, notably highlighting materials genomics, artificial intelligence, and synthetic biology. Furthermore, it posited that, in the future, the field of wastewater treatment should follow the paths of technological innovations with multi-dimensional needs, such as carbon reduction, pollution reduction, health, standardisation, and intellectualisation. The purpose of this paper was to provide references and suggestions for scientific and technological innovations in the field of wastewater treatment, and to contribute to the common endeavor of moving toward a Pollution-Free Planet.</p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11783_2024_1832_Fig1_HTML.jpg\"/> </span> </span>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"6 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s11783-024-1823-4
Xinke Song, Shihui Zhang, Hai Huang, Qun Ding, Fang Guo, Yaxin Zhang, Jin Li, Mingyu Li, Wenjia Cai, Can Wang
Climate change significantly impacts human health, exacerbating existing health inequalities and creating new ones. This study addresses the lack of systematic review in this area by analyzing 2440 publications, focusing on four key terms: health, disparities, environmental factors, and climate change. Strict inclusion criteria limited the selection to English-language, peer-reviewed articles related to climate health hazards, ensuring the relevance and rigor of the synthesized studies. This process synthesized 65 relevant studies. Our investigation revealed that recent research, predominantly from developed countries, has broadened its scope beyond temperature-related impacts to encompass diverse climate hazards, including droughts, extreme weather, floods, mental health issues, and the intersecting effects of Coronavirus Disease 2019. Research has highlighted exposure as the most studied element in the causal chain of climate change-related health inequalities, followed by adaptive capability and inherent sensitivity. The most significant vulnerabilities were observed among populations with low socioeconomic status, ethnic minorities, and women. The study further reveals research biases and methodological limitations, such as the paucity of attention to underdeveloped regions, a narrow focus on non-temperature-related hazards, challenges in attributing climate change effects, and a deficit of large-scale empirical studies. The findings call for more innovative research approaches and a holistic integration of physical, socio-political, and economic dimensions to enrich climate-health discourse and inform equitable policy-making.
{"title":"A systematic review of the inequality of health burdens related to climate change","authors":"Xinke Song, Shihui Zhang, Hai Huang, Qun Ding, Fang Guo, Yaxin Zhang, Jin Li, Mingyu Li, Wenjia Cai, Can Wang","doi":"10.1007/s11783-024-1823-4","DOIUrl":"https://doi.org/10.1007/s11783-024-1823-4","url":null,"abstract":"<p>Climate change significantly impacts human health, exacerbating existing health inequalities and creating new ones. This study addresses the lack of systematic review in this area by analyzing 2440 publications, focusing on four key terms: health, disparities, environmental factors, and climate change. Strict inclusion criteria limited the selection to English-language, peer-reviewed articles related to climate health hazards, ensuring the relevance and rigor of the synthesized studies. This process synthesized 65 relevant studies. Our investigation revealed that recent research, predominantly from developed countries, has broadened its scope beyond temperature-related impacts to encompass diverse climate hazards, including droughts, extreme weather, floods, mental health issues, and the intersecting effects of Coronavirus Disease 2019. Research has highlighted exposure as the most studied element in the causal chain of climate change-related health inequalities, followed by adaptive capability and inherent sensitivity. The most significant vulnerabilities were observed among populations with low socioeconomic status, ethnic minorities, and women. The study further reveals research biases and methodological limitations, such as the paucity of attention to underdeveloped regions, a narrow focus on non-temperature-related hazards, challenges in attributing climate change effects, and a deficit of large-scale empirical studies. The findings call for more innovative research approaches and a holistic integration of physical, socio-political, and economic dimensions to enrich climate-health discourse and inform equitable policy-making.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"69 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s11783-024-1824-3
Abstract
Oxygenated organic molecules (OOMs) play an important role in the formation of secondary organic aerosols (SOAs), but the mixing states of OOMs are still unclear. This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou, China in 2022. Generally, the particle counts of OOM particles and the mass concentration of secondary organic carbon (SOC) exhibited similar temporal trends throughout the entire year. The OOM particles were consistently enriched in secondary ions, including 16O−, 26CN−, 46NO2−, 62NO3−, and 97HSO4−. In contrast, the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October; however, the SOC ratios in fine particulate matter were quite different, suggesting that there were different mixing states of single-particle oxygenated organics. In addition, further classification results indicated that the OOM particles were more aged in October than August, even though the SOC ratios were higher in August. Furthermore, the distribution of hydrocarbon fragments exhibited a notable decrease from January to October, emphasizing the more aged state of the organics in October. In addition, the sharp increase in elemental carbon (EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics. Overall, in contrast to the bulk analysis of SOC mass concentration, the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.
