Pub Date : 2024-01-01DOI: 10.1016/B978-0-12-823912-4.00020-7
Shahar Shelly, Divyanshu Dubey, John R Mills, Christopher J Klein
Peripheral neuropathy is a common referral for patients to the neurologic clinics. Paraneoplastic neuropathies account for a small but high morbidity and mortality subgroup. Symptoms include weakness, sensory loss, sweating irregularity, blood pressure instability, severe constipation, and neuropathic pain. Neuropathy is the first presenting symptom of malignancy among many patients. The molecular and cellular oncogenic immune targets reside within cell bodies, axons, cytoplasms, or surface membranes of neural tissues. A more favorable immune treatment outcome occurs in those where the targets reside on the cell surface. Patients with antibodies binding cell surface antigens commonly have neural hyperexcitability with pain, cramps, fasciculations, and hyperhidrotic attacks (CASPR2, LGI1, and others). The antigenic targets are also commonly expressed in the central nervous system, with presenting symptoms being myelopathy, encephalopathy, and seizures with neuropathy, often masked. Pain and autonomic components typically relate to small nerve fiber involvement (nociceptive, adrenergic, enteric, and sudomotor), sometimes without nerve fiber loss but rather hyperexcitability. The specific antibodies discovered help direct cancer investigations. Among the primary axonal paraneoplastic neuropathies, pathognomonic clinical features do not exist, and testing for multiple antibodies simultaneously provides the best sensitivity in testing (AGNA1-SOX1; amphiphysin; ANNA-1-HU; ANNA-3-DACH1; CASPR2; CRMP5; LGI1; PCA2-MAP1B, and others). Performing confirmatory antibody testing using adjunct methods improves specificity. Antibody-mediated demyelinating paraneoplastic neuropathies are limited to MAG-IgM (IgM-MGUS, Waldenström's, and myeloma), with the others associated with cytokine elevations (VEGF, IL6) caused by osteosclerotic myeloma, plasmacytoma (POEMS), and rarely angiofollicular lymphoma (Castleman's). Paraneoplastic disorders have clinical overlap with other idiopathic antibody disorders, including IgG4 demyelinating nodopathies (NF155 and Contactin-1). This review summarizes the paraneoplastic neuropathies, including those with peripheral nerve hyperexcitability.
{"title":"Paraneoplastic neuropathies and peripheral nerve hyperexcitability disorders.","authors":"Shahar Shelly, Divyanshu Dubey, John R Mills, Christopher J Klein","doi":"10.1016/B978-0-12-823912-4.00020-7","DOIUrl":"10.1016/B978-0-12-823912-4.00020-7","url":null,"abstract":"<p><p>Peripheral neuropathy is a common referral for patients to the neurologic clinics. Paraneoplastic neuropathies account for a small but high morbidity and mortality subgroup. Symptoms include weakness, sensory loss, sweating irregularity, blood pressure instability, severe constipation, and neuropathic pain. Neuropathy is the first presenting symptom of malignancy among many patients. The molecular and cellular oncogenic immune targets reside within cell bodies, axons, cytoplasms, or surface membranes of neural tissues. A more favorable immune treatment outcome occurs in those where the targets reside on the cell surface. Patients with antibodies binding cell surface antigens commonly have neural hyperexcitability with pain, cramps, fasciculations, and hyperhidrotic attacks (CASPR2, LGI1, and others). The antigenic targets are also commonly expressed in the central nervous system, with presenting symptoms being myelopathy, encephalopathy, and seizures with neuropathy, often masked. Pain and autonomic components typically relate to small nerve fiber involvement (nociceptive, adrenergic, enteric, and sudomotor), sometimes without nerve fiber loss but rather hyperexcitability. The specific antibodies discovered help direct cancer investigations. Among the primary axonal paraneoplastic neuropathies, pathognomonic clinical features do not exist, and testing for multiple antibodies simultaneously provides the best sensitivity in testing (AGNA1-SOX1; amphiphysin; ANNA-1-HU; ANNA-3-DACH1; CASPR2; CRMP5; LGI1; PCA2-MAP1B, and others). Performing confirmatory antibody testing using adjunct methods improves specificity. Antibody-mediated demyelinating paraneoplastic neuropathies are limited to MAG-IgM (IgM-MGUS, Waldenström's, and myeloma), with the others associated with cytokine elevations (VEGF, IL6) caused by osteosclerotic myeloma, plasmacytoma (POEMS), and rarely angiofollicular lymphoma (Castleman's). Paraneoplastic disorders have clinical overlap with other idiopathic antibody disorders, including IgG4 demyelinating nodopathies (NF155 and Contactin-1). This review summarizes the paraneoplastic neuropathies, including those with peripheral nerve hyperexcitability.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-12-823912-4.00003-7
