首页 > 最新文献

Human Mutation最新文献

英文 中文
Identification of a Novel NLRP12 Frameshift Mutation (Val730Glyfs ∗41) by Whole-Exome Sequencing in Patients with Crohn’s Disease 通过全基因组测序鉴定克罗恩病患者的新型 NLRP12 框变突变(Val730Glyfs∗41)
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-23 DOI: 10.1155/2024/5573272
Jintong Chen, Yanni Huang, Huaning Chen, Qinyu Yang, Weiwei Zheng, Yanjun Lin, Mengli Xue, Chengdang Wang

NLRP12 encodes the nucleotide-binding leucine-rich repeat-containing receptor 12 protein and has been linked to familial cold autoinflammatory syndrome 2 (FCAS2). Previous studies have reported that NLRP12 protein can dampen inflammatory responses in DSS-induced mice colitis. To date, only four alterations in the NLRP12 gene have been associated with Crohn’s disease (CD). Here, we reported a novel heterozygous NLRP12 frameshift mutation (c.2188dupG, p.Val730Glyfs 41) identified by whole-exome sequencing in the proband with CD. The Sanger sequencing confirmed that his sister and father also carried this NLRP12 mutation, which cosegregated well with the CD phenotype. In silico analysis predicted this mutation to be disease-causing. Patients heterozygous for this mutation exhibited decreased NLRP12 protein levels in the peripheral blood and colon. Functional assays showed that mutant NLRP12 plasmid-transfected HEK293T cells exhibited significantly lower NLRP12 mRNA and protein levels than wild-type plasmid-transfected cells. The nonsense-mediated decay inhibitor NMDI14 significantly increased NLRP12 mRNA and protein levels in mutant plasmid-transfected cells. Overall, our results demonstrated that this heterozygous NLRP12 mutation (c.2188dupG) resulted in decreased NLRP12 expression, which might contribute to the mechanism underlying CD.

NLRP12 编码核苷酸结合富亮氨酸重复受体 12 蛋白,与家族性寒冷自身炎症综合征 2(FCAS2)有关。先前的研究报告称,NLRP12 蛋白可抑制 DSS 诱导的小鼠结肠炎的炎症反应。迄今为止,只有四种 NLRP12 基因的改变与克罗恩病(CD)相关。在此,我们报告了通过全外显子组测序发现的一种新型杂合子 NLRP12 框移突变(c.2188dupG, p.Val730Glyfs∗41)。Sanger 测序证实,他的姐姐和父亲也携带这种 NLRP12 基因突变,而且这种突变与 CD 表型共存。硅学分析预测这一突变具有致病性。该突变杂合子患者的外周血和结肠中的 NLRP12 蛋白水平降低。功能测定显示,转染突变型NLRP12质粒的HEK293T细胞的NLRP12 mRNA和蛋白水平明显低于转染野生型质粒的细胞。无义介导衰变抑制剂 NMDI14 能显著提高突变型质粒转染细胞的 NLRP12 mRNA 和蛋白质水平。总之,我们的研究结果表明,这种杂合子NLRP12突变(c.2188dupG)导致NLRP12表达减少,这可能是CD的发病机制之一。
{"title":"Identification of a Novel NLRP12 Frameshift Mutation (Val730Glyfs ∗41) by Whole-Exome Sequencing in Patients with Crohn’s Disease","authors":"Jintong Chen,&nbsp;Yanni Huang,&nbsp;Huaning Chen,&nbsp;Qinyu Yang,&nbsp;Weiwei Zheng,&nbsp;Yanjun Lin,&nbsp;Mengli Xue,&nbsp;Chengdang Wang","doi":"10.1155/2024/5573272","DOIUrl":"10.1155/2024/5573272","url":null,"abstract":"<p><i>NLRP12</i> encodes the nucleotide-binding leucine-rich repeat-containing receptor 12 protein and has been linked to familial cold autoinflammatory syndrome 2 (FCAS2). Previous studies have reported that NLRP12 protein can dampen inflammatory responses in DSS-induced mice colitis. To date, only four alterations in the <i>NLRP12</i> gene have been associated with Crohn’s disease (CD). Here, we reported a novel heterozygous <i>NLRP12</i> frameshift mutation (c.2188dupG, p.Val730Glyfs <sup>∗</sup>41) identified by whole-exome sequencing in the proband with CD. The Sanger sequencing confirmed that his sister and father also carried this <i>NLRP12</i> mutation, which cosegregated well with the CD phenotype. In silico analysis predicted this mutation to be disease-causing. Patients heterozygous for this mutation exhibited decreased NLRP12 protein levels in the peripheral blood and colon. Functional assays showed that mutant <i>NLRP12</i> plasmid-transfected HEK293T cells exhibited significantly lower <i>NLRP12</i> mRNA and protein levels than wild-type plasmid-transfected cells. The nonsense-mediated decay inhibitor NMDI14 significantly increased <i>NLRP12</i> mRNA and protein levels in mutant plasmid-transfected cells. Overall, our results demonstrated that this heterozygous <i>NLRP12</i> mutation (c.2188dupG) resulted in decreased NLRP12 expression, which might contribute to the mechanism underlying CD.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Missing Piece of the Puzzle: Unveiling the Role of PTPN11 Gene in Multiple Osteochondromas in a Large Cohort Study 缺失的拼图:大型队列研究揭示 PTPN11 基因在多发性骨软骨瘤中的作用
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-12 DOI: 10.1155/2024/8849348