{"title":"One-year observation of the mixing states of oxygenated organics-containing single particles in Guangzhou, China","authors":"","doi":"10.1007/s11783-024-1824-3","DOIUrl":"https://doi.org/10.1007/s11783-024-1824-3","url":null,"abstract":"<h3>Abstract</h3> <p>Oxygenated organic molecules (OOMs) play an important role in the formation of secondary organic aerosols (SOAs), but the mixing states of OOMs are still unclear. This study investigates the mixing states of OOM-containing single particles from the measurements taken using a single particle aerosol mass spectrometer in Guangzhou, China in 2022. Generally, the particle counts of OOM particles and the mass concentration of secondary organic carbon (SOC) exhibited similar temporal trends throughout the entire year. The OOM particles were consistently enriched in secondary ions, including <sup>16</sup>O<sup>−</sup>, <sup>26</sup>CN<sup>−</sup>, <sup>46</sup>NO<sub>2</sub><sup>−</sup>, <sup>62</sup>NO<sub>3</sub><sup>−</sup>, and <sup>97</sup>HSO<sub>4</sub><sup>−</sup>. In contrast, the number fractions and diurnal patterns of OOM particles among the total detected particles showed similar distributions in August and October; however, the SOC ratios in fine particulate matter were quite different, suggesting that there were different mixing states of single-particle oxygenated organics. In addition, further classification results indicated that the OOM particles were more aged in October than August, even though the SOC ratios were higher in August. Furthermore, the distribution of hydrocarbon fragments exhibited a notable decrease from January to October, emphasizing the more aged state of the organics in October. In addition, the sharp increase in elemental carbon (EC)-OOM particles in the afternoon in October suggests the potential role of EC in the aging process of organics. Overall, in contrast to the bulk analysis of SOC mass concentration, the mixing states of the OOM particles provide insights into the formation process of SOAs in field studies.</p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11783_2024_1824_Fig1_HTML.jpg\"/> </span> </span>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"125 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1007/s11783-024-1822-5
Hao Zhang, Huinan Li, Pengyi Zhang, Tingxia Hu, Xianjie Wang
Copper intercalated birnessite MnO2 (δ-MnO2) with weak crystallinity and high specific surface area (421 m2/g) was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation. The molar ratio of Cu/Mn was as high as 0.37, which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species. In situ DRIFTS revealed strong bonding of copper ions with CO. As-synthesized MnO2-150Cu achieved 100% conversion of 250 ppm CO in normal air (3.1 ppm H2O) even at −10 °C under the weight-hourly space velocity (WHSV) of 150 L/(g·h). In addition, it showed high oxygen storage capacity to oxidize CO in inert atmosphere. Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature, MnO2-150Cu could stably convert CO in 1.3% moisture air at 70 °C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature. This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO2 induced by high content intercalated copper ions.
通过一锅氧化还原法合成了具有弱结晶性和高比表面积(421 m2/g)的铜插层桦烷石 MnO2(δ-MnO2),并研究了其在低温 CO 氧化中的应用。铜/锰摩尔比高达 0.37,大大削弱了 Mn-O 键,产生了大量低温活性氧。原位 DRIFTS 显示铜离子与 CO 有很强的结合力。合成的 MnO2-150Cu 在-10 °C、150 升/(克-小时)的重量小时空间速度(WHSV)条件下,对普通空气中 250 ppm CO(3.1 ppm H2O)的转化率达到 100%。此外,它在惰性气氛中氧化 CO 的储氧能力也很强。虽然在环境温度下,空气中同时存在的水分会严重抑制 CO 的吸附和转化,但由于 MnO2-150Cu 具有极高的低温活性,且随着温度的升高,其对水的竞争性吸附减少,因此它能在 70 °C、含水量为 1.3% 的空气中稳定地转化 CO。这项研究发现了高含量插层铜离子诱导的弱结晶 δ-MnO2 的优异低温活性。
{"title":"Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air","authors":"Hao Zhang, Huinan Li, Pengyi Zhang, Tingxia Hu, Xianjie Wang","doi":"10.1007/s11783-024-1822-5","DOIUrl":"https://doi.org/10.1007/s11783-024-1822-5","url":null,"abstract":"<p>Copper intercalated birnessite MnO<sub>2</sub> (δ-MnO<sub>2</sub>) with weak crystallinity and high specific surface area (421 m<sup>2</sup>/g) was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation. The molar ratio of Cu/Mn was as high as 0.37, which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species. <i>In situ</i> DRIFTS revealed strong bonding of copper ions with CO. As-synthesized MnO<sub>2</sub>-150Cu achieved 100% conversion of 250 ppm CO in normal air (3.1 ppm H<sub>2</sub>O) even at −10 °C under the weight-hourly space velocity (WHSV) of 150 L/(g·h). In addition, it showed high oxygen storage capacity to oxidize CO in inert atmosphere. Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature, MnO<sub>2</sub>-150Cu could stably convert CO in 1.3% moisture air at 70 °C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature. This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO<sub>2</sub> induced by high content intercalated copper ions.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"22 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s11783-024-1821-6
Abstract