Deena Tajfirouz, John J Chen
Paraneoplastic vision loss, which represents a small percentage of paraneoplastic neurologic syndromes, can be a blinding disease. Presenting visual symptoms are variable, making diagnosis challenging. History of the presenting illness, ocular examination, and utilization of various modalities, such as automated perimetry, ocular coherence tomography, and electroretinogram allow for localization of vision loss to the optic nerves or retina, guiding in diagnosis and management. Paraneoplastic vision loss is often painless, bilateral, and subacute, and accompanies other neurologic symptoms but can be the first presenting symptom. Paraneoplastic optic neuropathy has been described in association with several antibodies, but most commonly anti-CRMP5. Cancer-associated retinopathy is the most common paraneoplastic autoimmune retinopathy; however, melanoma-associated retinopathy and bilateral diffuse uveal melanocytic proliferation have also been described to be associated with a paraneoplastic process affecting the retina. Paraneoplastic visual loss is an expanding field and advances in research have improved phenotypic characterization; however, further work is needed to identify more reliable biomarkers of disease and to better understand the underlying mechanisms and management.
{"title":"Paraneoplastic vision loss.","authors":"Deena Tajfirouz, John J Chen","doi":"10.1016/B978-0-12-823912-4.00003-7","DOIUrl":"10.1016/B978-0-12-823912-4.00003-7","url":null,"abstract":"<p><p>Paraneoplastic vision loss, which represents a small percentage of paraneoplastic neurologic syndromes, can be a blinding disease. Presenting visual symptoms are variable, making diagnosis challenging. History of the presenting illness, ocular examination, and utilization of various modalities, such as automated perimetry, ocular coherence tomography, and electroretinogram allow for localization of vision loss to the optic nerves or retina, guiding in diagnosis and management. Paraneoplastic vision loss is often painless, bilateral, and subacute, and accompanies other neurologic symptoms but can be the first presenting symptom. Paraneoplastic optic neuropathy has been described in association with several antibodies, but most commonly anti-CRMP5. Cancer-associated retinopathy is the most common paraneoplastic autoimmune retinopathy; however, melanoma-associated retinopathy and bilateral diffuse uveal melanocytic proliferation have also been described to be associated with a paraneoplastic process affecting the retina. Paraneoplastic visual loss is an expanding field and advances in research have improved phenotypic characterization; however, further work is needed to identify more reliable biomarkers of disease and to better understand the underlying mechanisms and management.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-12-823912-4.00017-7
Mayra Montalvo, Eoin P Flanagan
Paraneoplastic myelopathies are a rare but important category of myelopathy. They usually present with an insidious or subacute progressive neurologic syndrome. Risk factors include tobacco use and family history of cancer. Cerebrospinal fluid analysis usually shows lymphocytic pleocytosis with elevated protein. MRI findings suggest that paraneoplastic myelopathies include longitudinally extensive T2 hyperintensities that are tract-specific and accompanied by enhancement, but spinal MRIs can also be normal. The most commonly associated neural antibodies include amphiphysin and collapsin-response-mediator-protein-5 (CRMP5/anti-CV2) antibodies with lung and breast cancers being the most frequent oncologic accompaniments. The differential diagnosis of paraneoplastic myelopathies includes nutritional deficiency myelopathy (B12, copper) as well as autoimmune/inflammatory conditions such as primary progressive multiple sclerosis or spinal cord sarcoidosis. Patients treated with immune checkpoint inhibitors for cancer may develop myelitis, that can be considered along the spectrum of paraneoplastic myelopathies. Management of paraneoplastic myelopathy includes oncologic treatment and immunotherapy. Despite these treatments, the prognosis is poor and the majority of patients eventually become wheelchair-dependent.
