首页 > 最新文献

Geophysical Prospecting最新文献

英文 中文
Decoupled approximate qP- and qSV-wave equations in attenuated transversely isotropic media 衰减横向各向同性介质中的去耦近似 qP 波和 qSV 波方程
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-09 DOI: 10.1111/1365-2478.13591
Rong Huang, Zhiliang Wang, Guojie Song, Yanjin Xiang, Lei Zhao, Puchun Chen

Accurate seismic models with anisotropy and attenuation characteristics are crucial to accurately imaging subsurface structures. However, the anisotropic viscoelastic equations are complex and require significant computational resources. In addition, the single-mode waves have been sufficient for most practical exploration needs. However, separating the qP- and qSV-waves in anisotropic viscoelastic wavefields is challenging. Thus, we propose a new method to approximate and efficiently separate the qP- and qSV-waves in attenuated transversely isotropic media. First, we obtain the decoupled approximate phase velocities of qP- and qSV-waves by a curve-fitting method. Consequently, based on the average and maximum relative error analysis, our approximate qP- and qSV-wave phase velocities are more accurate than the existing approximations. Additionally, our approximations have broader applicability, resulting in acceptable errors during their application. Second, based on the approximate qP- and qSV-wave phase velocities, we derive the corresponding qP- and qSV-wave equations for a complete decoupling of the qP- and qSV-wave components in transversely isotropic media. Third, to combine the attenuation and anisotropy characteristics, we incorporate the Kelvin–Voigt attenuation model and obtain the decoupled qP- and qSV-wave equations in attenuated transversely isotropic media. Then, we use an efficient and stable hybrid finite-difference and pseudo-spectral method to solve the new decoupled qP- and qSV-wave equations. Finally, several numerical examples demonstrate the separability and high accuracy of the proposed qP- and qSV-wave equations. We obtain a qP-wave wavefield entirely devoid of SV-wave artefacts. In addition, the decoupled approximate qP- and qSV-wave equations are accurate and stable in heterogeneous media with different velocities and attenuation. The decoupled, approximated qP-wave and qSV-wave equations proposed in this paper can effectively separate the qP-wave and qSV-wave components, resulting in fully decoupled qP- and qSV-wave wavefields in attenuated transversely isotropic media.

具有各向异性和衰减特性的精确地震模型对于准确成像地下结构至关重要。然而,各向异性粘弹性方程非常复杂,需要大量计算资源。此外,单模波已足以满足大多数实际勘探需求。然而,在各向异性粘弹性波场中分离 qP 波和 qSV 波具有挑战性。因此,我们提出了一种在衰减的横向各向同性介质中近似并有效分离 qP 波和 qSV 波的新方法。首先,我们通过曲线拟合方法获得了 qP 波和 qSV 波的解耦近似相位速度。因此,根据平均误差和最大相对误差分析,我们的 qP 波和 qSV 波近似相位速度比现有的近似值更精确。此外,我们的近似值具有更广泛的适用性,因此在应用过程中产生的误差是可以接受的。其次,根据近似的 qP 波和 qSV 波相位速度,我们推导出了相应的 qP 波和 qSV 波方程,以实现横向各向同性介质中 qP 波和 qSV 波分量的完全解耦。第三,为了将衰减和各向异性特性结合起来,我们纳入了开尔文-沃依格衰减模型,并得到了衰减横向各向同性介质中的解耦 qP 波和 qSV 波方程。然后,我们使用高效稳定的有限差分和伪谱混合方法来求解新的解耦 qP 波和 qSV 波方程。最后,几个数值例子证明了所提出的 qP 波和 qSV 波方程的可分离性和高精度。我们得到的 qP 波波场完全没有 SV 波的伪影。此外,解耦的近似 qP 波和 qSV 波方程在具有不同速度和衰减的异质介质中是准确和稳定的。本文提出的解耦近似 qP 波和 qSV 波方程能有效分离 qP 波和 qSV 波成分,从而在衰减横向各向同性介质中得到完全解耦的 qP 波和 qSV 波波场。
{"title":"Decoupled approximate qP- and qSV-wave equations in attenuated transversely isotropic media","authors":"Rong Huang,&nbsp;Zhiliang Wang,&nbsp;Guojie Song,&nbsp;Yanjin Xiang,&nbsp;Lei Zhao,&nbsp;Puchun Chen","doi":"10.1111/1365-2478.13591","DOIUrl":"10.1111/1365-2478.13591","url":null,"abstract":"<p>Accurate seismic models with anisotropy and attenuation characteristics are crucial to accurately imaging subsurface structures. However, the anisotropic viscoelastic equations are complex and require significant computational resources. In addition, the single-mode waves have been sufficient for most practical exploration needs. However, separating the qP- and qSV-waves in anisotropic viscoelastic wavefields is challenging. Thus, we propose a new method to approximate and efficiently separate the qP- and qSV-waves in attenuated transversely isotropic media. First, we obtain the decoupled approximate phase velocities of qP- and qSV-waves by a curve-fitting method. Consequently, based on the average and maximum relative error analysis, our approximate qP- and qSV-wave phase velocities are more accurate than the existing approximations. Additionally, our approximations have broader applicability, resulting in acceptable errors during their application. Second, based on the approximate qP- and qSV-wave phase velocities, we derive the corresponding qP- and qSV-wave equations for a complete decoupling of the qP- and qSV-wave components in transversely isotropic media. Third, to combine the attenuation and anisotropy characteristics, we incorporate the Kelvin–Voigt attenuation model and obtain the decoupled qP- and qSV-wave equations in attenuated transversely isotropic media. Then, we use an efficient and stable hybrid finite-difference and pseudo-spectral method to solve the new decoupled qP- and qSV-wave equations. Finally, several numerical examples demonstrate the separability and high accuracy of the proposed qP- and qSV-wave equations. We obtain a qP-wave wavefield entirely devoid of SV-wave artefacts. In addition, the decoupled approximate qP- and qSV-wave equations are accurate and stable in heterogeneous media with different velocities and attenuation. The decoupled, approximated qP-wave and qSV-wave equations proposed in this paper can effectively separate the qP-wave and qSV-wave components, resulting in fully decoupled qP- and qSV-wave wavefields in attenuated transversely isotropic media.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 9","pages":"3495-3510"},"PeriodicalIF":1.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic surface geometry inversion of Kimberlites in Botswana 博茨瓦纳金伯利岩的磁性表面几何反演
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-09 DOI: 10.1111/1365-2478.13588
Saeed Vatankhah, Peter G. Lelièvre, Kitso Matende, Kevin Mickus