A. Borovikov, Nailya Galeeva, A. Marakhonov, Aysylu Murtazina, V. Kadnikova, Kseniya Davydenko, Anna Orlova, P. Sparber, T. Markova, Maria Orlova, D. Osipova, T. Nagornova, N. Semenova, O. Levchenko, A. Filatova, Margarita Sharova, Peter Vasiluev, I. Kanivets, D. Pyankov, A. Sharkov, V. Udalova, V. Kenis, Natalia Nikitina, M. Sumina, K. Zherdev, A. Petel'guzov, O. Chelpachenko, P. Zubkov, Ivan Dan, A. Snetkov, Alexandra Akinshina, Yu. E. Buklemishev, O. Ryzhkova, V. Tabakov, E. Zakharova, S. Korostelev, R. Zinchenko, M. Skoblov, A. Polyakov, E. Dadali, S. Kutsev, O. Shchagina
This study is aimed at investigating the clinical and genetic characteristics of 244 unrelated probands diagnosed with multiple osteochondromas (MO). The diagnosis of MO typically involves identifying multiple benign bone tumors known as osteochondromas (OCs) through imaging studies and physical examinations. However, cases with both OCs and enchondromas (ECs) may indicate the more rare condition metachondromatosis (MC), which is assumed to be distinct disease. Previous cohort studies of MO found heterozygous loss-of-function (LoF) variants only in the EXT1 or EXT2 genes, with DNA diagnostic yield ranging from 78 to 95%. The PTPN11 gene, which is causative for MC, was not previously investigated as a gene candidate for MO. In this study, we detected a total of 177 unique single nucleotide and copy number variants in three genes across 220 probands, consisting of 80 previously reported and 97 novel variants. Specifically, we identified five cases with OCs and no ECs as well as four cases with MC carrying LoF variants in the PTPN11 gene and two additional cases with ECs harboring variants in the EXT1/2 genes. These findings suggest a potential overlap between the MO and MC both phenotypically and genetically. These findings highlight the importance of expanding genetic testing beyond the EXT1 and EXT2 genes in MO cases, as other genes such as PTPN11 may also be causative. This can improve the accuracy of diagnosis and treatment for individuals with MO and MC. It is essential to determine whether MO and MC represent distinct diseases or if they encompass a broader clinical spectrum.
本研究旨在调查 244 名被诊断患有多发性骨软骨瘤(MO)的非亲属关系探亲者的临床和遗传特征。多发性骨软骨瘤(MO)的诊断通常需要通过影像学检查和体格检查来确定多发性良性骨肿瘤,即骨软骨瘤(OC)。然而,同时伴有骨软骨瘤(OC)和软骨瘤(EC)的病例可能预示着更罕见的变态软骨瘤病(MC),而变态软骨瘤病被认为是一种不同的疾病。以往对 MO 的队列研究仅在 EXT1 或 EXT2 基因中发现了杂合功能缺失(LoF)变异,DNA 诊断率为 78% 至 95%。PTPN11基因是MC的致病基因,但此前并未将其作为MO的候选基因进行研究。在这项研究中,我们在220名受试者的三个基因中检测到了177个独特的单核苷酸和拷贝数变异,其中包括80个以前报道过的变异和97个新变异。具体来说,我们发现了五例有OC而无EC的病例,以及四例携带PTPN11基因LoF变异的MC病例和另外两例携带EXT1/2基因变异的EC病例。这些发现表明,MO 和 MC 在表型和基因上都可能存在重叠。这些发现强调了在 MO 病例中扩大 EXT1 和 EXT2 基因以外的基因检测的重要性,因为 PTPN11 等其他基因也可能是致病因素。这可以提高 MO 和 MC 患者诊断和治疗的准确性。必须确定 MO 和 MC 是否代表不同的疾病,或者它们是否包含更广泛的临床范围。
{"title":"The Missing Piece of the Puzzle: Unveiling the Role of PTPN11 Gene in Multiple Osteochondromas in a Large Cohort Study","authors":"A. Borovikov, Nailya Galeeva, A. Marakhonov, Aysylu Murtazina, V. Kadnikova, Kseniya Davydenko, Anna Orlova, P. Sparber, T. Markova, Maria Orlova, D. Osipova, T. Nagornova, N. Semenova, O. Levchenko, A. Filatova, Margarita Sharova, Peter Vasiluev, I. Kanivets, D. Pyankov, A. Sharkov, V. Udalova, V. Kenis, Natalia Nikitina, M. Sumina, K. Zherdev, A. Petel'guzov, O. Chelpachenko, P. Zubkov, Ivan Dan, A. Snetkov, Alexandra Akinshina, Yu. E. Buklemishev, O. Ryzhkova, V. Tabakov, E. Zakharova, S. Korostelev, R. Zinchenko, M. Skoblov, A. Polyakov, E. Dadali, S. Kutsev, O. Shchagina","doi":"10.1155/2024/8849348","DOIUrl":"https://doi.org/10.1155/2024/8849348","url":null,"abstract":"This study is aimed at investigating the clinical and genetic characteristics of 244 unrelated probands diagnosed with multiple osteochondromas (MO). The diagnosis of MO typically involves identifying multiple benign bone tumors known as osteochondromas (OCs) through imaging studies and physical examinations. However, cases with both OCs and enchondromas (ECs) may indicate the more rare condition metachondromatosis (MC), which is assumed to be distinct disease. Previous cohort studies of MO found heterozygous loss-of-function (LoF) variants only in the EXT1 or EXT2 genes, with DNA diagnostic yield ranging from 78 to 95%. The PTPN11 gene, which is causative for MC, was not previously investigated as a gene candidate for MO. In this study, we detected a total of 177 unique single nucleotide and copy number variants in three genes across 220 probands, consisting of 80 previously reported and 97 novel variants. Specifically, we identified five cases with OCs and no ECs as well as four cases with MC carrying LoF variants in the PTPN11 gene and two additional cases with ECs harboring variants in the EXT1/2 genes. These findings suggest a potential overlap between the MO and MC both phenotypically and genetically. These findings highlight the importance of expanding genetic testing beyond the EXT1 and EXT2 genes in MO cases, as other genes such as PTPN11 may also be causative. This can improve the accuracy of diagnosis and treatment for individuals with MO and MC. It is essential to determine whether MO and MC represent distinct diseases or if they encompass a broader clinical spectrum.","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COG6-CDG: Two Novel Variants and Milder Phenotype in a Chinese Patient COG6-CDG:一名中国患者的两个新变异和较轻的表型
