Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, affecting >30% of the global population. Metabolic dysregulation, particularly insulin resistance and its subsequent manifestation as type 2 diabetes mellitus, serves as the fundamental pathogenesis of metabolic liver disease. Clinical evidence of the recent nomenclature evolution is accumulating. The interaction and impacts are bidirectional between MASLD and diabetes in terms of disease course, risk, and prognosis. Therefore, there is an urgent need to highlight the multifaceted links between MASLD and diabetes for both hepatologists and diabetologists. The surveillance strategy, risk stratification of management, and current therapeutic achievements of metabolic liver disease remain the major pillars in a clinical care setting. Therefore, the Taiwan Association for the Study of the Liver (TASL), Taiwanese Association of Diabetes Educators, and Diabetes Association of the Republic of China (Taiwan) collaboratively completed the first guidance in patients with diabetes and MASLD, which provides practical recommendations for patient care.
代谢功能障碍相关性脂肪性肝病(MASLD)是全球最常见的慢性肝病,影响着全球 30% 以上的人口。代谢失调,尤其是胰岛素抵抗及其随后表现为 2 型糖尿病,是代谢性肝病的基本发病机制。近期命名演变的临床证据正在不断积累。在病程、风险和预后方面,MASLD 和糖尿病之间的相互作用和影响是双向的。因此,肝病学家和糖尿病学家都迫切需要强调 MASLD 与糖尿病之间的多方面联系。新陳代謝肝病的監測策略、風險分層管理及目前的治療成果,仍是臨床照護的主要支柱。因此,台湾肝脏研究学会(TASL)、台湾糖尿病教育工作者协会(Taiwan Association of Diabetes Educators)和中华民国(台湾)糖尿病协会(Diabetes Association of the Republic of China)合作完成了第一份糖尿病合并代谢性肝病患者指南,为患者护理提供了实用建议。
{"title":"Clinical care guidance in patients with diabetes and metabolic dysfunction-associated steatotic liver disease: A joint consensus.","authors":"Jee-Fu Huang, Tien-Jyun Chang, Ming-Lun Yeh, Feng-Chih Shen, Chi-Ming Tai, Jung-Fu Chen, Yi-Hsiang Huang, Chih-Yao Hsu, Pin-Nan Cheng, Ching-Ling Lin, Chao-Hung Hung, Ching-Chu Chen, Mei-Hsuan Lee, Chun-Chuan Lee, Chih-Wen Lin, Sung-Chen Liu, Hwai-I Yang, Rong-Nan Chien, Chin-Sung Kuo, Cheng-Yuan Peng, Ming-Ling Chang, Chung-Feng Huang, Yi-Sun Yang, Hung-Chih Yang, Han-Chieh Lin, Horng-Yih Ou, Chun-Jen Liu, Chin-Hsiao Tseng, Jia-Horng Kao, Wan-Long Chuang, Chien-Ning Huang, Pei-Jer Chen, Chih-Yuan Wang, Ming-Lung Yu","doi":"10.1097/HC9.0000000000000571","DOIUrl":"10.1097/HC9.0000000000000571","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, affecting >30% of the global population. Metabolic dysregulation, particularly insulin resistance and its subsequent manifestation as type 2 diabetes mellitus, serves as the fundamental pathogenesis of metabolic liver disease. Clinical evidence of the recent nomenclature evolution is accumulating. The interaction and impacts are bidirectional between MASLD and diabetes in terms of disease course, risk, and prognosis. Therefore, there is an urgent need to highlight the multifaceted links between MASLD and diabetes for both hepatologists and diabetologists. The surveillance strategy, risk stratification of management, and current therapeutic achievements of metabolic liver disease remain the major pillars in a clinical care setting. Therefore, the Taiwan Association for the Study of the Liver (TASL), Taiwanese Association of Diabetes Educators, and Diabetes Association of the Republic of China (Taiwan) collaboratively completed the first guidance in patients with diabetes and MASLD, which provides practical recommendations for patient care.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000551
Nina Kimer, Thit M Kronborg, Flemming Bendtsen
{"title":"Reply: Statins for the prevention of cirrhosis complications: An American emulation of the StatLiver trial.","authors":"Nina Kimer, Thit M Kronborg, Flemming Bendtsen","doi":"10.1097/HC9.0000000000000551","DOIUrl":"10.1097/HC9.0000000000000551","url":null,"abstract":"","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000569
Ying Zhang, Ying Rao, Jiahuan Lu, Jiyu Wang, Dai Fei Elmer Ker, Jingying Zhou, Dan Michelle Wang
HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.