Surface geometry inversion of geophysical data has recently been introduced as an effective approach for generating surface-based geological models. The models obtained through surface geometry inversion clearly delineate the contacts between distinct rock units, making them easily interpretable by geologists. Surface geometry inversion has shown promising preliminary results in other works, but the practical application of surface geometry inversion on real geophysical data has not been thoroughly investigated. To move towards a better understanding of the practicalities involved, we applied surface geometry inversion to a real magnetic dataset acquired over two kimberlite pipes located in north-central Botswana. The objective was to assess the effectiveness and limitations of the surface geometry inversion approach in accurately characterizing the subsurface geometry and identifying the boundaries of the kimberlite pipes. We first perform an anomaly separation approach to isolate the magnetic anomalies associated with the kimberlite pipes. A surface geometry inversion algorithm was applied to the original and separated datasets using various initial models and other control parameters. Several tests were performed to investigate the effects that data processing, initial models, and other parameter choices have on the surface geometry inversion results. We successfully recover the geometry, extension and dip of the two kimberlite pipes. We discuss the results of our various tests and provide advice for practitioners interested in applying surface geometry inversion methods to their data. Our work indicates that surface geometry inversion can be used as a complementary approach to voxel inversion, and we propose an iterative surface geometry inversion algorithm as a possible alternative approach to voxel inversion for simple geological scenarios. This work provides valuable insights into the appropriate application of surface geometry inversion on real geophysical datasets.