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-12 DOI: 10.1155/2024/9857442
Xue-Yuan Zhang, Jing Zhang, Yi Lu

Here, we present a Han Chinese pediatric girl highly suspected of congenial disorder of glycosylation type IIL (CDG2L; OMIM#614576). Her clinical symptoms include transferase abnormal, liver cirrhosis, hemogram, coagulopathy, growth retardation, intellectual disability, frequent infections, and enamel hypoplasia. Trio-genome sequencing identified in COG6 a paternal variant c.1672C>T (p.Gln558Ter) and a maternal variant c.153+392A>G (p.?). Reverse transcription-polymerase chain reaction (RT-PCR) using mRNA isolated from peripheral blood confirmed the pathogenicity of both variants. The paternal variant resulted in nonsense-mediated mRNA decay. The maternal variant generated two aberrant COG6 transcripts with 154 bp overlap and was predicted to result in a frameshift at the same position, leading to generation of a premature termination codon. They might result in synthesis of a truncated form of COG6. Thus, the patient was genetically diagnosed.

在此,我们介绍了一名高度怀疑患有先天性糖基化障碍 IIL 型(CDG2L;OMIM#614576)的中国汉族女婴。她的临床症状包括转氨酶异常、肝硬化、血象、凝血功能障碍、生长迟缓、智力障碍、频繁感染和牙釉质发育不全。三基因组测序在 COG6 中发现了一个父系变异体 c.1672C>T(p.Gln558Ter)和一个母系变异体 c.153+392A>G(p.?)利用从外周血中分离出的 mRNA 进行的反转录聚合酶链反应(RT-PCR)证实了这两个变异体的致病性。父系变异体导致无义介导的 mRNA 衰减。母本变异体产生了两个异常的 COG6 转录本,有 154 bp 重叠,预计会在同一位置发生框移位,导致产生过早终止密码子。它们可能导致 COG6 合成为截短形式。因此,对该患者进行了基因诊断。
{"title":"COG6-CDG: Two Novel Variants and Milder Phenotype in a Chinese Patient","authors":"Xue-Yuan Zhang,&nbsp;Jing Zhang,&nbsp;Yi Lu","doi":"10.1155/2024/9857442","DOIUrl":"10.1155/2024/9857442","url":null,"abstract":"<p>Here, we present a Han Chinese pediatric girl highly suspected of congenial disorder of glycosylation type IIL (CDG2L; OMIM#614576). Her clinical symptoms include transferase abnormal, liver cirrhosis, hemogram, coagulopathy, growth retardation, intellectual disability, frequent infections, and enamel hypoplasia. Trio-genome sequencing identified in <i>COG6</i> a paternal variant c.1672C&gt;T (p.Gln558Ter) and a maternal variant c.153+392A&gt;G (p.?). Reverse transcription-polymerase chain reaction (RT-PCR) using mRNA isolated from peripheral blood confirmed the pathogenicity of both variants. The paternal variant resulted in nonsense-mediated mRNA decay. The maternal variant generated two aberrant <i>COG6</i> transcripts with 154 bp overlap and was predicted to result in a frameshift at the same position, leading to generation of a premature termination codon. They might result in synthesis of a truncated form of COG6. Thus, the patient was genetically diagnosed.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COG6-CDG: Two Novel Variants and Milder Phenotype in a Chinese Patient COG6-CDG:一名中国患者的两个新变异和较轻的表型
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-12 DOI: 10.1155/2024/9857442
Xue-Yuan Zhang, Jing Zhang, Yi Lu
Here, we present a Han Chinese pediatric girl highly suspected of congenial disorder of glycosylation type IIL (CDG2L; OMIM#614576). Her clinical symptoms include transferase abnormal, liver cirrhosis, hemogram, coagulopathy, growth retardation, intellectual disability, frequent infections, and enamel hypoplasia. Trio-genome sequencing identified in COG6 a paternal variant c.1672C>T (p.Gln558Ter) and a maternal variant c.153+392A>G (p.?). Reverse transcription-polymerase chain reaction (RT-PCR) using mRNA isolated from peripheral blood confirmed the pathogenicity of both variants. The paternal variant resulted in nonsense-mediated mRNA decay. The maternal variant generated two aberrant COG6 transcripts with 154 bp overlap and was predicted to result in a frameshift at the same position, leading to generation of a premature termination codon. They might result in synthesis of a truncated form of COG6. Thus, the patient was genetically diagnosed.