The thorough investigation of nanoplastics (NPs) in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient to employ. Optical analysis-based quantitative methods have been acknowledged as effective and rapid approaches for quantifying NP concentrations in laboratory-scale studies. Herein, we compared three commonly used optical response indicators, namely fluorescence intensity (FI), ultraviolet absorbance, and turbidity, to assess their performance in quantifying NPs. Furthermore, orthogonal experiments were conducted to evaluate the influence of various water quality parameters on the preferred indicator-based quantification method. The results revealed that FI exhibits the highest correlation coefficient (> 0.99) with NP concentration. Notably, the limit of quantification (LOQ) for various types of NPs is exceptionally low, ranging from 0.0089 to 0.0584 mg/L in ultrapure water, well below environmentally relevant concentrations. Despite variations in water quality parameters such as pH, salinity, suspended solids (SS), and humic acid, a robust relationship between detectable FI and NP concentration was identified. However, an increased matrix, especially SS in water samples, results in an enhanced LOQ for NPs. Nevertheless, the quantitative method remains applicable in real water bodies, especially in drinking water, with NP LOQ as low as 0.0157–0.0711 mg/L. This exceeds the previously reported detectable concentration for 100 nm NPs at 40 µg/mL using surface-enhanced Raman spectroscopy. This study confirms the potential of FI as a reliable indicator for the rapid quantification of NPs in aqueous environments, offering substantial advantages in terms of both convenience and cost-effectiveness.
{"title":"Toward a rapid and convenient nanoplastic quantification method in laboratory-scale study based on fluorescence intensity","authors":"","doi":"10.1007/s11783-024-1821-6","DOIUrl":"https://doi.org/10.1007/s11783-024-1821-6","url":null,"abstract":"<h3>Abstract</h3> <p>The thorough investigation of nanoplastics (NPs) in aqueous environments requires efficient and expeditious quantitative analytical methods that are sensitive to environmentally relevant NP concentrations and convenient to employ. Optical analysis-based quantitative methods have been acknowledged as effective and rapid approaches for quantifying NP concentrations in laboratory-scale studies. Herein, we compared three commonly used optical response indicators, namely fluorescence intensity (FI), ultraviolet absorbance, and turbidity, to assess their performance in quantifying NPs. Furthermore, orthogonal experiments were conducted to evaluate the influence of various water quality parameters on the preferred indicator-based quantification method. The results revealed that FI exhibits the highest correlation coefficient (> 0.99) with NP concentration. Notably, the limit of quantification (LOQ) for various types of NPs is exceptionally low, ranging from 0.0089 to 0.0584 mg/L in ultrapure water, well below environmentally relevant concentrations. Despite variations in water quality parameters such as pH, salinity, suspended solids (SS), and humic acid, a robust relationship between detectable FI and NP concentration was identified. However, an increased matrix, especially SS in water samples, results in an enhanced LOQ for NPs. Nevertheless, the quantitative method remains applicable in real water bodies, especially in drinking water, with NP LOQ as low as 0.0157–0.0711 mg/L. This exceeds the previously reported detectable concentration for 100 nm NPs at 40 µg/mL using surface-enhanced Raman spectroscopy. This study confirms the potential of FI as a reliable indicator for the rapid quantification of NPs in aqueous environments, offering substantial advantages in terms of both convenience and cost-effectiveness. <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11783_2024_1821_Fig1_HTML.jpg\"/> </span> </span></p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"14 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-11DOI: 10.1007/s11783-024-1819-0
Hankun Yang, Yujuan Li, Hongyu Liu, Nigel J. D. Graham, Xue Wu, Jiawei Hou, Mengjie Liu, Wenyu Wang, Wenzheng Yu
In this study, samples were taken from three locations, upstream to downstream, along the central route project of the China South to North Water Diversion (SNWD) scheme in summer and winter. These were used to reveal the variations of dissolved organic matter (DOM) during the water transfer process, and the effects of these variations on drinking water treatment and disinfection by-products formation potential (DBPs-FP). The results showed that polysaccharides accumulate in summer and reduce in winter with flow distance, which has an important effect on the overall properties of DOM, as well as on the performance of coagulation, ultrafiltration, and the formation of DBPs. Humic substances, and their hydrophilic content, also increased in summer and decreased in winter with flow distance. In contrast, the concentration of small organic substances (MW ⩽ 1000 Da) increased in both summer and winter with flow distance, which affected both nanofiltration (NF) membrane fouling and DBPs-FP. The results provide a useful case study of spatial and temporal changes in raw water DOM during long distance water transfer and their impact on the treatment and quality of drinking water from the SNWD.