地球物理数据的地表几何反演是生成地表地质模型的一种有效方法。通过地表几何反演获得的模型可以清晰地划分出不同岩石单元之间的接触点,便于地质学家进行解释。地表几何反演在其他工作中已显示出良好的初步结果,但地表几何反演在实际地球物理数据中的实际应用尚未得到深入研究。为了更好地了解相关的实际情况,我们将表面几何反演应用于在博茨瓦纳中北部两个金伯利岩管道上获取的真实磁数据集。目的是评估地表几何反演方法在准确描述地下几何特征和识别金伯利岩管边界方面的有效性和局限性。我们首先采用异常分离法分离出与金伯利岩管相关的磁异常。使用各种初始模型和其他控制参数,对原始数据集和分离的数据集采用表面几何反演算法。为了研究数据处理、初始模型和其他参数选择对地表几何反演结果的影响,进行了多次测试。我们成功地恢复了两个金伯利岩管道的几何形状、延伸和倾角。我们讨论了各种测试结果,并为有兴趣在数据中应用表面几何反演方法的从业人员提供了建议。我们的工作表明,表面几何反演可作为体素反演的一种补充方法,我们提出了一种迭代表面几何反演算法,作为简单地质情况下体素反演的一种可能替代方法。这项工作为在实际地球物理数据集上适当应用表面几何反演提供了宝贵的见解。
{"title":"Magnetic surface geometry inversion of Kimberlites in Botswana","authors":"Saeed Vatankhah,&nbsp;Peter G. Lelièvre,&nbsp;Kitso Matende,&nbsp;Kevin Mickus","doi":"10.1111/1365-2478.13588","DOIUrl":"10.1111/1365-2478.13588","url":null,"abstract":"<p>Surface geometry inversion of geophysical data has recently been introduced as an effective approach for generating surface-based geological models. The models obtained through surface geometry inversion clearly delineate the contacts between distinct rock units, making them easily interpretable by geologists. Surface geometry inversion has shown promising preliminary results in other works, but the practical application of surface geometry inversion on real geophysical data has not been thoroughly investigated. To move towards a better understanding of the practicalities involved, we applied surface geometry inversion to a real magnetic dataset acquired over two kimberlite pipes located in north-central Botswana. The objective was to assess the effectiveness and limitations of the surface geometry inversion approach in accurately characterizing the subsurface geometry and identifying the boundaries of the kimberlite pipes. We first perform an anomaly separation approach to isolate the magnetic anomalies associated with the kimberlite pipes. A surface geometry inversion algorithm was applied to the original and separated datasets using various initial models and other control parameters. Several tests were performed to investigate the effects that data processing, initial models, and other parameter choices have on the surface geometry inversion results. We successfully recover the geometry, extension and dip of the two kimberlite pipes. We discuss the results of our various tests and provide advice for practitioners interested in applying surface geometry inversion methods to their data. Our work indicates that surface geometry inversion can be used as a complementary approach to voxel inversion, and we propose an iterative surface geometry inversion algorithm as a possible alternative approach to voxel inversion for simple geological scenarios. This work provides valuable insights into the appropriate application of surface geometry inversion on real geophysical datasets.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 9","pages":"3524-3546"},"PeriodicalIF":1.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13588","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D modeling of deep borehole electromagnetic measurements with energized casing source for fracture mapping at the Utah Frontier Observatory for Research in Geothermal Energy 在犹他州地热能源研究前沿观测站利用通电套管源进行深孔电磁测量的三维建模,以绘制断裂图
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-08 DOI: 10.1111/1365-2478.13579
Evan Schankee Um, David Alumbaugh, Joseph Capriotti, Michael Wilt, Edward Nichols, Yaoguo Li, Seogi Kang, Kazumi Osato
<p>We present a 3D numerical modelling analysis evaluating the deployment of a borehole electromagnetic measurement tool to detect and image a stimulated zone at the Utah Frontier Observatory for Research in Geothermal Energy geothermal site. As the depth to the geothermal reservoir is several kilometres and the size of the stimulated zone is limited to several 100 m, surface-based controlled-source electromagnetic measurements lack the sensitivity for detecting changes in electrical resistivity caused by the stimulation. To overcome the limitation, the study evaluates the feasibility of using a three-component borehole magnetic receiver system at the Frontier Observatory for Research in Geothermal Energy site. To provide sufficient currents inside and around the enhanced geothermal reservoir, we use an injection well as an energized casing source. To efficiently simulate energizing the injection well in a realistic 3D resistivity model, we introduce a novel modelling workflow that leverages the strengths of both 3D cylindrical-mesh-based electromagnetic modelling code and 3D tetrahedral-mesh-based electromagnetic modelling code. The former is particularly well-suited for modelling hollow cylindrical objects like casings, whereas the latter excels at representing more complex 3D geological structures. In this workflow, our initial step involves computing current densities along a vertical steel-cased well using a 3D cylindrical electromagnetic modelling code. Subsequently, we distribute a series of equivalent current sources along the well's trajectory within a complex 3D resistivity model. We then discretize this model using a tetrahedral mesh and simulate the borehole electromagnetic responses excited by the casing source using a 3D finite-element electromagnetic code. This multi-step approach enables us to simulate 3D casing source electromagnetic responses within a complex 3D resistivity model, without the need for explicit discretization of the well using an excessive number of fine cells. We discuss the applicability and limitations of this proposed workflow within an electromagnetic modelling scenario where an energized well is deviated, such as at the Frontier Observatory for Research in Geothermal Energy site. Using the workflow, we demonstrate that the combined use of the energized casing source and the borehole electromagnetic receiver system offer measurable magnetic field amplitudes and sensitivity to the deep localized stimulated zone. The measurements can also distinguish between parallel-fracture anisotropic reservoirs and isotropic cases, providing valuable insights into the fracture system of the stimulated zone. Besides the magnetic field measurements, vertical electric field measurements in the open well sections are also highly sensitive to the stimulated zone and can be used as additional data for detecting and imaging the target. We can also acquire additional multiple-source data by grounding the surface electrode at vario
我们介绍了三维数值建模分析,评估了在犹他州地热能源研究前沿观测站地热站点部署井眼电磁测量工具以探测和成像激发区的情况。由于地热储层的深度达数公里,而激发区的大小仅限于数百米,因此基于地表的可控源电磁测量缺乏灵敏度,无法探测激发引起的电阻率变化。为了克服这一限制,该研究评估了在地热能源研究前沿观测站使用三组件钻孔磁接收器系统的可行性。为了在强化地热储层内部和周围提供足够的电流,我们使用一口注入井作为通电套管源。为了在逼真的三维电阻率模型中有效模拟注水井通电,我们引入了一种新颖的建模工作流程,充分利用了基于三维圆柱网格的电磁建模代码和基于三维四面体网格的电磁建模代码的优势。前者特别适用于对壳体等空心圆柱形物体进行建模,而后者则擅长表现更复杂的三维地质结构。在此工作流程中,我们的第一步是使用三维圆柱形电磁建模代码计算垂直钢套管井沿线的电流密度。随后,我们在复杂的三维电阻率模型中沿井轨迹分布一系列等效电流源。然后,我们使用四面体网格将该模型离散化,并使用三维有限元电磁代码模拟套管源激发的井眼电磁响应。这种多步骤方法使我们能够在复杂的三维电阻率模型中模拟三维套管源电磁响应,而无需使用过多的精细单元对油井进行明确离散。我们将在通电井偏离的电磁建模场景(如地热能源研究前沿观测站)中讨论所建议的工作流程的适用性和局限性。利用该工作流程,我们证明了结合使用通电套管源和井眼电磁接收器系统可提供可测量的磁场振幅和对深层局部受激区的灵敏度。测量结果还能区分平行裂缝各向异性储层和各向同性储层,为了解受刺激区的裂缝系统提供宝贵的信息。除磁场测量外,开放井段的垂直电场测量也对受刺激区高度敏感,可作为探测和成像目标的附加数据。我们还可以在不同位置将地面电极接地,重复进行井眼电磁测量,从而获取额外的多源数据。这种方法可使监测数据的数量增加几倍,为分析深部局部受激区提供更全面的数据集。数值分析表明,利用通电套管和井下电磁测量相结合的方法监测大深度局部激发区是可行的。
{"title":"3D modeling of deep borehole electromagnetic measurements with energized casing source for fracture mapping at the Utah Frontier Observatory for Research in Geothermal Energy","authors":"Evan Schankee Um,&nbsp;David Alumbaugh,&nbsp;Joseph Capriotti,&nbsp;Michael Wilt,&nbsp;Edward Nichols,&nbsp;Yaoguo Li,&nbsp;Seogi Kang,&nbsp;Kazumi Osato","doi":"10.1111/1365-2478.13579","DOIUrl":"10.1111/1365-2478.13579","url":null,"abstract":"&lt;p&gt;We present a 3D numerical modelling analysis evaluating the deployment of a borehole electromagnetic measurement tool to detect and image a stimulated zone at the Utah Frontier Observatory for Research in Geothermal Energy geothermal site. As the depth to the geothermal reservoir is several kilometres and the size of the stimulated zone is limited to several 100 m, surface-based controlled-source electromagnetic measurements lack the sensitivity for detecting changes in electrical resistivity caused by the stimulation. To overcome the limitation, the study evaluates the feasibility of using a three-component borehole magnetic receiver system at the Frontier Observatory for Research in Geothermal Energy site. To provide sufficient currents inside and around the enhanced geothermal reservoir, we use an injection well as an energized casing source. To efficiently simulate energizing the injection well in a realistic 3D resistivity model, we introduce a novel modelling workflow that leverages the strengths of both 3D cylindrical-mesh-based electromagnetic modelling code and 3D tetrahedral-mesh-based electromagnetic modelling code. The former is particularly well-suited for modelling hollow cylindrical objects like casings, whereas the latter excels at representing more complex 3D geological structures. In this workflow, our initial step involves computing current densities along a vertical steel-cased well using a 3D cylindrical electromagnetic modelling code. Subsequently, we distribute a series of equivalent current sources along the well's trajectory within a complex 3D resistivity model. We then discretize this model using a tetrahedral mesh and simulate the borehole electromagnetic responses excited by the casing source using a 3D finite-element electromagnetic code. This multi-step approach enables us to simulate 3D casing source electromagnetic responses within a complex 3D resistivity model, without the need for explicit discretization of the well using an excessive number of fine cells. We discuss the applicability and limitations of this proposed workflow within an electromagnetic modelling scenario where an energized well is deviated, such as at the Frontier Observatory for Research in Geothermal Energy site. Using the workflow, we demonstrate that the combined use of the energized casing source and the borehole electromagnetic receiver system offer measurable magnetic field amplitudes and sensitivity to the deep localized stimulated zone. The measurements can also distinguish between parallel-fracture anisotropic reservoirs and isotropic cases, providing valuable insights into the fracture system of the stimulated zone. Besides the magnetic field measurements, vertical electric field measurements in the open well sections are also highly sensitive to the stimulated zone and can be used as additional data for detecting and imaging the target. We can also acquire additional multiple-source data by grounding the surface electrode at vario","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 8","pages":"3104-3128"},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast and robust two‐point ray tracing method in layered vertical transversely isotropic media with strong anisotropy 具有强各向异性的层状垂直横向各向同性介质中的快速稳健双点射线追踪方法
IF 2.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-07 DOI: 10.1111/1365-2478.13585
Xingda Jiang, Xiaoyan Pan, Huayong Yang, Wei Zhang, Xiaofei Chen
A fast and robust two‐point ray tracing method was developed for layered vertical transversely isotropic media with strong anisotropy. Utilizing the Christoffel slowness equation, a novel generalized dimensionless ray parameter, , modified from the ray parameter (horizontal slowness), was proposed to efficiently and simultaneously determine the ray paths and travel times for direct and reflected quasi‐P, quasi‐SV and quasi‐SH waves. The Newton optimization algorithm was employed to solve the nonlinear offset equation accurately, resulting in rapid convergence to the true value. The inferred analytical equations show that the generalized ray parameter stabilizes the inversion process at large offsets. Additionally, a piecewise function was introduced to enhance the initial value estimation and calculation efficiency. The numerical results demonstrate that this novel approach can reduce the iteration error to 10−10 m in less than three iterations. Monte Carlo simulations further validated the effectiveness of the method for inferring the true ray paths at various offsets within complex velocity models. Furthermore, the method can address the triplication issue in quasi‐SV waves and exhibit robustness in strong‐layered vertical transversely isotropic media.
针对具有强各向异性的层状垂直横向各向同性介质,开发了一种快速、稳健的两点射线追踪方法。利用克里斯托弗慢度方程,提出了一种新的广义无量纲射线参数,即从射线参数(水平慢度)修改而来的Ⅳ,以高效地同时确定直射波、反射波和准P波、准SV波和准SH波的射线路径和行进时间。采用牛顿优化算法精确求解非线性偏移方程,从而快速收敛到真实值。推导出的分析方程表明,广义射线参数能在大偏移量时稳定反演过程。此外,还引入了一个片断函数,以提高初值估计和计算效率。数值结果表明,这种新方法可以在不到三次的迭代中将迭代误差降低到 10-10 m。蒙特卡罗模拟进一步验证了该方法在复杂速度模型中推断不同偏移量下真实射线路径的有效性。此外,该方法还能解决准 SV 波中的三重问题,并在强层垂直横向各向同性介质中表现出鲁棒性。
{"title":"A fast and robust two‐point ray tracing method in layered vertical transversely isotropic media with strong anisotropy","authors":"Xingda Jiang, Xiaoyan Pan, Huayong Yang, Wei Zhang, Xiaofei Chen","doi":"10.1111/1365-2478.13585","DOIUrl":"https://doi.org/10.1111/1365-2478.13585","url":null,"abstract":"A fast and robust two‐point ray tracing method was developed for layered vertical transversely isotropic media with strong anisotropy. Utilizing the Christoffel slowness equation, a novel generalized dimensionless ray parameter, , modified from the ray parameter (horizontal slowness), was proposed to efficiently and simultaneously determine the ray paths and travel times for direct and reflected quasi‐P, quasi‐SV and quasi‐SH waves. The Newton optimization algorithm was employed to solve the nonlinear offset equation accurately, resulting in rapid convergence to the true value. The inferred analytical equations show that the generalized ray parameter stabilizes the inversion process at large offsets. Additionally, a piecewise function was introduced to enhance the initial value estimation and calculation efficiency. The numerical results demonstrate that this novel approach can reduce the iteration error to 10<jats:sup>−10</jats:sup> m in less than three iterations. Monte Carlo simulations further validated the effectiveness of the method for inferring the true ray paths at various offsets within complex velocity models. Furthermore, the method can address the triplication issue in quasi‐SV waves and exhibit robustness in strong‐layered vertical transversely isotropic media.","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"91 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic seismic first-break picking based on multi-view feature fusion network 基于多视角特征融合网络的自动地震初至选择
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-07 DOI: 10.1111/1365-2478.13592
Yinghe Wu, Shulin Pan, Haiqiang Lan, José Badal, Ze Wei, Yaojie Chen