{"title":"The influence of biophysical niche on tumor-associated macrophages in liver cancer.","authors":"Ying Zhang, Ying Rao, Jiahuan Lu, Jiyu Wang, Dai Fei Elmer Ker, Jingying Zhou, Dan Michelle Wang","doi":"10.1097/HC9.0000000000000569","DOIUrl":"10.1097/HC9.0000000000000569","url":null,"abstract":"<p><p>HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000552
Jennifer C Lai, Melinda Ring, Anand Dhruva, Gloria Y Yeh
The use of dietary supplements by patients with chronic liver disease is prevalent and rising. Despite the known risks of dietary supplements, including hepatotoxicity, adulteration, and contamination, patients with chronic liver disease often turn to dietary supplements to support their liver and/or overall health but are not necessarily empowered with the information or guidance from their liver practitioner to do so. This article provides practitioners with a framework for balancing the risks and benefits of dietary supplements in patients with chronic liver disease, offering examples of independent resources and certifications to use this framework in clinical practice. We offer 3 common clinical scenarios to highlight how the use of this framework can improve communication and decision-making in clinical practice. By adapting principles from Integrative Medicine, this article advocates for a patient-centered approach to dietary supplements in patients with chronic liver disease, encouraging open dialogue between clinicians and their patients to facilitate informed decision-making and personalized care.
{"title":"A patient-centered approach to dietary supplements for patients with chronic liver disease.","authors":"Jennifer C Lai, Melinda Ring, Anand Dhruva, Gloria Y Yeh","doi":"10.1097/HC9.0000000000000552","DOIUrl":"10.1097/HC9.0000000000000552","url":null,"abstract":"<p><p>The use of dietary supplements by patients with chronic liver disease is prevalent and rising. Despite the known risks of dietary supplements, including hepatotoxicity, adulteration, and contamination, patients with chronic liver disease often turn to dietary supplements to support their liver and/or overall health but are not necessarily empowered with the information or guidance from their liver practitioner to do so. This article provides practitioners with a framework for balancing the risks and benefits of dietary supplements in patients with chronic liver disease, offering examples of independent resources and certifications to use this framework in clinical practice. We offer 3 common clinical scenarios to highlight how the use of this framework can improve communication and decision-making in clinical practice. By adapting principles from Integrative Medicine, this article advocates for a patient-centered approach to dietary supplements in patients with chronic liver disease, encouraging open dialogue between clinicians and their patients to facilitate informed decision-making and personalized care.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Excessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD), a significant global health concern with limited therapeutic options. Understanding the key factors contributing to ALD pathogenesis is crucial for identifying potential therapeutic targets. Central to ALD pathogenesis is the intricate interplay between alcohol metabolism and cellular processes, particularly involving mitochondria. Mitochondria are essential organelles in the liver, critical for energy production and metabolic functions. However, they are particularly vulnerable to alcohol-induced damage due to their involvement in alcohol metabolism. Alcohol disrupts mitochondrial function, impairing ATP production and triggering oxidative stress, which leads to cellular damage and inflammation. Mitochondrial quality control mechanisms, including biogenesis, dynamics, and mitophagy, are crucial for maintaining optimal mitochondrial function. Chronic alcohol consumption disrupts mitochondrial quality control checkpoints, leading to mitochondrial dysfunction that impairs fatty acid oxidation and contributes to hepatic steatosis in ALD. Moreover, alcohol promotes the accumulation of damaged mitochondria and the release of proinflammatory components, exacerbating liver damage and inflammation. Preserving mitochondrial health presents a promising therapeutic approach to mitigate ALD progression. In this review, we provide a comprehensive overview of the effects of alcohol on mitochondrial function and quality control mechanisms, highlighting their role in ALD pathogenesis. Understanding these mechanisms may pave the way for the development of novel therapeutic interventions for ALD.