{"title":"Paraneoplastic/autoimmune myelopathies.","authors":"Mayra Montalvo, Eoin P Flanagan","doi":"10.1016/B978-0-12-823912-4.00017-7","DOIUrl":"10.1016/B978-0-12-823912-4.00017-7","url":null,"abstract":"<p><p>Paraneoplastic myelopathies are a rare but important category of myelopathy. They usually present with an insidious or subacute progressive neurologic syndrome. Risk factors include tobacco use and family history of cancer. Cerebrospinal fluid analysis usually shows lymphocytic pleocytosis with elevated protein. MRI findings suggest that paraneoplastic myelopathies include longitudinally extensive T2 hyperintensities that are tract-specific and accompanied by enhancement, but spinal MRIs can also be normal. The most commonly associated neural antibodies include amphiphysin and collapsin-response-mediator-protein-5 (CRMP5/anti-CV2) antibodies with lung and breast cancers being the most frequent oncologic accompaniments. The differential diagnosis of paraneoplastic myelopathies includes nutritional deficiency myelopathy (B12, copper) as well as autoimmune/inflammatory conditions such as primary progressive multiple sclerosis or spinal cord sarcoidosis. Patients treated with immune checkpoint inhibitors for cancer may develop myelitis, that can be considered along the spectrum of paraneoplastic myelopathies. Management of paraneoplastic myelopathy includes oncologic treatment and immunotherapy. Despite these treatments, the prognosis is poor and the majority of patients eventually become wheelchair-dependent.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-12-823912-4.00004-9
Andrew McKeon, Jennifer Tracy
Paraneoplastic movement disorders are diverse autoimmune neurological illnesses occurring in the context of systemic cancer, either in isolation or as part of a multifocal neurological disease. Movement phenomena may be ataxic, hypokinetic (parkinsonian), or hyperkinetic (myoclonus, chorea, or other dyskinetic disorders). Some disorders mimic neurodegenerative or hereditary illnesses. The subacute onset and coexisting nonclassic features of paraneoplastic disorders aid distinction. Paraneoplastic autoantibodies provide further information regarding differentiating cancer association, disease course, and treatment responses. A woman with cerebellar ataxia could have metabotropic glutamate receptor 1 autoimmunity, in the setting of Hodgkin lymphoma, a mild neurological phenotype and response to immunotherapy. A different woman, also with cerebellar ataxia, could have Purkinje cytoplasmic antibody type 1 (anti-Yo), accompanying ovarian adenocarcinoma, a rapidly progressive phenotype and persistent disabling deficits despite immune therapy. The list of antibody biomarkers is growing year-on-year, each with its own ideal specimen type for detection (serum or CSF), accompanying neurological manifestations, cancer association, treatment response, and prognosis. Therefore, a profile-based approach to screening both serum and CSF is recommended. Immune therapy trials are generally undertaken, and include one or more of corticosteroids, IVIg, plasma exchange, rituximab, or cyclophosphamide. Symptomatic therapies can also be employed for hyperkinetic disorders.