Automatic first-break picking is a basic step in seismic data processing, so much so that the quality of the picking largely determines the effect of subsequent processing. To a certain extent, artificial intelligence technology has solved the shortcomings of traditional first-break picking algorithms, such as poor applicability and low efficiency. However, some problems still remain for seismic data, with a low signal-to-noise ratio and large first-break change leading to inaccurate picking and poor generalization of the network. In order to improve the accuracy of the automatic first-break picking results of the above seismic data, we propose a multi-view automatic first-break picking method driven by multi-network. First, we analysed the single-trace boundary characteristics and the two-dimensional boundary characteristics of the first break. Based on these two characteristics of the first break, we used the Long Short-Term Memory and the ResNet attention gate UNet (resudual attention gate UNet) networks to extract the characteristics of the first arrival and its location from the seismic data, respectively. Then, we introduced the idea of multi-network learning in the first-break picking work and designed a feature fusion network. Finally, the multi-view first-break features extracted by the Long Short-Term Memory and resudual attention gate UNet networks are fused, which effectively improves the picking accuracy. The results obtained after applying the method to field seismic data show that the accuracy of the first break detected by a feature fusion network is higher than that given by the above two networks alone and has good applicability and resistance to noise.

自动初至拾取是地震数据处理的基本步骤,初至拾取的质量在很大程度上决定了后续处理的效果。人工智能技术在一定程度上解决了传统初至选取算法适用性差、效率低等缺点。然而,对于地震数据而言,仍存在一些问题,信噪比低、初值变化大导致选取不准确,网络泛化效果差。为了提高上述地震数据自动初至拾取结果的准确性,我们提出了一种多网络驱动的多视角自动初至拾取方法。首先,我们分析了初至的单道次边界特征和二维边界特征。根据初至的这两个特征,我们利用长短时记忆网络和 ResNet 注意门网络(resudual attention gate UNet)分别从地震数据中提取初至的特征及其位置。然后,我们在初至提取工作中引入了多网络学习的思想,并设计了一个特征融合网络。最后,融合了长短时记忆网络和剩余注意门 UNet 网络提取的多视角初至特征,有效提高了采样精度。将该方法应用于野外地震数据后得到的结果表明,特征融合网络检测初至的精度高于上述两种网络单独检测初至的精度,具有良好的适用性和抗干扰性。
{"title":"Automatic seismic first-break picking based on multi-view feature fusion network","authors":"Yinghe Wu,&nbsp;Shulin Pan,&nbsp;Haiqiang Lan,&nbsp;José Badal,&nbsp;Ze Wei,&nbsp;Yaojie Chen","doi":"10.1111/1365-2478.13592","DOIUrl":"10.1111/1365-2478.13592","url":null,"abstract":"<p>Automatic first-break picking is a basic step in seismic data processing, so much so that the quality of the picking largely determines the effect of subsequent processing. To a certain extent, artificial intelligence technology has solved the shortcomings of traditional first-break picking algorithms, such as poor applicability and low efficiency. However, some problems still remain for seismic data, with a low signal-to-noise ratio and large first-break change leading to inaccurate picking and poor generalization of the network. In order to improve the accuracy of the automatic first-break picking results of the above seismic data, we propose a multi-view automatic first-break picking method driven by multi-network. First, we analysed the single-trace boundary characteristics and the two-dimensional boundary characteristics of the first break. Based on these two characteristics of the first break, we used the Long Short-Term Memory and the ResNet attention gate UNet (resudual attention gate UNet) networks to extract the characteristics of the first arrival and its location from the seismic data, respectively. Then, we introduced the idea of multi-network learning in the first-break picking work and designed a feature fusion network. Finally, the multi-view first-break features extracted by the Long Short-Term Memory and resudual attention gate UNet networks are fused, which effectively improves the picking accuracy. The results obtained after applying the method to field seismic data show that the accuracy of the first break detected by a feature fusion network is higher than that given by the above two networks alone and has good applicability and resistance to noise.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 9","pages":"3547-3559"},"PeriodicalIF":1.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-waveform inversion as a tool to predict fault zone acoustic properties 将全波形反演作为预测断层带声学特性的工具
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-07 DOI: 10.1111/1365-2478.13586
Ahmed M. Alghuraybi, Rebecca E. Bell, Christopher A.-L. Jackson, Melissa Sim, Shuhan Jin