在此,我们介绍了一名高度怀疑患有先天性糖基化障碍 IIL 型(CDG2L;OMIM#614576)的中国汉族女婴。她的临床症状包括转氨酶异常、肝硬化、血象、凝血功能障碍、生长迟缓、智力障碍、频繁感染和牙釉质发育不全。三基因组测序在 COG6 中发现了一个父系变异体 c.1672C>T(p.Gln558Ter)和一个母系变异体 c.153+392A>G(p.?)利用从外周血中分离出的 mRNA 进行的反转录聚合酶链反应(RT-PCR)证实了这两个变异体的致病性。父系变异体导致无义介导的 mRNA 衰减。母本变异体产生了两个异常的 COG6 转录本,有 154 bp 重叠,预计会在同一位置发生框移位,导致产生过早终止密码子。它们可能导致 COG6 合成为截短形式。因此,对该患者进行了基因诊断。
{"title":"COG6-CDG: Two Novel Variants and Milder Phenotype in a Chinese Patient","authors":"Xue-Yuan Zhang, Jing Zhang, Yi Lu","doi":"10.1155/2024/9857442","DOIUrl":"https://doi.org/10.1155/2024/9857442","url":null,"abstract":"Here, we present a Han Chinese pediatric girl highly suspected of congenial disorder of glycosylation type IIL (CDG2L; OMIM#614576). Her clinical symptoms include transferase abnormal, liver cirrhosis, hemogram, coagulopathy, growth retardation, intellectual disability, frequent infections, and enamel hypoplasia. Trio-genome sequencing identified in COG6 a paternal variant c.1672C>T (p.Gln558Ter) and a maternal variant c.153+392A>G (p.?). Reverse transcription-polymerase chain reaction (RT-PCR) using mRNA isolated from peripheral blood confirmed the pathogenicity of both variants. The paternal variant resulted in nonsense-mediated mRNA decay. The maternal variant generated two aberrant COG6 transcripts with 154 bp overlap and was predicted to result in a frameshift at the same position, leading to generation of a premature termination codon. They might result in synthesis of a truncated form of COG6. Thus, the patient was genetically diagnosed.","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Missing Piece of the Puzzle: Unveiling the Role of PTPN11 Gene in Multiple Osteochondromas in a Large Cohort Study 缺失的拼图:大型队列研究揭示 PTPN11 基因在多发性骨软骨瘤中的作用
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-12 DOI: 10.1155/2024/8849348
Artem Borovikov, Nailya Galeeva, Andrey Marakhonov, Aysylu Murtazina, Varvara Kadnikova, Kseniya Davydenko, Anna Orlova, Peter Sparber, Tatiana Markova, Maria Orlova, Darya Osipova, Tatyana Nagornova, Natalia Semenova, Olga Levchenko, Alexandra Filatova, Margarita Sharova, Peter Vasiluev, Ilya Kanivets, Denis Pyankov, Artem Sharkov, Vasilisa Udalova, Vladimir Kenis, Natalia Nikitina, Maria Sumina, Konstantin Zherdev, Aleksandr Petel′guzov, Oleg Chelpachenko, Pavel Zubkov, Ivan Dan, Andrey Snetkov, Alexandra Akinshina, Yury Buklemishev, Oxana Ryzhkova, Vyacheslav Tabakov, Ekaterina Zakharova, Sergey Korostelev, Rena Zinchenko, Mikhail Skoblov, Alexander Polyakov, Elena Dadali, Sergey Kutsev, Olga Shchagina

This study is aimed at investigating the clinical and genetic characteristics of 244 unrelated probands diagnosed with multiple osteochondromas (MO). The diagnosis of MO typically involves identifying multiple benign bone tumors known as osteochondromas (OCs) through imaging studies and physical examinations. However, cases with both OCs and enchondromas (ECs) may indicate the more rare condition metachondromatosis (MC), which is assumed to be distinct disease. Previous cohort studies of MO found heterozygous loss-of-function (LoF) variants only in the EXT1 or EXT2 genes, with DNA diagnostic yield ranging from 78 to 95%. The PTPN11 gene, which is causative for MC, was not previously investigated as a gene candidate for MO. In this study, we detected a total of 177 unique single nucleotide and copy number variants in three genes across 220 probands, consisting of 80 previously reported and 97 novel variants. Specifically, we identified five cases with OCs and no ECs as well as four cases with MC carrying LoF variants in the PTPN11 gene and two additional cases with ECs harboring variants in the EXT1/2 genes. These findings suggest a potential overlap between the MO and MC both phenotypically and genetically. These findings highlight the importance of expanding genetic testing beyond the EXT1 and EXT2 genes in MO cases, as other genes such as PTPN11 may also be causative. This can improve the accuracy of diagnosis and treatment for individuals with MO and MC. It is essential to determine whether MO and MC represent distinct diseases or if they encompass a broader clinical spectrum.

