Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (Mamastrovirus genotype 1). Deletion of FCGRT or B2M, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.
{"title":"Neonatal Fc receptor is a functional receptor for classical human astrovirus","authors":"Kei Haga, Takashi Tokui, Kana Miyamoto, Reiko Takai-Todaka, Shiori Kudo, Azusa Ishikawa, Ryoka Ishiyama, Akiko Kato, Masaru Yokoyama, Kazuhiko Katayama, Akira Nakanishi","doi":"10.1111/gtc.13160","DOIUrl":"10.1111/gtc.13160","url":null,"abstract":"<p>Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (<i>Mamastrovirus</i> genotype 1). Deletion of <i>FCGRT</i> or <i>B2M</i>, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"983-1001"},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging is associated with a decline in oral immune function, marked by reduced levels of antimicrobial peptides such as defensins. Capsaicin, a bioactive component found in chili peppers, has been theorized to modulate immune responses through specific receptor pathways. This study examined the effects of aging on oral defensin levels and the potential mitigating role of capsaicin, mediated by the immune response in oral tissues. We conducted a comparative analysis between young and aged mice, with or without capsaicin supplementation, for 3 months. The effect of capsaicin was also studied in vitro in senescence-induced human oral keratinocytes. We found that aging did not reduce defensin levels uniformly but did so in some instances. Capsaicin treatment increased defensin levels in these cases, potentially through transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways in the oral cavity. Capsaicin supplementation may counteract age-related declines in oral defensin levels, enabling the maintenance of oral immune function during aging.
衰老与口腔免疫功能下降有关,其标志是抗菌肽(如防御素)水平的降低。辣椒素是辣椒中的一种生物活性成分,据推测它能通过特定的受体途径调节免疫反应。本研究探讨了衰老对口腔防御素水平的影响,以及辣椒素在口腔组织免疫反应介导下的潜在缓解作用。我们对补充或不补充辣椒素的年轻小鼠和老龄小鼠进行了为期 3 个月的比较分析。我们还在体外研究了辣椒素对衰老诱导的人类口腔角质细胞的影响。我们发现,衰老并不会均匀地降低防御素水平,但在某些情况下会降低防御素水平。在这些情况下,辣椒素处理可增加防御素水平,这可能是通过口腔中瞬时受体电位阳离子通道 V 亚家族成员 1(TRPV1)介导的途径实现的。补充辣椒素可以抵消与年龄有关的口腔防御素水平下降,从而在衰老过程中维持口腔免疫功能。
{"title":"Capsaicin modulates TRPV1, induces β-defensin expression, and regulates NF-κB in oral senescent cells and a murine model","authors":"Yoriko Ikuyo, Haruna Yokoi, Jingshu Wang, Masae Furukawa, Resmi Raju, Mitsuyoshi Yamada, Yu Aoki, Kenji Matsushita","doi":"10.1111/gtc.13158","DOIUrl":"10.1111/gtc.13158","url":null,"abstract":"<p>Aging is associated with a decline in oral immune function, marked by reduced levels of antimicrobial peptides such as defensins. Capsaicin, a bioactive component found in chili peppers, has been theorized to modulate immune responses through specific receptor pathways. This study examined the effects of aging on oral defensin levels and the potential mitigating role of capsaicin, mediated by the immune response in oral tissues. We conducted a comparative analysis between young and aged mice, with or without capsaicin supplementation, for 3 months. The effect of capsaicin was also studied in vitro in senescence-induced human oral keratinocytes. We found that aging did not reduce defensin levels uniformly but did so in some instances. Capsaicin treatment increased defensin levels in these cases, potentially through transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways in the oral cavity. Capsaicin supplementation may counteract age-related declines in oral defensin levels, enabling the maintenance of oral immune function during aging.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1069-1076"},"PeriodicalIF":1.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida
From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (Renilla luciferase-based Ca2+ probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the Xenopus egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.