{"title":"Paraneoplastic movement disorders.","authors":"Andrew McKeon, Jennifer Tracy","doi":"10.1016/B978-0-12-823912-4.00004-9","DOIUrl":"10.1016/B978-0-12-823912-4.00004-9","url":null,"abstract":"<p><p>Paraneoplastic movement disorders are diverse autoimmune neurological illnesses occurring in the context of systemic cancer, either in isolation or as part of a multifocal neurological disease. Movement phenomena may be ataxic, hypokinetic (parkinsonian), or hyperkinetic (myoclonus, chorea, or other dyskinetic disorders). Some disorders mimic neurodegenerative or hereditary illnesses. The subacute onset and coexisting nonclassic features of paraneoplastic disorders aid distinction. Paraneoplastic autoantibodies provide further information regarding differentiating cancer association, disease course, and treatment responses. A woman with cerebellar ataxia could have metabotropic glutamate receptor 1 autoimmunity, in the setting of Hodgkin lymphoma, a mild neurological phenotype and response to immunotherapy. A different woman, also with cerebellar ataxia, could have Purkinje cytoplasmic antibody type 1 (anti-Yo), accompanying ovarian adenocarcinoma, a rapidly progressive phenotype and persistent disabling deficits despite immune therapy. The list of antibody biomarkers is growing year-on-year, each with its own ideal specimen type for detection (serum or CSF), accompanying neurological manifestations, cancer association, treatment response, and prognosis. Therefore, a profile-based approach to screening both serum and CSF is recommended. Immune therapy trials are generally undertaken, and include one or more of corticosteroids, IVIg, plasma exchange, rituximab, or cyclophosphamide. Symptomatic therapies can also be employed for hyperkinetic disorders.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-12-823912-4.00022-0
Andrew L Mammen
This chapter reviews the association between cancer and the idiopathic inflammatory myopathies (IIM), which includes dermatomyositis (DM), antisynthetase syndrome (ASyS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Accumulating evidence shows that the risk of a coexisting malignancy is high in patients with DM, especially among those with anti-Tif1γ autoantibodies. Patients with IMNM and no defined autoantibodies also have an increased risk of malignancy. Recent evidence demonstrates that many IBM patients have increased numbers of circulating CD57+ CD8+ T cells, consistent with a diagnosis of large granular lymphocytic leukemia. In contrast, IMNM patients with anti-SRP or anti-HMGCR autoantibodies as well as patients with ASyS syndrome do not have a definitively increased risk of cancer. Patients who have a cancer treated with one of the immune checkpoint inhibitors can develop myositis (ICI-myositis), sometimes along with myasthenia gravis and/or myocarditis.
本章回顾了癌症与特发性炎症性肌病(IIM)之间的关系,IIM包括皮肌炎(DM)、抗肌酸激酶综合征(ASyS)、免疫介导的坏死性肌病(IMNM)和包涵体肌炎(IBM)。越来越多的证据表明,DM 患者并发恶性肿瘤的风险很高,尤其是在抗 Tif1γ 自身抗体患者中。没有明确自身抗体的 IMNM 患者罹患恶性肿瘤的风险也会增加。最近的证据表明,许多 IBM 患者的循环 CD57+ CD8+ T 细胞数量增加,这与大颗粒淋巴细胞白血病的诊断一致。相比之下,IMNM 患者中的抗-SRP 或抗-HMGCR 自身抗体以及 ASyS 综合征患者患癌症的风险并没有明确增加。接受免疫检查点抑制剂治疗的癌症患者可能会患上肌炎(ICI-肌炎),有时还会伴有重症肌无力和/或心肌炎。
{"title":"Paraneoplastic myopathies.","authors":"Andrew L Mammen","doi":"10.1016/B978-0-12-823912-4.00022-0","DOIUrl":"10.1016/B978-0-12-823912-4.00022-0","url":null,"abstract":"<p><p>This chapter reviews the association between cancer and the idiopathic inflammatory myopathies (IIM), which includes dermatomyositis (DM), antisynthetase syndrome (ASyS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Accumulating evidence shows that the risk of a coexisting malignancy is high in patients with DM, especially among those with anti-Tif1γ autoantibodies. Patients with IMNM and no defined autoantibodies also have an increased risk of malignancy. Recent evidence demonstrates that many IBM patients have increased numbers of circulating CD57+ CD8+ T cells, consistent with a diagnosis of large granular lymphocytic leukemia. In contrast, IMNM patients with anti-SRP or anti-HMGCR autoantibodies as well as patients with ASyS syndrome do not have a definitively increased risk of cancer. Patients who have a cancer treated with one of the immune checkpoint inhibitors can develop myositis (ICI-myositis), sometimes along with myasthenia gravis and/or myocarditis.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-323-90820-7.00006-9
Mamatha Pasnoor, Gil I Wolfe, Richard J Barohn