本研究旨在调查 244 名被诊断患有多发性骨软骨瘤(MO)的非亲属关系探亲者的临床和遗传特征。多发性骨软骨瘤(MO)的诊断通常需要通过影像学检查和体格检查来确定多发性良性骨肿瘤,即骨软骨瘤(OC)。然而,同时伴有骨软骨瘤(OC)和软骨瘤(EC)的病例可能预示着更罕见的变态软骨瘤病(MC),而变态软骨瘤病被认为是一种不同的疾病。以往对 MO 的队列研究仅在 EXT1 或 EXT2 基因中发现了杂合功能缺失(LoF)变异,DNA 诊断率为 78% 至 95%。PTPN11基因是MC的致病基因,但此前并未将其作为MO的候选基因进行研究。在这项研究中,我们在220名受试者的三个基因中检测到了177个独特的单核苷酸和拷贝数变异,其中包括80个以前报道过的变异和97个新变异。具体来说,我们发现了五例有OC而无EC的病例,以及四例携带PTPN11基因LoF变异的MC病例和另外两例携带EXT1/2基因变异的EC病例。这些发现表明,MO 和 MC 在表型和基因上都可能存在重叠。这些发现强调了在 MO 病例中扩大 EXT1 和 EXT2 基因以外的基因检测的重要性,因为 PTPN11 等其他基因也可能是致病因素。这可以提高 MO 和 MC 患者诊断和治疗的准确性。必须确定 MO 和 MC 是否代表不同的疾病,或者它们是否包含更广泛的临床范围。
{"title":"The Missing Piece of the Puzzle: Unveiling the Role of PTPN11 Gene in Multiple Osteochondromas in a Large Cohort Study","authors":"Artem Borovikov,&nbsp;Nailya Galeeva,&nbsp;Andrey Marakhonov,&nbsp;Aysylu Murtazina,&nbsp;Varvara Kadnikova,&nbsp;Kseniya Davydenko,&nbsp;Anna Orlova,&nbsp;Peter Sparber,&nbsp;Tatiana Markova,&nbsp;Maria Orlova,&nbsp;Darya Osipova,&nbsp;Tatyana Nagornova,&nbsp;Natalia Semenova,&nbsp;Olga Levchenko,&nbsp;Alexandra Filatova,&nbsp;Margarita Sharova,&nbsp;Peter Vasiluev,&nbsp;Ilya Kanivets,&nbsp;Denis Pyankov,&nbsp;Artem Sharkov,&nbsp;Vasilisa Udalova,&nbsp;Vladimir Kenis,&nbsp;Natalia Nikitina,&nbsp;Maria Sumina,&nbsp;Konstantin Zherdev,&nbsp;Aleksandr Petel′guzov,&nbsp;Oleg Chelpachenko,&nbsp;Pavel Zubkov,&nbsp;Ivan Dan,&nbsp;Andrey Snetkov,&nbsp;Alexandra Akinshina,&nbsp;Yury Buklemishev,&nbsp;Oxana Ryzhkova,&nbsp;Vyacheslav Tabakov,&nbsp;Ekaterina Zakharova,&nbsp;Sergey Korostelev,&nbsp;Rena Zinchenko,&nbsp;Mikhail Skoblov,&nbsp;Alexander Polyakov,&nbsp;Elena Dadali,&nbsp;Sergey Kutsev,&nbsp;Olga Shchagina","doi":"10.1155/2024/8849348","DOIUrl":"10.1155/2024/8849348","url":null,"abstract":"<p>This study is aimed at investigating the clinical and genetic characteristics of 244 unrelated probands diagnosed with multiple osteochondromas (MO). The diagnosis of MO typically involves identifying multiple benign bone tumors known as osteochondromas (OCs) through imaging studies and physical examinations. However, cases with both OCs and enchondromas (ECs) may indicate the more rare condition metachondromatosis (MC), which is assumed to be distinct disease. Previous cohort studies of MO found heterozygous loss-of-function (LoF) variants only in the <i>EXT1</i> or <i>EXT2</i> genes, with DNA diagnostic yield ranging from 78 to 95%. The <i>PTPN11</i> gene, which is causative for MC, was not previously investigated as a gene candidate for MO. In this study, we detected a total of 177 unique single nucleotide and copy number variants in three genes across 220 probands, consisting of 80 previously reported and 97 novel variants. Specifically, we identified five cases with OCs and no ECs as well as four cases with MC carrying LoF variants in the <i>PTPN11</i> gene and two additional cases with ECs harboring variants in the <i>EXT1/2</i> genes. These findings suggest a potential overlap between the MO and MC both phenotypically and genetically. These findings highlight the importance of expanding genetic testing beyond the <i>EXT1</i> and <i>EXT2</i> genes in MO cases, as other genes such as <i>PTPN11</i> may also be causative. This can improve the accuracy of diagnosis and treatment for individuals with MO and MC. It is essential to determine whether MO and MC represent distinct diseases or if they encompass a broader clinical spectrum.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa 通过对一个视网膜色素变性家族进行靶向自适应纳米孔测序,确定 RP1 基因中 LINE-1 插入的特征
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-09 DOI: 10.1155/2024/6580561
Michael P. Backlund, Pauliina Repo, Harri Kangas, Kati Donner, Eeva-Marja Sankila, Julia Krootila, Maarjaliis Paavo, Kirmo Wartiovaara, Tero T. Kivelä, Joni A. Turunen

Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.