Understanding the physical properties of fault zones is essential for various subsurface applications, including carbon capture and geologic storage, geothermal energy and seismic hazard assessment. Although three-dimensional seismic reflection data can image the geometries of faults in the sub-surface, it does not provide any direct information on the physical properties of fault zones. We currently cannot use seismic reflection data to infer directly which faults may be leaking or sealing and are reliant instead on shale-gauge ratio type calculations, which are fraught with uncertainties. In this paper, we propose that full-waveform inversion P-wave velocity models can be used to extract information on fault zone acoustic properties directly, which may be a proxy for subsurface fault transmissibility. In this study, we use high-quality post-stack depth–migrated seismic reflection and full-waveform inversion velocity data to investigate the characteristics of fault zones in the Samson Dome in the SW Barents Sea. We analyse the variance attribute of the post-stack depth migrated and full-waveform inversion volumes, revealing linear features that consistently appear in both datasets. These features correspond to locations of rapid velocity changes and seismic trace distortions, which we interpret as faults. These observations demonstrate the capability of full-waveform inversion to recover fault zone velocity structures. Our findings also reveal the natural heterogeneity and complexity of fault zones, with varying P-wave velocity anomalies within the studied fault network and along individual faults. Our results indicate a correlation between P-wave velocity anomalies within fault zones and the modern-day stress orientation. Faults with high P-wave velocity are the ones that are perpendicular to the present-day maximum horizontal stress orientation and are likely under compression. Faults with lower P-wave velocity are the ones more parallel to the present-day maximum horizontal stress orientation and are likely in extension. We propose that these P-wave velocity anomalies may indicate differences in how ‘open’ and fluid filled the fault zones are (i.e. faults in extension are more open, more fluid filled and have lower VP) and therefore may provide a promising proxy for fault transmissibility.

了解断层带的物理特性对于各种地下应用至关重要,包括碳捕获和地质封存、地热能源和地震灾害评估。虽然三维地震反射数据可以对地下断层的几何形状进行成像,但它并不能提供任何有关断层带物理特性的直接信息。目前,我们无法利用地震反射数据直接推断出哪些断层可能正在渗漏或封堵,只能依靠页岩计比率类型的计算,而这种计算充满了不确定性。在本文中,我们提出可利用全波形反演 P 波速度模型直接提取断层带声学特性信息,这可能是地下断层透射率的替代指标。在这项研究中,我们利用高质量的叠后深度移动地震反射和全波形反演速度数据,研究了巴伦支海西南部 Samson 圆顶断层带的特征。我们分析了叠后深度偏移和全波形反演量的方差属性,揭示了两个数据集中一致出现的线性特征。这些特征与快速速度变化和地震道扭曲的位置相对应,我们将其解释为断层。这些观察结果证明了全波形反演恢复断层带速度结构的能力。我们的研究结果还揭示了断层带的天然异质性和复杂性,在所研究的断层网络内和沿单个断层存在不同的 P 波速度异常。我们的研究结果表明,断层带内的 P 波速度异常与现代应力取向之间存在关联。P波速度高的断层与当今最大水平应力方向垂直,很可能处于压缩状态。P波速度较低的断层与当今最大水平应力方向较为平行,可能处于延伸状态。我们认为,这些 P 波速度异常可能表明断层带的 "开放 "程度和流体填充程度存在差异(即处于延伸状态的断层更加开放,流体填充程度更高,VP 值更低),因此有可能成为断层透射性的替代指标。
{"title":"Full-waveform inversion as a tool to predict fault zone acoustic properties","authors":"Ahmed M. Alghuraybi,&nbsp;Rebecca E. Bell,&nbsp;Christopher A.-L. Jackson,&nbsp;Melissa Sim,&nbsp;Shuhan Jin","doi":"10.1111/1365-2478.13586","DOIUrl":"10.1111/1365-2478.13586","url":null,"abstract":"<p>Understanding the physical properties of fault zones is essential for various subsurface applications, including carbon capture and geologic storage, geothermal energy and seismic hazard assessment. Although three-dimensional seismic reflection data can image the geometries of faults in the sub-surface, it does not provide any direct information on the physical properties of fault zones. We currently cannot use seismic reflection data to infer directly which faults may be leaking or sealing and are reliant instead on shale-gauge ratio type calculations, which are fraught with uncertainties. In this paper, we propose that full-waveform inversion P-wave velocity models can be used to extract information on fault zone acoustic properties directly, which may be a proxy for subsurface fault transmissibility. In this study, we use high-quality post-stack depth–migrated seismic reflection and full-waveform inversion velocity data to investigate the characteristics of fault zones in the Samson Dome in the SW Barents Sea. We analyse the variance attribute of the post-stack depth migrated and full-waveform inversion volumes, revealing linear features that consistently appear in both datasets. These features correspond to locations of rapid velocity changes and seismic trace distortions, which we interpret as faults. These observations demonstrate the capability of full-waveform inversion to recover fault zone velocity structures. Our findings also reveal the natural heterogeneity and complexity of fault zones, with varying P-wave velocity anomalies within the studied fault network and along individual faults. Our results indicate a correlation between P-wave velocity anomalies within fault zones and the modern-day stress orientation. Faults with high P-wave velocity are the ones that are perpendicular to the present-day maximum horizontal stress orientation and are likely under compression. Faults with lower P-wave velocity are the ones more parallel to the present-day maximum horizontal stress orientation and are likely in extension. We propose that these P-wave velocity anomalies may indicate differences in how ‘open’ and fluid filled the fault zones are (i.e. faults in extension are more open, more fluid filled and have lower <i>V</i><sub>P</sub>) and therefore may provide a promising proxy for fault transmissibility.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 8","pages":"3168-3183"},"PeriodicalIF":1.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional inversion of controlled-source electromagnetic data using general measures to evaluate data misfits and model structures 使用一般方法评估数据误差和模型结构的受控源电磁数据三维反演
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-06 DOI: 10.1111/1365-2478.13576
Yonghyun Chung, Soon Jee Seol, Joongmoo Byun