本研究在夏季和冬季从中国南水北调(SNWD)计划中央线路工程沿线从上游到下游的三个地点采集了样本。这些样本用于揭示输水过程中溶解有机物(DOM)的变化,以及这些变化对饮用水处理和消毒副产物形成潜力(DBPs-FP)的影响。研究结果表明,多糖类物质会随着水流距离的增加而在夏季积累、在冬季减少,这对溶解有机物的整体特性以及混凝、超滤性能和 DBPs 的形成都有重要影响。随着水流距离的增加,腐殖质及其亲水性含量也在夏季增加,冬季减少。相比之下,小分子有机物质(截留分子量 ⩽ 1000 Da)的浓度在夏季和冬季都会随着流动距离的增加而增加,从而影响纳滤膜污垢和 DBPs-FP 的形成。这些结果为研究远距离输水过程中原水 DOM 的时空变化及其对南水北调中线工程饮用水处理和水质的影响提供了一个有用的案例。
{"title":"The variation of DOM during long distance water transport by the China South to North Water Diversion Scheme and impact on drinking water treatment","authors":"Hankun Yang, Yujuan Li, Hongyu Liu, Nigel J. D. Graham, Xue Wu, Jiawei Hou, Mengjie Liu, Wenyu Wang, Wenzheng Yu","doi":"10.1007/s11783-024-1819-0","DOIUrl":"https://doi.org/10.1007/s11783-024-1819-0","url":null,"abstract":"<p>In this study, samples were taken from three locations, upstream to downstream, along the central route project of the China South to North Water Diversion (SNWD) scheme in summer and winter. These were used to reveal the variations of dissolved organic matter (DOM) during the water transfer process, and the effects of these variations on drinking water treatment and disinfection by-products formation potential (DBPs-FP). The results showed that polysaccharides accumulate in summer and reduce in winter with flow distance, which has an important effect on the overall properties of DOM, as well as on the performance of coagulation, ultrafiltration, and the formation of DBPs. Humic substances, and their hydrophilic content, also increased in summer and decreased in winter with flow distance. In contrast, the concentration of small organic substances (MW ⩽ 1000 Da) increased in both summer and winter with flow distance, which affected both nanofiltration (NF) membrane fouling and DBPs-FP. The results provide a useful case study of spatial and temporal changes in raw water DOM during long distance water transfer and their impact on the treatment and quality of drinking water from the SNWD.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"228 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1007/s11783-024-1820-7
Abstract
The present study assesses the concentration, probabilistic risk, source classification, and dietary risk arising from heavy metal (HMs) pollution in agricultural soils affected by coal mining in eastern part of India. Analyses of soil and rice plant indicated significantly elevated levels of HMs beyond the permissible limit in the contaminated zones (zone 1: PbSoil: 108.24 ± 72.97, CuSoil: 57.26 ± 23.91, CdSoil: 8.44 ± 2.76, CrSoil: 180.05 ± 46.90, NiSoil: 70.79 ± 25.06 mg/kg; PbGrain: 0.96 ± 0.8, CuGrain: 8.6 ± 5.1, CdGrain: 0.65 ± 0.42, CrGrain: 4.78 ± 1.89, NiGrain: 11.74 ± 4.38 mg/kg. zone 2: PbSoil: 139.56 ± 69.46, CuSoil: 69.89 ± 19.86, CdSoil: 8.95 ± 2.57, CrSoil: 245.46 ± 70.66, NiSoil: 95.46 ± 22.89 mg/kg; PbGrain: 1.27 ± 0.84, CuGrain: 7.9 ± 4.57, CdGrain: 0.76 ± 0.43, CrGrain: 8.6 ± 1.58, NiGrain: 11.50 ± 2.46 mg/kg) compared to the uncontaminated zone (zone 3). Carcinogenic and non-carcinogenic health risks were computed based on the HMs concentration in the soil and rice grain, with Pb, Cr, and Ni identified as posing a high risk to human health. Monte Carlo simulation, the solubility-free ion activity model (FIAM), and severity adjusted margin of exposure (SAMOE) were employed to predict health risk. FIAM hazard quotient (HQ) values for Ni, Cr, Cd, and Pb were > 1, indicating a significant non-carcinogenic risk. SAMOE (risk thermometer) results for contaminated zones ranged from low to moderate risk (CrSAMOE: 0.05, and NiSAMOE: 0.03). Fuzzy-TOPSIS and variable importance plots (from random forest) showed that Ni and Cr were mostly responsible for the