视网膜色素变性(RP)是一组遗传性退行性视网膜疾病,影响着全球 150 多万人。在 30-50% 的视网膜色素变性患者中,目前的临床诊断基因面板仍无法确定其遗传原因。其原因可能是新型 RP 相关基因或非编码调控区的变异,或者是复杂的基因改变,如大结构变异。长线程测序技术的最新发展为高效分析复杂的基因变异提供了机会。我们对一个芬兰家族进行了分析,该家族三代共六人患有显性遗传的 RP。两名患者接受了全面的临床检查和临床诊断基因检测,随后在我们的实验室进行了全外显子测序。他们表现出 RP 的典型症状,但初步序列分析并未发现致病变异。对测序数据的重新分析发现,在RP1轴突微管相关(RP1)基因的第4外显子中插入了一个大小未知的LINE-1(L1)反转座子。通过对 RP1 基因进行靶向自适应纳米孔测序,进一步确定了与疾病分离的大型嵌合 L1 插入物的特征,从而确定 RP1 基因中的 5.6 kb L1 转座子插入物是这个显性遗传 RP 家族的病因。
{"title":"Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa","authors":"Michael P. Backlund,&nbsp;Pauliina Repo,&nbsp;Harri Kangas,&nbsp;Kati Donner,&nbsp;Eeva-Marja Sankila,&nbsp;Julia Krootila,&nbsp;Maarjaliis Paavo,&nbsp;Kirmo Wartiovaara,&nbsp;Tero T. Kivelä,&nbsp;Joni A. Turunen","doi":"10.1155/2024/6580561","DOIUrl":"10.1155/2024/6580561","url":null,"abstract":"<p>Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (<i>RP1</i>) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of <i>RP1</i>, allowing us to identify a 5.6 kb L1 transposable element insertion in <i>RP1</i> as the cause of RP in this family with dominantly inherited RP.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139790533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa 通过对一个视网膜色素变性家族进行靶向自适应纳米孔测序,确定 RP1 基因中 LINE-1 插入的特征
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-09 DOI: 10.1155/2024/6580561
Michael P. Backlund, P. Repo, Harri Kangas, Kati Donner, Eeva-Marja Sankila, Julia Krootila, Maarjaliis Paavo, K. Wartiovaara, Tero T. Kivelä, J. Turunen
Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.
视网膜色素变性(RP)是一组遗传性退行性视网膜疾病,影响着全球 150 多万人。在 30-50% 的视网膜色素变性患者中,目前的临床诊断基因面板仍无法确定其遗传原因。其原因可能是新型 RP 相关基因或非编码调控区的变异,或者是复杂的基因改变,如大结构变异。长线程测序技术的最新发展为高效分析复杂的基因变异提供了机会。我们对一个芬兰家族进行了分析,该家族三代共六人患有显性遗传的 RP。两名患者接受了全面的临床检查和临床诊断基因检测,随后在我们的实验室进行了全外显子测序。他们表现出 RP 的典型症状,但初步序列分析并未发现致病变异。对测序数据的重新分析发现,在RP1轴突微管相关(RP1)基因的第4外显子中插入了一个大小未知的LINE-1(L1)反转座子。通过对 RP1 基因进行靶向自适应纳米孔测序,进一步确定了与疾病分离的大型嵌合 L1 插入物的特征,从而确定 RP1 基因中的 5.6 kb L1 转座子插入物是这个显性遗传 RP 家族的病因。
{"title":"Characterisation of a LINE-1 Insertion in the RP1 Gene by Targeted Adaptive Nanopore Sequencing in a Family with Retinitis Pigmentosa","authors":"Michael P. Backlund, P. Repo, Harri Kangas, Kati Donner, Eeva-Marja Sankila, Julia Krootila, Maarjaliis Paavo, K. Wartiovaara, Tero T. Kivelä, J. Turunen","doi":"10.1155/2024/6580561","DOIUrl":"https://doi.org/10.1155/2024/6580561","url":null,"abstract":"Retinitis pigmentosa (RP) is a group of inherited degenerative retinal disorders affecting more than 1.5 million people worldwide. For 30-50% of individuals with RP, the genetic cause remains unresolved by current clinical diagnostic gene panels. It is likely explained by variants in novel RP-associated genes or noncoding regulatory regions, or by complex genetic alterations such as large structural variants. Recent developments in long-read sequencing techniques have opened an opportunity for efficient analysis of complex genetic variants. We analysed a Finnish family with dominantly inherited RP affecting six individuals in three generations. Two affected individuals underwent a comprehensive clinical examination in combination with a clinical diagnostic gene panel, followed by whole exome sequencing in our laboratory. They exhibited typical signs of RP, yet initial sequence analysis found no causative variants. Reanalysis of the sequencing data detected a LINE-1 (L1) retrotransposon insertion of unknown size in exon 4 of the RP1 axonemal microtubule-associated (RP1) gene. The large chimeric L1 insertion that segregated with the disease was further characterised using targeted adaptive nanopore sequencing of RP1, allowing us to identify a 5.6 kb L1 transposable element insertion in RP1 as the cause of RP in this family with dominantly inherited RP.","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139850319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia 家族性高胆固醇血症患者 LDLR 和 PCSK9 基因 3′UTR 变异的功能分析
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-08 DOI: 10.1155/2024/9964734
Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, C. Rodríguez‐Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa
Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3′UTR regions of LDLR and PCSK9. However, 3′UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3′UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3′UTR-LDLR and 8 at 3′UTR-PCSK9. The variants’ pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G>C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C>T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3′UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.