{"title":"Mitochondrial quality control in alcohol-associated liver disease.","authors":"Themis Thoudam, Hui Gao, Yanchao Jiang, Nazmul Huda, Zhihong Yang, Jing Ma, Suthat Liangpunsakul","doi":"10.1097/HC9.0000000000000534","DOIUrl":"10.1097/HC9.0000000000000534","url":null,"abstract":"<p><p>Excessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD), a significant global health concern with limited therapeutic options. Understanding the key factors contributing to ALD pathogenesis is crucial for identifying potential therapeutic targets. Central to ALD pathogenesis is the intricate interplay between alcohol metabolism and cellular processes, particularly involving mitochondria. Mitochondria are essential organelles in the liver, critical for energy production and metabolic functions. However, they are particularly vulnerable to alcohol-induced damage due to their involvement in alcohol metabolism. Alcohol disrupts mitochondrial function, impairing ATP production and triggering oxidative stress, which leads to cellular damage and inflammation. Mitochondrial quality control mechanisms, including biogenesis, dynamics, and mitophagy, are crucial for maintaining optimal mitochondrial function. Chronic alcohol consumption disrupts mitochondrial quality control checkpoints, leading to mitochondrial dysfunction that impairs fatty acid oxidation and contributes to hepatic steatosis in ALD. Moreover, alcohol promotes the accumulation of damaged mitochondria and the release of proinflammatory components, exacerbating liver damage and inflammation. Preserving mitochondrial health presents a promising therapeutic approach to mitigate ALD progression. In this review, we provide a comprehensive overview of the effects of alcohol on mitochondrial function and quality control mechanisms, highlighting their role in ALD pathogenesis. Understanding these mechanisms may pave the way for the development of novel therapeutic interventions for ALD.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000558
Yongtao Wang, Ben Leaker, Guoliang Qiao, Mozhdeh Sojoodi, Ibrahim Ragab Eissa, Eliana T Epstein, Jonathan Eddy, Oizoshimoshiofu Dimowo, Georg M Lauer, Motaz Qadan, Michael Lanuti, Raymond T Chung, Bryan C Fuchs, Kenneth K Tanabe
Background: Considering the lack of successful treatment options and poor prognosis for cirrhosis and cirrhosis-induced HCC, new platforms to investigate antifibrotic therapies are urgently needed. Precision-cut liver slice (PCLS) is a powerful ex vivo culture model that can supplement and potentially replace the traditional models.
Methods: PCLS were prepared from 4 different murine cirrhotic models (choline-deficient, l-amino acid-defined, high-fat diet, thioacetamide, diethylnitrosamine, and carbon tetrachloride) and compared with in vivo murine experiments, in vitro hepatic stellate cells, and human cirrhotic PCLS.
Results: PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGF receptor inhibitor, significantly inhibited profibrogenic gene expressions in PCLS from choline-deficient, l-amino acid-defined, high-fat diet or thioacetamide-induced cirrhotic rats. Erlotinib treatment of PCLS from diethylnitrosamine or carbon tetrachloride-induced cirrhotic rats inhibited the expression of profibrogenic genes, which was consistent with the impact of erlotinib on these genes in in vivo diethylnitrosamine or carbon tetrachloride-induced cirrhosis. In addition, in hepatic stellate cells at PCLS from normal mice, erlotinib treatment inhibited TGF-β1-upregulated expression of Acta2. Similar expression results were observed in in vitro hepatic stellate cells. Expression of key regulators of fibrosis progression and regression were also significantly altered. Changes in profibrogenic gene expression under erlotinib treatment were also corroborated with human cirrhotic PCLS.
Conclusions: Responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. These results were verified in human cirrhotic PCLS. PCLS is an excellent model for assessing antifibrotic therapies that are aligned with the principles of replacement, reduction, and refinement (3Rs), and it will benefit preclinical and clinical research for human fibrosis and cirrhosis.
{"title":"Precision-cut liver slices as an ex vivo model to evaluate antifibrotic therapies for liver fibrosis and cirrhosis.","authors":"Yongtao Wang, Ben Leaker, Guoliang Qiao, Mozhdeh Sojoodi, Ibrahim Ragab Eissa, Eliana T Epstein, Jonathan Eddy, Oizoshimoshiofu Dimowo, Georg M Lauer, Motaz Qadan, Michael Lanuti, Raymond T Chung, Bryan C Fuchs, Kenneth K Tanabe","doi":"10.1097/HC9.0000000000000558","DOIUrl":"10.1097/HC9.0000000000000558","url":null,"abstract":"<p><strong>Background: </strong>Considering the lack of successful treatment options and poor prognosis for cirrhosis and cirrhosis-induced HCC, new platforms to investigate antifibrotic therapies are urgently needed. Precision-cut liver slice (PCLS) is a powerful ex vivo culture model that can supplement and potentially replace the traditional models.</p><p><strong>Methods: </strong>PCLS were prepared from 4 different murine cirrhotic models (choline-deficient, l-amino acid-defined, high-fat diet, thioacetamide, diethylnitrosamine, and carbon tetrachloride) and compared with in vivo murine experiments, in vitro hepatic stellate cells, and human cirrhotic PCLS.