{"title":"Development of luminescent probes for real-time detection of the CDK/PP2A balance during the cell cycle","authors":"Hirotsugu Hino, Kaori Takaki, Mika Kobe, Satoru Mochida","doi":"10.1111/gtc.13159","DOIUrl":"10.1111/gtc.13159","url":null,"abstract":"<p>From a biochemical viewpoint, the cell cycle is controlled by the phosphorylation of cyclin-dependent kinase (CDK) substrates, and the phosphorylation level is determined by the enzymatic balance between CDK and protein phosphatase 2A (PP2A). However, the conventional techniques for analyzing protein phosphorylation using radioisotopes and antibodies involve many operational steps and take days before obtaining results, making them difficult to apply to high-throughput screening and real-time observations. In this study, we developed luminescent probes with a light intensity that changes depending on its phosphorylation state. We modified the Nano-lantern probe (<i>Renilla</i> luciferase-based Ca<sup>2+</sup> probe) by introducing a CDK-substrate peptide and a phosphopeptide-binding domain into the luciferase. Our initial trial resulted in new probes that could report the CDK/PP2A balance in a purified system. Further modifications of these probes (replacing the phospho-Ser with phospho-Thr and randomly replacing its surrounding amino acids) improved the dynamic range by up to four-fold, making them practical for use in the <i>Xenopus</i> egg extracts system, where many physiological events can be reproduced. Taken together, our new probes enabled the monitoring of the CDK/PP2A balance in real time, and are applicable to high-throughput systems; the new probes thus appear promising for use in substrate and drug screening.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"1002-1011"},"PeriodicalIF":1.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.
RNA-DNA 杂交是 R 环的一部分,而 R 环是一种重要的非标准核酸结构。RNA-DNA 杂交/R-环通过诱导 DNA 损伤或抑制 DNA 复制而导致基因组不稳定。它在转录、复制、重组和修复的调控中也发挥着重要的生物学作用。在这里,我们利用催化不活跃的人类 RNase H1 突变体(D145N)来观察裂殖酵母细胞中的 RNA-DNA 杂交并绘制其基因组位置图。在缺乏细胞 RNase H 活性的 rnh1∆rnh201∆ 细胞中,RNA-DNA 杂交表现为多个核病灶,而在野生型细胞中则没有。大多数 RNA-DNA 杂交位点都是在蛋白质编码区和 tRNA 上检测到的。在 rnh1∆rnh201∆ 细胞中,具有多个 Rad52 病灶的细胞在 S 期增加,约 20% 的 RNA-DNA 杂交位点与 Rad52 位点重叠。在 S 期,与 M 期相比,在蛋白质编码区观察到的 Rad52 与 RNA-DNA 杂交的关联更强。这些结果表明,rnh1∆rnh201∆细胞蛋白质编码区中持续存在的RNA-DNA杂交在S期可能通过与DNA复制叉碰撞而产生DNA损伤。
{"title":"RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S-phase in fission yeast","authors":"Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai","doi":"10.1111/gtc.13157","DOIUrl":"10.1111/gtc.13157","url":null,"abstract":"<p>RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in <i>rnh1∆rnh201∆</i> cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In <i>rnh1∆rnh201∆</i> cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in <i>rnh1∆rnh201∆</i> cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"966-982"},"PeriodicalIF":1.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
{"title":"Dose-dependent effects of histone methyltransferase NSD2 on site-specific double-strand break repair","authors":"Koh Iwasaki, Akari Tojo, Haruka Kobayashi, Kai Shimizu, Yoshitaka Kamimura, Yasunori Horikoshi, Atsuhiko Fukuto, Jiying Sun, Manabu Yasui, Masamitsu Honma, Atsushi Okabe, Ryoji Fujiki, Nakako Izumi Nakajima, Atsushi Kaneda, Satoshi Tashiro, Akira Sassa, Kiyoe Ura","doi":"10.1111/gtc.13156","DOIUrl":"10.1111/gtc.13156","url":null,"abstract":"<p>Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (<i>TK</i>) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"951-965"},"PeriodicalIF":1.3,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.
{"title":"Identification of genes contributing to attenuation of rat model of galactose-induced cataract by pyruvate","authors":"Fuuga Masuda, Mayumi Inami, Yoshihiro Takamura, Masaru Inatani, Masaya Oki","doi":"10.1111/gtc.13150","DOIUrl":"10.1111/gtc.13150","url":null,"abstract":"<p>Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (<i>Mt1a</i>, <i>Mt1m</i>, and <i>Mt2A</i>) and epithelial-mesenchymal transition-related factors (<i>Acta2</i>, <i>Anxa1</i>, <i>Cd81</i>, <i>Mki67</i>, <i>Timp1</i>, and <i>Tyms</i>) contribute to the therapeutic effect of cataracts.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 10","pages":"876-888"},"PeriodicalIF":1.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13150","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1–6 (PRC1.1–6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. L3MBTL2-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. L3MBTL2-knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. Break repair meiotic recombinase recruitment factor 1 (BRME1) and nuclear receptor interacting protein 3 (NRIP3) were notably de-repressed by L3MBTL2-knockout. The deletion of L3MBTL2 reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of NRIP3 in an L3MBTL2-deficient context. Therefore, this study first revealed the significance of L3MBTL2-mediated gene silencing in MYCN-amplified NB cells.