toxicity in the rice plant, respectively. A self-organizing map for source classification revealed common origin for the studied HMs with zone 2 exhibiting the highest contamination. The positive matrix factorization model for the source apportionment identified coal mining and transportation as the predominant sources of HMs. Spatial distribution analysis indicated higher contamination near mining sites as compared to distant sampling sites. Consequently, this study will aid environmental scientists and policymakers controlling HM pollution in agricultural soils near coal mines.
{"title":"Appraisal of pollution and health risks associated with coal mine contaminated soil using multimodal statistical and Fuzzy-TOPSIS approaches","authors":"","doi":"10.1007/s11783-024-1820-7","DOIUrl":"https://doi.org/10.1007/s11783-024-1820-7","url":null,"abstract":"<h3>Abstract</h3> <p>The present study assesses the concentration, probabilistic risk, source classification, and dietary risk arising from heavy metal (HMs) pollution in agricultural soils affected by coal mining in eastern part of India. Analyses of soil and rice plant indicated significantly elevated levels of HMs beyond the permissible limit in the contaminated zones (zone 1: Pb<sub>Soil</sub>: 108.24 ± 72.97, Cu<sub>Soil</sub>: 57.26 ± 23.91, Cd<sub>Soil</sub>: 8.44 ± 2.76, Cr<sub>Soil</sub>: 180.05 ± 46.90, Ni<sub>Soil</sub>: 70.79 ± 25.06 mg/kg; Pb<sub>Grain</sub>: 0.96 ± 0.8, Cu<sub>Grain</sub>: 8.6 ± 5.1, Cd<sub>Grain</sub>: 0.65 ± 0.42, Cr<sub>Grain</sub>: 4.78 ± 1.89, Ni<sub>Grain</sub>: 11.74 ± 4.38 mg/kg. zone 2: Pb<sub>Soil</sub>: 139.56 ± 69.46, Cu<sub>Soil</sub>: 69.89 ± 19.86, Cd<sub>Soil</sub>: 8.95 ± 2.57, Cr<sub>Soil</sub>: 245.46 ± 70.66, Ni<sub>Soil</sub>: 95.46 ± 22.89 mg/kg; Pb<sub>Grain</sub>: 1.27 ± 0.84, Cu<sub>Grain</sub>: 7.9 ± 4.57, Cd<sub>Grain</sub>: 0.76 ± 0.43, Cr<sub>Grain</sub>: 8.6 ± 1.58, Ni<sub>Grain</sub>: 11.50 ± 2.46 mg/kg) compared to the uncontaminated zone (zone 3). Carcinogenic and non-carcinogenic health risks were computed based on the HMs concentration in the soil and rice grain, with Pb, Cr, and Ni identified as posing a high risk to human health. Monte Carlo simulation, the solubility-free ion activity model (FIAM), and severity adjusted margin of exposure (SAMOE) were employed to predict health risk. FIAM hazard quotient (HQ) values for Ni, Cr, Cd, and Pb were > 1, indicating a significant non-carcinogenic risk. SAMOE (risk thermometer) results for contaminated zones ranged from low to moderate risk (Cr<sub>SAMOE</sub>: 0.05, and Ni<sub>SAMOE</sub>: 0.03). Fuzzy-TOPSIS and variable importance plots (from random forest) showed that Ni and Cr were mostly responsible for the toxicity in the rice plant, respectively. A self-organizing map for source classification revealed common origin for the studied HMs with zone 2 exhibiting the highest contamination. The positive matrix factorization model for the source apportionment identified coal mining and transportation as the predominant sources of HMs. Spatial distribution analysis indicated higher contamination near mining sites as compared to distant sampling sites. Consequently, this study will aid environmental scientists and policymakers controlling HM pollution in agricultural soils near coal mines. <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11783_2024_1820_Fig1_HTML.jpg\"/> </span> </span></p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"56 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-08DOI: 10.1007/s11783-024-1825-2
Joe F. Bozeman