Quantification of data misfits and model structures is an important step in the non-linear iterative inverse scheme, allowing medium parameters to be iteratively refined through minimization. This study developed a new three-dimensional controlled-source electromagnetic inversion algorithm that allows general measures to be made selectively available for this evaluation. We adopt 2$ell _2$, 1$ell _1$, Huber, hybrid 1$ell _1$/2$ell _2$, Sech, Cauchy, biweight and 0$ell _0$ norms as general measures. The inversion implementation is based on a regularized Gauss–Newton method, and non-quadratic measures are incorporated via the use of an iteratively reweighted least-squares scheme. To exploit current computing power, forward solutions are computed on an edge finite-element discretization using a parallel version of a direct sparse solver, while dense matrix operations in inversion are optimized using the LAPACK library. The behaviours of general measures for evaluating data misfits and model structures are examined in synthetic inversion experiments, focusing on elucidating weighting mechanisms and setting user-defined parameters. A preliminary demonstration is presented, showcasing simultaneous regularization in imaging a toy model containing both sharp and smooth property changes, alongside a field data application for imaging subsurface artificial structures. Our findings highlight the seamless integration of general measures, contributing to improved robustness against data outliers and enhanced spatial properties provided in output models.

对数据误差和模型结构进行量化是非线性迭代反演方案中的一个重要步骤,可通过最小化对介质参数进行迭代改进。本研究开发了一种新的三维受控源电磁反演算法,允许有选择地使用一般测量方法进行评估。我们采用、、Huber、混合/、Sech、Cauchy、biweight 和规范作为一般度量。反演实现基于正则化高斯-牛顿方法,并通过使用迭代重权最小二乘方案纳入非二次测量。为了利用当前的计算能力,使用并行版直接稀疏求解器在边缘有限元离散化上计算正向解,同时使用 LAPACK 库优化反演中的密集矩阵运算。在合成反演实验中,研究了评估数据不匹配和模型结构的一般措施的行为,重点是阐明加权机制和设置用户定义的参数。我们进行了初步演示,展示了在对包含尖锐和平滑属性变化的玩具模型进行成像时的同步正则化,以及对地表下人工结构进行成像的现场数据应用。我们的研究结果凸显了通用测量的无缝整合,有助于提高对数据异常值的稳健性,并增强输出模型的空间属性。
{"title":"Three-dimensional inversion of controlled-source electromagnetic data using general measures to evaluate data misfits and model structures","authors":"Yonghyun Chung,&nbsp;Soon Jee Seol,&nbsp;Joongmoo Byun","doi":"10.1111/1365-2478.13576","DOIUrl":"10.1111/1365-2478.13576","url":null,"abstract":"<p>Quantification of data misfits and model structures is an important step in the non-linear iterative inverse scheme, allowing medium parameters to be iteratively refined through minimization. This study developed a new three-dimensional controlled-source electromagnetic inversion algorithm that allows general measures to be made selectively available for this evaluation. We adopt <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$ell _2$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>$ell _1$</annotation>\u0000 </semantics></math>, Huber, hybrid <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>$ell _1$</annotation>\u0000 </semantics></math>/<span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$ell _2$</annotation>\u0000 </semantics></math>, Sech, Cauchy, biweight and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$ell _0$</annotation>\u0000 </semantics></math> norms as general measures. The inversion implementation is based on a regularized Gauss–Newton method, and non-quadratic measures are incorporated via the use of an iteratively reweighted least-squares scheme. To exploit current computing power, forward solutions are computed on an edge finite-element discretization using a parallel version of a direct sparse solver, while dense matrix operations in inversion are optimized using the LAPACK library. The behaviours of general measures for evaluating data misfits and model structures are examined in synthetic inversion experiments, focusing on elucidating weighting mechanisms and setting user-defined parameters. A preliminary demonstration is presented, showcasing simultaneous regularization in imaging a toy model containing both sharp and smooth property changes, alongside a field data application for imaging subsurface artificial structures. Our findings highlight the seamless integration of general measures, contributing to improved robustness against data outliers and enhanced spatial properties provided in output models.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 8","pages":"3067-3089"},"PeriodicalIF":1.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slope failure remediation using constrained horizontal-to-vertical spectral ratio inversion techniques 利用受限水平-垂直谱比反演技术修复斜坡坍塌
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-01 DOI: 10.1111/1365-2478.13584
Craig O'Neill

Slope failure rates may be exacerbated by increased precipitation patterns associated with climate change. Such events are extremely disruptive for local communities affected. Rapid engineering remediation solutions generally require immediate site characterization, including information on depth to intact bedrock and groundwater conditions – often on dangerous or still-failing slopes. Horizontal-to-vertical spectral ratio is a low-impact technique capable of rapidly providing key information on the subsurface. Here we develop a robust workflow for constrained minimization of horizontal-to-vertical spectral ratio data and develop constrained horizontal-to-vertical spectral ratio profiling methodologies. We present results from a number of landslide sites in eastern Australia and demonstrate the utility of horizontal-to-vertical spectral ratio in delineating both fractured-rock aquifers at high-risk sites and colluvium–bedrock contact on active landslide sites, where traditional seismic methods were not practical.