{"title":"L3MBTL2 maintains MYCN-amplified neuroblastoma cell proliferation through silencing NRIP3 and BRME1 genes","authors":"Ryu Okada, Hisanori Takenobu, Shunpei Satoh, Ryuichi P. Sugino, Ritsuko Onuki, Masayuki Haruta, Kyosuke Mukae, Atsuko Nakazawa, Jesmin Akter, Miki Ohira, Takehiko Kamijo","doi":"10.1111/gtc.13148","DOIUrl":"10.1111/gtc.13148","url":null,"abstract":"<p>Epigenetic alterations critically affect tumor development. Polycomb-group complexes constitute an evolutionarily conserved epigenetic machinery that regulates stem cell fate and development. They are implicated in tumorigenesis, primarily via histone modification. Polycomb repressive complex 1 (PRC1) complexes 1–6 (PRC1.1–6) mediate the ubiquitination of histone H2A on lysine 119 (H2AK119ub). Here, we studied the functional roles of a PRC1.6 molecule, L3MBTL2, in neuroblastoma (NB) cells. <i>L3MBTL2</i>-knockout and knockdown revealed that L3MBTL2 depletion suppressed NB cell proliferation via cell-cycle arrest and gamma-H2A.X upregulation. <i>L3MBTL2-</i>knockout profoundly suppressed xenograft tumor formation. Transcriptome analysis revealed suppressed cell-cycle-related and activated differentiation-related pathways. <i>Break repair meiotic recombinase recruitment factor 1</i> (<i>BRME1</i>) and <i>nuclear receptor interacting protein 3</i> (<i>NRIP3</i>) were notably de-repressed by <i>L3MBTL2</i>-knockout. The deletion of <i>L3MBTL2</i> reduced enrichment of H2AK119ub and PCGF6 at transcriptional start site proximal regions of the targets. Add-back studies unveiled the importance of L3MBTL2-BRME1 and -NRIP3 axes for NB cell proliferation. We further manifested the association of MYCN with de-repression of <i>NRIP3</i> in an <i>L3MBTL2</i>-deficient context. Therefore, this study first revealed the significance of <i>L3MBTL2-</i>mediated gene silencing in MYCN-amplified NB cells.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 10","pages":"838-853"},"PeriodicalIF":1.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ganciclovir (GCV) is a clinically important drug as it is used to treat viral infections. GCV is incorporated into the DNA during replication, where it interferes with subsequent replication on GCV-incorporated templates. However, the effects of GCV on the host genome and the mechanisms underlying cellular tolerance to GCV remain unclear. In this study, we explored these mechanisms using a collection of mutant DT40 cells. We identified RAD17/−, BRCA1−/−, and RAD18−/− cells as highly GCV-sensitive. RAD17, a component of the alternative checkpoint-clamp loader RAD17-RFC, was required for the activation of the intra-S checkpoint following GCV treatment. BRCA1, a critical factor for promoting homologous recombination (HR), was required for suppressing DNA double-strand breaks (DSBs). Moreover, RAD18, an E3-ligase involved in DNA repair, was critical in suppressing the aberrant ligation of broken chromosomes caused by GCV. We found that BRCA1 suppresses DSBs through HR-mediated repair and template switching (TS)-mediated damage bypass. Moreover, the strong GCV sensitivity of BRCA1−/− cells was rescued by the loss of 53BP1, despite the only partial restoration in the sister chromatid exchange events which are hallmarks of HR. These results indicate that BRCA1 promotes cellular tolerance to GCV through two mechanisms, TS and HR-mediated repair.