Myasthenia gravis (MG) is a rare neuromuscular junction disorder that is characterized by fatigable weakness of muscles. People with MG experience various clinical manifestations based on the muscles involved. MG can be autoimmune, paraneoplastic, congenital, medication-related, or transient in the neonatal period due to the passive placental transfer of antibodies from mothers with MG. Acetylcholine receptor antibodies are seen in the majority of patients with MG. However, other antibodies have been discovered in the last 20 years, including muscle-specific tyrosine kinase (MuSK) and lipoprotein-related peptide 4 (LRP4), and are now available through commercial testing. More recently, a handful of other antibodies have been associated with MG; however, they are not presently available for routine testing. A disease classification system has been developed by the Myasthenia Gravis Foundation of America (MGFA) and is commonly used worldwide. A number of objective and subjective outcome measures have been developed and validated over the years and have been proven useful for both clinical and research purposes, serving as primary and secondary outcome measures in most clinical trials. A growing number of therapies are available for both acute and chronic management of MG, with several new mechanistic approaches under investigation. An international consensus guidance for the management of MG was first published in 2016 and updated in 2020.
{"title":"Myasthenia gravis.","authors":"Mamatha Pasnoor, Gil I Wolfe, Richard J Barohn","doi":"10.1016/B978-0-323-90820-7.00006-9","DOIUrl":"https://doi.org/10.1016/B978-0-323-90820-7.00006-9","url":null,"abstract":"<p><p>Myasthenia gravis (MG) is a rare neuromuscular junction disorder that is characterized by fatigable weakness of muscles. People with MG experience various clinical manifestations based on the muscles involved. MG can be autoimmune, paraneoplastic, congenital, medication-related, or transient in the neonatal period due to the passive placental transfer of antibodies from mothers with MG. Acetylcholine receptor antibodies are seen in the majority of patients with MG. However, other antibodies have been discovered in the last 20 years, including muscle-specific tyrosine kinase (MuSK) and lipoprotein-related peptide 4 (LRP4), and are now available through commercial testing. More recently, a handful of other antibodies have been associated with MG; however, they are not presently available for routine testing. A disease classification system has been developed by the Myasthenia Gravis Foundation of America (MGFA) and is commonly used worldwide. A number of objective and subjective outcome measures have been developed and validated over the years and have been proven useful for both clinical and research purposes, serving as primary and secondary outcome measures in most clinical trials. A growing number of therapies are available for both acute and chronic management of MG, with several new mechanistic approaches under investigation. An international consensus guidance for the management of MG was first published in 2016 and updated in 2020.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-323-90820-7.00005-7
Sophie N M Binks, Sarosh R Irani
The autoimmune channelopathies represent a rapidly evolving scientific and clinical domain. The description of channels, expressed on neurons and glia, as targets of autoantibodies in neuromyelitis optica, autoimmune encephalitis, and related syndromes have revolutionized many areas of neurologic practice. To date, tens of surface antibody specificities have been described, a number that is likely to continue to increase. A central paradigm for all these disorders is that of pathogenic autoantibodies which target extracellular epitopes accessible for binding in vivo. Hence, in these disorders, the autoantibodies are causative diagnostic tools, and provide valuable reagents to model the diseases. Their production by B-lineage cells provides opportunities to study and modulate their production. Across these syndromes, early recognition and treatment are critical since most respond to immunotherapies. Yet, several unmet medical needs persist within treated patient populations, and widespread clinical under-recognition remains a challenge. In this review, we summarize the neuroscience and immunologic basis of autoantibody-mediated central nervous system channelopathies, the molecular effects of the autoantibodies, clinical phenotypes, and treatment approaches. We describe progress since the inauguration of the field through to open questions and potential future directions.