</p><p><strong>Results: </strong>PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGF receptor inhibitor, significantly inhibited profibrogenic gene expressions in PCLS from choline-deficient, l-amino acid-defined, high-fat diet or thioacetamide-induced cirrhotic rats. Erlotinib treatment of PCLS from diethylnitrosamine or carbon tetrachloride-induced cirrhotic rats inhibited the expression of profibrogenic genes, which was consistent with the impact of erlotinib on these genes in in vivo diethylnitrosamine or carbon tetrachloride-induced cirrhosis. In addition, in hepatic stellate cells at PCLS from normal mice, erlotinib treatment inhibited TGF-β1-upregulated expression of Acta2. Similar expression results were observed in in vitro hepatic stellate cells. Expression of key regulators of fibrosis progression and regression were also significantly altered. Changes in profibrogenic gene expression under erlotinib treatment were also corroborated with human cirrhotic PCLS.</p><p><strong>Conclusions: </strong>Responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. These results were verified in human cirrhotic PCLS. PCLS is an excellent model for assessing antifibrotic therapies that are aligned with the principles of replacement, reduction, and refinement (3Rs), and it will benefit preclinical and clinical research for human fibrosis and cirrhosis.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000573
Alvi Husni Islam, Luis Antonio Díaz, Francisco Idalsoaga, Leonardo Guizzetti, Rokhsana Mortuza, Winston Dunn, Ashwani K Singal, Douglas Simonetto, Carolina Ramirez-Cadiz, Wei Zhang, Steve Qian, Joaquín Cabezas, Shiv K Sarin, Rakhi Maiwall, Prasun K Jalal, Fatima Higuera-De La Tijera, Lubomir Skladany, Natalia Bystrianska, Diego Rincon, Kristina R Chacko, Meritxell Ventura Cots, Guadalupe Garcia-Tsao, Juan G Abraldes, Patrick S Kamath, Marco Arrese, Vijay Shah, Ramon Bataller, Juan Pablo Arab
{"title":"Comparative effectiveness of different corticosteroid regimens in severe alcohol-associated hepatitis.","authors":"Alvi Husni Islam, Luis Antonio Díaz, Francisco Idalsoaga, Leonardo Guizzetti, Rokhsana Mortuza, Winston Dunn, Ashwani K Singal, Douglas Simonetto, Carolina Ramirez-Cadiz, Wei Zhang, Steve Qian, Joaquín Cabezas, Shiv K Sarin, Rakhi Maiwall, Prasun K Jalal, Fatima Higuera-De La Tijera, Lubomir Skladany, Natalia Bystrianska, Diego Rincon, Kristina R Chacko, Meritxell Ventura Cots, Guadalupe Garcia-Tsao, Juan G Abraldes, Patrick S Kamath, Marco Arrese, Vijay Shah, Ramon Bataller, Juan Pablo Arab","doi":"10.1097/HC9.0000000000000573","DOIUrl":"10.1097/HC9.0000000000000573","url":null,"abstract":"","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH.
Methods: To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps.
Results: ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice.
Conclusions: Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
{"title":"Cholestatic insult triggers alcohol-associated hepatitis in mice.","authors":"Shengmin Yan, Zhen Lin, Michelle Ma, Ailar Arasteh, Xiao-Ming Yin","doi":"10.1097/HC9.0000000000000566","DOIUrl":"10.1097/HC9.0000000000000566","url":null,"abstract":"<p><strong>Background: </strong>Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH.</p><p><strong>Methods: </strong>To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps.</p><p><strong>Results: </strong>ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice.</p><p><strong>Conclusions: </strong>Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17eCollection Date: 2024-11-01DOI: 10.1097/HC9.0000000000000528
Henry H Nguyen, Jhimmy Talbot, Dayi Li, Varsha Raghavan, Dan R Littman
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis.
Methods: We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice.
Results: Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis.
Conclusions: Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.
{"title":"Modulating intestinal neuroimmune VIPergic signaling attenuates the reduction in ILC3-derived IL-22 and hepatic steatosis in MASLD.","authors":"Henry H Nguyen, Jhimmy Talbot, Dayi Li, Varsha Raghavan, Dan R Littman","doi":"10.1097/HC9.0000000000000528","DOIUrl":"10.1097/HC9.0000000000000528","url":null,"abstract":"<p><strong>Background: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis.</p><p><strong>Methods: </strong>We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice.</p><p><strong>Results: </strong>Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis.</p><p><strong>Conclusions: </strong>Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).
Methods: We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).
Results: Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD.
Conclusions: These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.
{"title":"Post-translational modifications drive the effects of HMGB1 in alcohol-associated liver disease.","authors":"Xiaodong Ge, Nithyananthan Subramaniyam, Zhuolun Song, Romain Desert, Hui Han, Sukanta Das, Sai Santosh Babu Komakula, Chao Wang, Daniel Lantvit, Zhiyan Ge, Yujin Hoshida, Natalia Nieto","doi":"10.1097/HC9.0000000000000549","DOIUrl":"10.1097/HC9.0000000000000549","url":null,"abstract":"<p><strong>Background: </strong>We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).</p><p><strong>Methods: </strong>We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).</p><p><strong>Results: </strong>Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD.</p><p><strong>Conclusions: </strong>These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}