{"title":"RAD18- and BRCA1-dependent pathways promote cellular tolerance to the nucleoside analog ganciclovir","authors":"Tasnim Ahmad, Ryotaro Kawasumi, Kouji Hirota","doi":"10.1111/gtc.13155","DOIUrl":"10.1111/gtc.13155","url":null,"abstract":"<p>Ganciclovir (GCV) is a clinically important drug as it is used to treat viral infections. GCV is incorporated into the DNA during replication, where it interferes with subsequent replication on GCV-incorporated templates. However, the effects of GCV on the host genome and the mechanisms underlying cellular tolerance to GCV remain unclear. In this study, we explored these mechanisms using a collection of mutant DT40 cells. We identified <i>RAD17</i><sup>/−</sup>, <i>BRCA1</i><sup>−/−</sup>, and <i>RAD18</i><sup>−/−</sup> cells as highly GCV-sensitive. RAD17, a component of the alternative checkpoint-clamp loader RAD17-RFC, was required for the activation of the intra-S checkpoint following GCV treatment. BRCA1, a critical factor for promoting homologous recombination (HR), was required for suppressing DNA double-strand breaks (DSBs). Moreover, RAD18, an E3-ligase involved in DNA repair, was critical in suppressing the aberrant ligation of broken chromosomes caused by GCV. We found that BRCA1 suppresses DSBs through HR-mediated repair and template switching (TS)-mediated damage bypass. Moreover, the strong GCV sensitivity of <i>BRCA1</i><sup>−/−</sup> cells was rescued by the loss of 53BP1, despite the only partial restoration in the sister chromatid exchange events which are hallmarks of HR. These results indicate that BRCA1 promotes cellular tolerance to GCV through two mechanisms, TS and HR-mediated repair.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"935-950"},"PeriodicalIF":1.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes. In this study, using a reconstitution approach with purified DNA, we aimed to determine factors, such as the amount and timing of DNA introduction, required for the formation of nuclei with nuclear transport activity in mouse oocytes. T4 phage DNA (~166 kbp) was microinjected into strontium-activated oocytes to evaluate the conditions appropriate for nuclear formation. Microinjection of 100–500 ng/μL of T4 DNA, but not 20 ng/μL, was sufficient for the formation of nucleus-like structures. Furthermore, microinjection of DNA during metaphase II to telophase II, but not during interphase, was sufficient. Electron and fluorescence microscopy showed that T4 DNA-induced nucleus-like structures had nuclear lamina and nuclear pore complex structures similar to those of natural nuclei, as well as nuclear import activity. These results suggest that exogenous DNA can form artificial nuclei with nuclear transport functions in mouse oocytes, regardless of the sequence or source of the DNA.
在真核生物中,DNA 位于细胞核内。利用蛙卵提取物的体外系统和体细胞的体内成像,已经确定了细胞核形成所需的分子。然而,人们对小鼠卵母细胞核形成所需的理化因素和条件知之甚少。在本研究中,我们使用纯化 DNA 重组方法,旨在确定小鼠卵母细胞中具有核运输活性的核形成所需的因素,如 DNA 导入的数量和时间。将 T4 噬菌体 DNA(约 166 kbp)微注射到锶激活的卵母细胞中,以评估核形成的适宜条件。100-500 ng/μL 的 T4 DNA(而不是 20 ng/μL)微注射足以形成核样结构。此外,在分裂期 II 至端粒期 II(而不是间期)显微注射 DNA 就足够了。电子显微镜和荧光显微镜显示,T4 DNA 诱导的类核结构具有与天然核类似的核薄层和核孔复合体结构,以及核导入活性。这些结果表明,无论DNA的序列或来源如何,外源DNA都能在小鼠卵母细胞中形成具有核运输功能的人工核。
{"title":"Reconstruction of artificial nuclei with nuclear import activity in living mouse oocytes","authors":"Nao Yonezawa, Tomoko Shindo, Haruka Oda, Hiroshi Kimura, Yasushi Hiraoka, Tokuko Haraguchi, Kazuo Yamagata","doi":"10.1111/gtc.13149","DOIUrl":"10.1111/gtc.13149","url":null,"abstract":"<p>In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes. In this study, using a reconstitution approach with purified DNA, we aimed to determine factors, such as the amount and timing of DNA introduction, required for the formation of nuclei with nuclear transport activity in mouse oocytes. T4 phage DNA (~166 kbp) was microinjected into strontium-activated oocytes to evaluate the conditions appropriate for nuclear formation. Microinjection of 100–500 ng/μL of T4 DNA, but not 20 ng/μL, was sufficient for the formation of nucleus-like structures. Furthermore, microinjection of DNA during metaphase II to telophase II, but not during interphase, was sufficient. Electron and fluorescence microscopy showed that T4 DNA-induced nucleus-like structures had nuclear lamina and nuclear pore complex structures similar to those of natural nuclei, as well as nuclear import activity. These results suggest that exogenous DNA can form artificial nuclei with nuclear transport functions in mouse oocytes, regardless of the sequence or source of the DNA.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 10","pages":"820-837"},"PeriodicalIF":1.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mifra Faiz, Maggie L. Kalev-Zylinska, Caitlin Dunstan-Harrison, Dean C. Singleton, Michael P. Hay, Elizabeth C. Ledgerwood
Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.
{"title":"Megakaryocyte maturation involves activation of the adaptive unfolded protein response","authors":"Mifra Faiz, Maggie L. Kalev-Zylinska, Caitlin Dunstan-Harrison, Dean C. Singleton, Michael P. Hay, Elizabeth C. Ledgerwood","doi":"10.1111/gtc.13151","DOIUrl":"10.1111/gtc.13151","url":null,"abstract":"<p>Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca<sup>2+</sup> signaling in megakaryocyte differentiation.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 10","pages":"889-901"},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}