Socioecological inequity in environmental data science—such as inequities deriving from data-driven approaches and machine learning (ML)—are current issues subject to debate and evolution. There is growing consensus around embedding equity throughout all research and design domains—from inception to administration, while also addressing procedural, distributive, and recognitional factors. Yet, practically doing so may seem onerous or daunting to some. The current perspective helps to alleviate these types of concerns by providing substantiation for the connection between environmental data science and socioecological inequity, using the Systemic Equity Framework, and provides the foundation for a paradigmatic shift toward normalizing the use of equity-centered approaches in environmental data science and ML settings. Bolstering the integrity of environmental data science and ML is just beginning from an equity-centered tool development and rigorous application standpoint. To this end, this perspective also provides relevant future directions and challenges by overviewing some meaningful tools and strategies—such as applying the Wells-Du Bois Protocol, employing fairness metrics, and systematically addressing irreproducibility; emerging needs and proposals—such as addressing data-proxy bias and supporting convergence research; and establishes a ten-step path forward. Afterall, the work that environmental scientists and engineers do ultimately affect the well-being of us all.
环境数据科学中的社会生态不平等--如数据驱动方法和机器学习(ML)带来的不平等--是当前需要讨论和演变的问题。越来越多的人达成共识,要将公平贯穿于所有研究和设计领域--从开始到管理,同时还要解决程序、分配和认可等因素。然而,对于某些人来说,实际操作起来可能显得繁重或令人生畏。当前的观点通过使用系统公平框架为环境数据科学与社会生态不公平之间的联系提供证据,并为在环境数据科学和多重L环境中使用以公平为中心的方法实现规范化的范式转变奠定基础,从而帮助减轻这些类型的担忧。从以公平为中心的工具开发和严格应用的角度来看,加强环境数据科学和 ML 的完整性才刚刚开始。为此,本视角还通过概述一些有意义的工具和策略(如应用 Wells-Du Bois 协议、采用公平度量标准和系统地解决不可再现性问题)、新出现的需求和建议(如解决数据代理偏差和支持趋同研究),提供了相关的未来方向和挑战,并确立了十步前进路径。毕竟,环境科学家和工程师的工作最终会影响到我们所有人的福祉。
{"title":"Bolstering integrity in environmental data science and machine learning requires understanding socioecological inequity","authors":"Joe F. Bozeman","doi":"10.1007/s11783-024-1825-2","DOIUrl":"https://doi.org/10.1007/s11783-024-1825-2","url":null,"abstract":"<p>Socioecological inequity in environmental data science—such as inequities deriving from data-driven approaches and machine learning (ML)—are current issues subject to debate and evolution. There is growing consensus around embedding equity throughout all research and design domains—from inception to administration, while also addressing procedural, distributive, and recognitional factors. Yet, practically doing so may seem onerous or daunting to some. The current perspective helps to alleviate these types of concerns by providing substantiation for the connection between environmental data science and socioecological inequity, using the Systemic Equity Framework, and provides the foundation for a paradigmatic shift toward normalizing the use of equity-centered approaches in environmental data science and ML settings. Bolstering the integrity of environmental data science and ML is just beginning from an equity-centered tool development and rigorous application standpoint. To this end, this perspective also provides relevant future directions and challenges by overviewing some meaningful tools and strategies—such as applying the Wells-Du Bois Protocol, employing fairness metrics, and systematically addressing irreproducibility; emerging needs and proposals—such as addressing data-proxy bias and supporting convergence research; and establishes a ten-step path forward. Afterall, the work that environmental scientists and engineers do ultimately affect the well-being of us all.\u0000</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"124 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}