家族性高胆固醇血症(FH)是一种常染色体显性遗传病,估计发病率为每 200-250 人中有 1 人。家族性高胆固醇血症患者过早罹患冠状动脉疾病的风险增加。早期诊断和治疗对改善临床预后至关重要。然而,在许多情况下,基因诊断并未得到确认。目前,常规基因检测并不分析 LDLR 和 PCSK9 的 3′UTR 区域。然而,3′UTR单核苷酸变异可能会引起人们的兴趣,因为它们可以改变调控这些基因表达的miRNA的靶序列。我们的研究利用新一代测序技术全面鉴定了409名疑似诊断为FH患者的LDLR和PCSK9的3′UTR区域。在 409 例患者中的 30 例中,我们发现了 21 个等位基因频率为 C 的变体,其荧光素酶表达量减少了 41%,而 PCSK9:c.∗950C>T 的 PCSK9 表达量增加了 41%,这些结果可以解释高胆固醇血症的表型。总之,对LDLR和PCSK9的3′UTR区域进行遗传分析可提高FH的基因诊断水平。
{"title":"Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia","authors":"Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, C. Rodríguez‐Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa","doi":"10.1155/2024/9964734","DOIUrl":"https://doi.org/10.1155/2024/9964734","url":null,"abstract":"Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3′UTR regions of LDLR and PCSK9. However, 3′UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3′UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3′UTR-LDLR and 8 at 3′UTR-PCSK9. The variants’ pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G>C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C>T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3′UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia 家族性高胆固醇血症患者 LDLR 和 PCSK9 基因 3′UTR 变异的功能分析
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-02-08 DOI: 10.1155/2024/9964734
Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, Carlos Rodríguez-Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa

Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3UTR regions of LDLR and PCSK9. However, 3UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3UTR-LDLR and 8 at 3UTR-PCSK9. The variants’ pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.653G > C showed a 41% decrease in luciferase expression, while PCSK9:c.950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.

家族性高胆固醇血症(FH)是一种常染色体显性遗传病,估计发病率为每 200-250 人中有 1 人。家族性高胆固醇血症患者过早罹患冠状动脉疾病的风险增加。早期诊断和治疗对改善临床预后至关重要。然而,在许多情况下,基因诊断并未得到确认。目前,常规基因检测并不分析 LDLR 和 PCSK9 的 3′UTR 区域。然而,3′UTR单核苷酸变异可能会引起人们的兴趣,因为它们可以改变调控这些基因表达的miRNA的靶序列。我们的研究利用新一代测序技术全面鉴定了409名疑似诊断为FH患者的LDLR和PCSK9的3′UTR区域。在 409 例患者中的 30 例中,我们发现了 21 个等位基因频率为 C 的变体,其荧光素酶表达量减少了 41%,而 PCSK9:c.∗950C>T 的 PCSK9 表达量增加了 41%,这些结果可以解释高胆固醇血症的表型。总之,对LDLR和PCSK9的3′UTR区域进行遗传分析可提高FH的基因诊断水平。
{"title":"Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia","authors":"Javier Sanguino Otero,&nbsp;Carmen Rodríguez-Jiménez,&nbsp;Jose Mostaza Prieto,&nbsp;Carlos Rodríguez-Antolín,&nbsp;Ana Carazo Alvarez,&nbsp;Francisco Arrieta Blanco,&nbsp;Sonia Rodríguez-Nóvoa","doi":"10.1155/2024/9964734","DOIUrl":"10.1155/2024/9964734","url":null,"abstract":"<p>Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i>. However, 3<sup>′</sup>UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of &lt;1%; 14 of them at 3<sup>′</sup>UTR-<i>LDLR</i> and 8 at 3<sup>′</sup>UTR-<i>PCSK9</i>. The variants’ pathogenicity was studied <i>in silico</i>; subsequently, a number of the variants were functionally validated using luciferase reporter assays. <i>LDLR</i>:c.<sup>∗</sup>653G &gt; C showed a 41% decrease in luciferase expression, while <i>PCSK9</i>:c.<sup>∗</sup>950C &gt; T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> could improve the genetic diagnosis of FH.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A De Novo Noncoding RARB Variant Associated with Complex Microphthalmia Alters a Putative Regulatory Element 与复杂性小眼症有关的新非编码 RARB 变异改变了一个假定的调控元件
IF 3.9 2区 医学 Q1 Medicine Pub Date : 2024-01-27 DOI: 10.1155/2024/6619280
Maria R. Replogle, Samuel Thompson, Linda M. Reis, Elena V. Semina

Retinoic acid receptor beta (RARB) is a transcriptional regulator crucial for coordinating retinoic acid- (RA-) mediated morphogenic movements, cell growth, and differentiation during eye development. Loss- or gain-of-function RARB coding variants have been associated with microphthalmia, coloboma, and anterior segment defects. We identified a de novo variant c.157+1895G>A located within a conserved region (CR1) in the first intron of RARB in an individual with complex microphthalmia and significant global developmental delay. Based on the phenotypic overlap, we further investigated the possible effects of the variant on mRNA splicing and/or transcriptional regulation through in silico and functional studies. In silico analysis identified the possibility of alternative splicing, suggested by one out of three (HSF, SpliceAI, and MaxEntScan) splicing prediction programs, and a strong indication of regulatory function based on publicly available DNase hypersensitivity, histone modification, chromatin folding, and ChIP-seq data sets. Consistent with the predictions of SpliceAI and MaxEntScan, in vitro minigene assays showed no effect on RARB mRNA splicing. Evaluation of CR1 for a regulatory role using luciferase reporter assays in human lens epithelial cells demonstrated a significant increase in the activity of the RARB promoter in the presence of wild-type CR1. This activity was further significantly increased in the presence of CR1 carrying the c.157+1895G>A variant, suggesting that the variant may promote RARB overexpression in human cells. Induction of RARB overexpression in human lens epithelial cells resulted in increased cell proliferation and elevated expression of FOXC1, a known downstream target of RA signaling and a transcription factor whose down- and upregulation is associated with ocular phenotypes overlapping the RARB spectrum. These results support a regulatory role for the CR1 element and suggest that the de novo c.157+1895G>A variant affecting this region may alter the proper regulation of RARB and, as a result, its downstream genes, possibly leading to abnormal development.