与气候变化相关的降水模式增加可能会加剧斜坡崩塌率。此类事件对受影响的当地社区造成极大破坏。快速工程修复解决方案通常需要立即进行现场特征描述,包括完整基岩深度和地下水状况的信息--通常是在危险或仍在崩塌的斜坡上。水平-垂直光谱比是一种影响较小的技术,能够快速提供地下的关键信息。在此,我们开发了一套强大的工作流程,用于约束性地最小化水平-垂直光谱比数据,并开发了约束性水平-垂直光谱比剖面方法。我们展示了澳大利亚东部一些滑坡地点的研究结果,并证明了水平-垂直谱比在划定高风险地点的断裂岩石含水层和活动滑坡地点的冲积层-岩石接触面方面的实用性,在这些地点,传统的地震方法并不实用。
{"title":"Slope failure remediation using constrained horizontal-to-vertical spectral ratio inversion techniques","authors":"Craig O'Neill","doi":"10.1111/1365-2478.13584","DOIUrl":"10.1111/1365-2478.13584","url":null,"abstract":"<p>Slope failure rates may be exacerbated by increased precipitation patterns associated with climate change. Such events are extremely disruptive for local communities affected. Rapid engineering remediation solutions generally require immediate site characterization, including information on depth to intact bedrock and groundwater conditions – often on dangerous or still-failing slopes. Horizontal-to-vertical spectral ratio is a low-impact technique capable of rapidly providing key information on the subsurface. Here we develop a robust workflow for constrained minimization of horizontal-to-vertical spectral ratio data and develop constrained horizontal-to-vertical spectral ratio profiling methodologies. We present results from a number of landslide sites in eastern Australia and demonstrate the utility of horizontal-to-vertical spectral ratio in delineating both fractured-rock aquifers at high-risk sites and colluvium–bedrock contact on active landslide sites, where traditional seismic methods were not practical.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 8","pages":"3157-3167"},"PeriodicalIF":1.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
For 16 years of serving Geophysical Prospecting as Editor-in-Chief: Thank you Tijmen Jan Moser 担任《地球物理勘探》主编 16 年:感谢 Tijmen Jan Moser
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-31 DOI: 10.1111/1365-2478.13583
Alireza Malehmir
<p>As a young researcher, I was very interested in diffraction signal processing, and I recall attending many sessions and workshops dedicated to this topic during 2005–2009 at various conferences. At almost all these events, there was one individual who caught my attention with his depth of knowledge and dedication to the topic of diffraction. Yes, this was Tijmen Jan Moser who inspired many presenters and authors at these events.</p><p>Tijmen Jan has been Editor-in-Chief (EiC) of Geophysical Prospecting for over 16 years and has served the journal through several ups and downs. Throughout his tenure as EiC, he has managed to ensure that submitted manuscripts were all fairly ‘judged’ in order to meet the technical quality the journal's readership desires. Geophysical Prospecting is a ‘flagship’ journal of EAGE (European Association of Geoscientists and Engineers) and has served its membership and the broader geoscience community as an authoritative source of new research. During his tenure, the journal has steadily grown its impact factor.</p><p>As the successor to Tijmen Jan as EiC of Geophysical Prospecting, I had a chance to have a short interview with him, during which I gathered some key information and thoughts about his tenure. Tijmen Jan began his education at Utrecht University. Following graduation, he joined several organizations, including Amoco, IFP, the University of Bergen, the University of Karlsruhe, Norsk Hydro, the Geophysical Institute of Israel, Charles University in Prague and Fugro-Jason. He is currently an independent consultant. He was particularly fascinated by ‘ray-based methods’. Though now he shows more interest in its ‘failed baby’, ‘diffraction’, as he recently stated in a book that he authored with Enders Robinson (Moser and Robinson, <span>2024</span>): ‘What Huygens could have written on diffraction’.</p><p>He began serving the journal first as a reviewer, then as Associate Editor and then moved up quickly to Deputy Editor; on the request of Aldo Vesnaver, former EiC, he was appointed to the EiC role in 2008. At that time, the journal was facing several challenges.</p><p>Prior to Aldo Vesnaver (2006–2008), Roy White (2004–2006), Gerhard Diephuis (2002–2004) and Klaus Helbig (1969–1985) also served the journal as EiC. Klaus Helbig was Tijmen Jan's PhD supervisor. During a conversation I had with Tijmen Jan, I jokingly told him that he should let Klaus continue to retain the honour of being the longest serving EiC of the journal, given that he had been his PhD supervisor. My suggestion, in jest, worked, and Tijmen Jan served one year less than Klaus Helbig!</p><p>The voluntary position of EiC involves many serious duties. Tijmen Jan told me that he took over 4000 decisions during his tenure and managed numerous disputes about the fate of some of the manuscripts! Today, he feels disappointed that the level of challenge amongst our community seems to be reducing somewhat, and he encourages authors and reviewers to s
他希望与姊妹期刊和竞争期刊重新建立关系和对话,从 EAGE 活动中获得更多稿件,并让初级研究人员参与编辑和审稿过程。Geophysical Prospecting》能够成为勘探地球物理学界的顶级期刊,在很大程度上是 "站在巨人的肩膀上",就像Tijmen Jan Moser和他的前辈们一样。感谢您,Tijmen Jan,感谢您为我们的地球科学,尤其是地球物理勘探界做出的承诺、奉献和个人兴趣。
{"title":"For 16 years of serving Geophysical Prospecting as Editor-in-Chief: Thank you Tijmen Jan Moser","authors":"Alireza Malehmir","doi":"10.1111/1365-2478.13583","DOIUrl":"10.1111/1365-2478.13583","url":null,"abstract":"&lt;p&gt;As a young researcher, I was very interested in diffraction signal processing, and I recall attending many sessions and workshops dedicated to this topic during 2005–2009 at various conferences. At almost all these events, there was one individual who caught my attention with his depth of knowledge and dedication to the topic of diffraction. Yes, this was Tijmen Jan Moser who inspired many presenters and authors at these events.&lt;/p&gt;&lt;p&gt;Tijmen Jan has been Editor-in-Chief (EiC) of Geophysical Prospecting for over 16 years and has served the journal through several ups and downs. Throughout his tenure as EiC, he has managed to ensure that submitted manuscripts were all fairly ‘judged’ in order to meet the technical quality the journal's readership desires. Geophysical Prospecting is a ‘flagship’ journal of EAGE (European Association of Geoscientists and Engineers) and has served its membership and the broader geoscience community as an authoritative source of new research. During his tenure, the journal has steadily grown its impact factor.&lt;/p&gt;&lt;p&gt;As the successor to Tijmen Jan as EiC of Geophysical Prospecting, I had a chance to have a short interview with him, during which I gathered some key information and thoughts about his tenure. Tijmen Jan began his education at Utrecht University. Following graduation, he joined several organizations, including Amoco, IFP, the University of Bergen, the University of Karlsruhe, Norsk Hydro, the Geophysical Institute of Israel, Charles University in Prague and Fugro-Jason. He is currently an independent consultant. He was particularly fascinated by ‘ray-based methods’. Though now he shows more interest in its ‘failed baby’, ‘diffraction’, as he recently stated in a book that he authored with Enders Robinson (Moser and Robinson, &lt;span&gt;2024&lt;/span&gt;): ‘What Huygens could have written on diffraction’.&lt;/p&gt;&lt;p&gt;He began serving the journal first as a reviewer, then as Associate Editor and then moved up quickly to Deputy Editor; on the request of Aldo Vesnaver, former EiC, he was appointed to the EiC role in 2008. At that time, the journal was facing several challenges.&lt;/p&gt;&lt;p&gt;Prior to Aldo Vesnaver (2006–2008), Roy White (2004–2006), Gerhard Diephuis (2002–2004) and Klaus Helbig (1969–1985) also served the journal as EiC. Klaus Helbig was Tijmen Jan's PhD supervisor. During a conversation I had with Tijmen Jan, I jokingly told him that he should let Klaus continue to retain the honour of being the longest serving EiC of the journal, given that he had been his PhD supervisor. My suggestion, in jest, worked, and Tijmen Jan served one year less than Klaus Helbig!&lt;/p&gt;&lt;p&gt;The voluntary position of EiC involves many serious duties. Tijmen Jan told me that he took over 4000 decisions during his tenure and managed numerous disputes about the fate of some of the manuscripts! Today, he feels disappointed that the level of challenge amongst our community seems to be reducing somewhat, and he encourages authors and reviewers to s","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 7","pages":"2441-2442"},"PeriodicalIF":1.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13583","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constrained simultaneous recovery of the depth to basement and lateral susceptibility variation 同时恢复基底深度和横向易感性变化的约束条件
IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-30 DOI: 10.1111/1365-2478.13572
Zhuo Liu, Yaoguo Li, Kaijun Xu