{"title":"Autoantibody-mediated central nervous system channelopathies.","authors":"Sophie N M Binks, Sarosh R Irani","doi":"10.1016/B978-0-323-90820-7.00005-7","DOIUrl":"https://doi.org/10.1016/B978-0-323-90820-7.00005-7","url":null,"abstract":"<p><p>The autoimmune channelopathies represent a rapidly evolving scientific and clinical domain. The description of channels, expressed on neurons and glia, as targets of autoantibodies in neuromyelitis optica, autoimmune encephalitis, and related syndromes have revolutionized many areas of neurologic practice. To date, tens of surface antibody specificities have been described, a number that is likely to continue to increase. A central paradigm for all these disorders is that of pathogenic autoantibodies which target extracellular epitopes accessible for binding in vivo. Hence, in these disorders, the autoantibodies are causative diagnostic tools, and provide valuable reagents to model the diseases. Their production by B-lineage cells provides opportunities to study and modulate their production. Across these syndromes, early recognition and treatment are critical since most respond to immunotherapies. Yet, several unmet medical needs persist within treated patient populations, and widespread clinical under-recognition remains a challenge. In this review, we summarize the neuroscience and immunologic basis of autoantibody-mediated central nervous system channelopathies, the molecular effects of the autoantibodies, clinical phenotypes, and treatment approaches. We describe progress since the inauguration of the field through to open questions and potential future directions.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-323-99209-1.00022-3
Marc Engelen, Stephan Kemp, Florian Eichler
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene and characterized by impaired very long-chain fatty acid beta-oxidation. Clinically, male patients develop adrenal failure and progressive myelopathy in adulthood, although the age of onset and rate of progression are highly variable. In addition, 40% of male patients develop a leukodystrophy (cerebral ALD) before the age of 18 years. Women with ALD also develop myelopathy, but generally at a later age than men and with slower progression. Adrenal failure and leukodystrophy are exceedingly rare in women. Allogeneic hematopoietic cell transplantation (HCT), or more recently autologous HCT with ex vivo lentivirally transfected bone marrow, halts the leukodystrophy. Unfortunately, there is no curative treatment for the myelopathy. In this chapter, clinical spectrum of ALD is discussed in detail.
{"title":"Adrenoleukodystrophy.","authors":"Marc Engelen, Stephan Kemp, Florian Eichler","doi":"10.1016/B978-0-323-99209-1.00022-3","DOIUrl":"https://doi.org/10.1016/B978-0-323-99209-1.00022-3","url":null,"abstract":"<p><p>X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene and characterized by impaired very long-chain fatty acid beta-oxidation. Clinically, male patients develop adrenal failure and progressive myelopathy in adulthood, although the age of onset and rate of progression are highly variable. In addition, 40% of male patients develop a leukodystrophy (cerebral ALD) before the age of 18 years. Women with ALD also develop myelopathy, but generally at a later age than men and with slower progression. Adrenal failure and leukodystrophy are exceedingly rare in women. Allogeneic hematopoietic cell transplantation (HCT), or more recently autologous HCT with ex vivo lentivirally transfected bone marrow, halts the leukodystrophy. Unfortunately, there is no curative treatment for the myelopathy. In this chapter, clinical spectrum of ALD is discussed in detail.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-323-90120-8.00001-0
Selene Ingusci, Bonnie L Hall, William F Goins, Justus B Cohen, Joseph C Glorioso
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
{"title":"Viral vectors for gene delivery to the central nervous system.","authors":"Selene Ingusci, Bonnie L Hall, William F Goins, Justus B Cohen, Joseph C Glorioso","doi":"10.1016/B978-0-323-90120-8.00001-0","DOIUrl":"https://doi.org/10.1016/B978-0-323-90120-8.00001-0","url":null,"abstract":"<p><p>Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/B978-0-323-99209-1.00016-8
David Jakabek, Joga Chaganti, Bruce James Brew
Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.
{"title":"Infectious leukoencephalopathies.","authors":"David Jakabek, Joga Chaganti, Bruce James Brew","doi":"10.1016/B978-0-323-99209-1.00016-8","DOIUrl":"https://doi.org/10.1016/B978-0-323-99209-1.00016-8","url":null,"abstract":"<p><p>Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}