视黄酸受体 beta(RARB)是一种转录调节因子,在眼部发育过程中对协调视黄酸(RA)介导的形态发生运动、细胞生长和分化至关重要。功能缺失或增益的 RARB 编码变异与小眼症、黑眼症和前节段缺陷有关。我们在一名患有复杂性小眼症和严重的全身发育迟缓的患者身上发现了一个位于 RARB 第一个内含子保守区(CR1)的新变异 c.157+1895G>A。基于表型重叠,我们通过硅学和功能研究进一步调查了该变异对 mRNA 剪接和/或转录调控可能产生的影响。硅学分析发现,三个剪接预测程序(HSF、SpliceAI 和 MaxEntScan)中的一个程序认为该变异可能存在替代剪接,而公开的 DNase 超敏反应、组蛋白修饰、染色质折叠和 ChIP-seq 数据集则有力地表明了该变异的调控功能。与 SpliceAI 和 MaxEntScan 的预测结果一致,体外微型基因测定显示 RARB mRNA 的剪接没有受到影响。在人类晶状体上皮细胞中使用荧光素酶报告实验评估 CR1 的调控作用,结果表明在野生型 CR1 存在的情况下,RARB 启动子的活性显著增加。在携带 c.157+1895G>A 变异的 CR1 存在的情况下,该活性进一步显著增加,这表明该变异可能会促进 RARB 在人体细胞中的过表达。在人类晶状体上皮细胞中诱导 RARB 过表达会导致细胞增殖增加和 FOXC1 表达升高,FOXC1 是已知的 RA 信号转导下游靶标,也是一种转录因子,其下调和上调与 RARB 光谱重叠的眼部表型相关。这些结果支持 CR1 基因的调控作用,并表明影响该区域的 c.157+1895G>A 基因变异可能会改变 RARB 的正常调控,并因此改变其下游基因,从而可能导致发育异常。
{"title":"A De Novo Noncoding RARB Variant Associated with Complex Microphthalmia Alters a Putative Regulatory Element","authors":"Maria R. Replogle,&nbsp;Samuel Thompson,&nbsp;Linda M. Reis,&nbsp;Elena V. Semina","doi":"10.1155/2024/6619280","DOIUrl":"10.1155/2024/6619280","url":null,"abstract":"<p>Retinoic acid receptor beta (<i>RARB</i>) is a transcriptional regulator crucial for coordinating retinoic acid- (RA-) mediated morphogenic movements, cell growth, and differentiation during eye development. Loss- or gain-of-function <i>RARB</i> coding variants have been associated with microphthalmia, coloboma, and anterior segment defects. We identified a <i>de novo</i> variant c.157+1895G&gt;A located within a conserved region (CR1) in the first intron of <i>RARB</i> in an individual with complex microphthalmia and significant global developmental delay. Based on the phenotypic overlap, we further investigated the possible effects of the variant on mRNA splicing and/or transcriptional regulation through <i>in silico</i> and functional studies. <i>In silico</i> analysis identified the possibility of alternative splicing, suggested by one out of three (HSF, SpliceAI, and MaxEntScan) splicing prediction programs, and a strong indication of regulatory function based on publicly available DNase hypersensitivity, histone modification, chromatin folding, and ChIP-seq data sets. Consistent with the predictions of SpliceAI and MaxEntScan, <i>in vitro</i> minigene assays showed no effect on <i>RARB</i> mRNA splicing. Evaluation of CR1 for a regulatory role using luciferase reporter assays in human lens epithelial cells demonstrated a significant increase in the activity of the <i>RARB</i> promoter in the presence of wild-type CR1. This activity was further significantly increased in the presence of CR1 carrying the c.157+1895G&gt;A variant, suggesting that the variant may promote <i>RARB</i> overexpression in human cells. Induction of <i>RARB</i> overexpression in human lens epithelial cells resulted in increased cell proliferation and elevated expression of <i>FOXC1</i>, a known downstream target of RA signaling and a transcription factor whose down- and upregulation is associated with ocular phenotypes overlapping the <i>RARB</i> spectrum. These results support a regulatory role for the CR1 element and suggest that the <i>de novo</i> c.157+1895G&gt;A variant affecting this region may alter the proper regulation of <i>RARB</i> and, as a result, its downstream genes, possibly leading to abnormal development.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139592340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Human Mutation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1