The basin environment is a widely studied subject in both geology and geophysics for its economic significance in energy and mineral explorations. However, the estimation of the basement depth is often a challenging task given the complexity of the basement relief and lateral physical property change. Previous works simplify the problem by only inverting for the depth to the basement, and more recent studies have suggested the need to incorporate the variation of physical properties to improve basement structure imaging. In this study, we develop an inversion method with the associated workflow to simultaneously recover both the depth to a magnetic basement and a laterally varying magnetic susceptibility in the basement rock. To achieve this, we employ a set of constraints on the inverse problem. Particularly, both the recovered susceptibility and basement depth models are bounded below a possible maximum value, and the depth model is guided by a few depth points obtained from the resistivity models that are obtained from the one-dimensional blocky inversions of magnetotelluric (MT) data. In addition, we apply the fuzzy C-means (FCM) clustering to the susceptibility model during the inversion and use the inverted cluster centers to differentiate for different geological units in the basement. To show the effectiveness of our work, we compare the existing approaches and our method using two test inversions on one synthetic model resembling the basin–basement environment before demonstrating our method on a field data example with magnetic data collected by the U.S. Geological Survey (USGS) over the Illinois Basin. Our results show improved recovery in both basement relief and susceptibility in the basement rock, and inversion with field data is able to identify three different susceptibility zones in basement rock below the Illinois Basin.

盆地环境是地质学和地球物理学广泛研究的课题,因为它在能源和矿产勘探中具有重要的经济意义。然而,由于基底起伏和横向物理性质变化的复杂性,基底深度的估算往往是一项具有挑战性的任务。以往的研究仅通过反演基底深度来简化问题,而最近的研究则提出需要结合物理性质的变化来改进基底结构成像。在本研究中,我们开发了一种反演方法和相关工作流程,可同时恢复磁性基底的深度和基底岩石中横向变化的磁感应强度。为此,我们在反演问题上采用了一系列约束条件。特别是,恢复的磁感应强度和基底深度模型都被限定在一个可能的最大值以下,而深度模型则以从电阻率模型中获得的几个深度点为指导,这些电阻率模型是通过对磁测(MT)数据进行一维块状反演获得的。此外,我们在反演过程中将模糊 C-均值(FCM)聚类应用于电感模型,并利用反演的聚类中心来区分基底的不同地质单元。为了展示我们工作的有效性,我们在一个类似于盆地-基底环境的合成模型上进行了两次反演测试,比较了现有方法和我们的方法,然后在一个野外数据实例上展示了我们的方法,该实例使用的是美国地质调查局(USGS)在伊利诺斯盆地收集的磁数据。我们的结果表明,基底地形和基底岩石的易感性都得到了改善,利用野外数据进行反演能够确定伊利诺斯盆地下方基底岩石中三个不同的易感性区域。
{"title":"Constrained simultaneous recovery of the depth to basement and lateral susceptibility variation","authors":"Zhuo Liu,&nbsp;Yaoguo Li,&nbsp;Kaijun Xu","doi":"10.1111/1365-2478.13572","DOIUrl":"10.1111/1365-2478.13572","url":null,"abstract":"<p>The basin environment is a widely studied subject in both geology and geophysics for its economic significance in energy and mineral explorations. However, the estimation of the basement depth is often a challenging task given the complexity of the basement relief and lateral physical property change. Previous works simplify the problem by only inverting for the depth to the basement, and more recent studies have suggested the need to incorporate the variation of physical properties to improve basement structure imaging. In this study, we develop an inversion method with the associated workflow to simultaneously recover both the depth to a magnetic basement and a laterally varying magnetic susceptibility in the basement rock. To achieve this, we employ a set of constraints on the inverse problem. Particularly, both the recovered susceptibility and basement depth models are bounded below a possible maximum value, and the depth model is guided by a few depth points obtained from the resistivity models that are obtained from the one-dimensional blocky inversions of magnetotelluric (MT) data. In addition, we apply the fuzzy C-means (FCM) clustering to the susceptibility model during the inversion and use the inverted cluster centers to differentiate for different geological units in the basement. To show the effectiveness of our work, we compare the existing approaches and our method using two test inversions on one synthetic model resembling the basin–basement environment before demonstrating our method on a field data example with magnetic data collected by the U.S. Geological Survey (USGS) over the Illinois Basin. Our results show improved recovery in both basement relief and susceptibility in the basement rock, and inversion with field data is able to identify three different susceptibility zones in basement rock below the Illinois Basin.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 8","pages":"3008-3025"},"PeriodicalIF":1.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geophysical Prospecting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1