首页 > 最新文献

IEEE Transactions on Circuits and Systems for Video Technology最新文献

英文 中文
Dual Protection for Image Privacy and Copyright via Traceable Adversarial Examples 通过可追溯反向示例实现图像隐私和版权的双重保护
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/tcsvt.2024.3448351
Ming Li, Zhaoli Yang, Tao Wang, Yushu Zhang, Wenying Wen
{"title":"Dual Protection for Image Privacy and Copyright via Traceable Adversarial Examples","authors":"Ming Li, Zhaoli Yang, Tao Wang, Yushu Zhang, Wenying Wen","doi":"10.1109/tcsvt.2024.3448351","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3448351","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"9 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic, Robust and Blind Video Watermarking Resisting Camera Recording 自动、鲁棒性和盲视频水印,可抵御摄像头拍摄
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/tcsvt.2024.3448502
Lina Lin, Deyang Wu, Jiayan Wang, Yanli Chen, Xinpeng Zhang, Hanzhou Wu
{"title":"Automatic, Robust and Blind Video Watermarking Resisting Camera Recording","authors":"Lina Lin, Deyang Wu, Jiayan Wang, Yanli Chen, Xinpeng Zhang, Hanzhou Wu","doi":"10.1109/tcsvt.2024.3448502","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3448502","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"383 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
F2CENet: Single-Image Object Counting Based on Block Co-saliency Density Map Estimation F2CENet:基于块共锯齿密度图估算的单张图像物体计数
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/tcsvt.2024.3449070
Xuehui Wu, Huanliang Xu, Henry Leung, Xiaobo Lu, Yanbin Li
{"title":"F2CENet: Single-Image Object Counting Based on Block Co-saliency Density Map Estimation","authors":"Xuehui Wu, Huanliang Xu, Henry Leung, Xiaobo Lu, Yanbin Li","doi":"10.1109/tcsvt.2024.3449070","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3449070","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"31 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Introduction to the Special Issue on Label-Efficient Learning on Video Data 视频数据标签高效学习》特刊特邀编辑导言
IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-13 DOI: 10.1109/TCSVT.2024.3418228
Wenguan Wang;Tianfei Zhou;Dongfang Liu;Zheng Thomas Tang;Alexander C. Loui
Currently, the success of image processing relies heavily on large well-annotated datasets. However, collecting and labeling video data are significantly more labor-intensive, posing major challenges for training video algorithms and limiting their practical applications. While label-efficient techniques for image data have advanced, solutions for video data are still emerging. Unlabeled video data, with their inherent structured nature, offer valuable assets for label-efficient learning. Unlike image data, video data naturally captures realistic transformations, providing rich samples for learning. Moreover, from a border perspective, video tasks hold great potential for applications like autonomous driving and video surveillance but present unique challenges due to the need to understand both spatial and temporal aspects. Leveraging label-efficient learning is essential for comprehensively understanding visual content and enabling a wide range of real-world video applications. This Special Issue on “Label-Efficient Learning for Video Data” seeks to advance research in this area, offering new insights and solutions to benefit both researchers and practitioners.
目前,图像处理的成功在很大程度上依赖于大量标注良好的数据集。然而,收集和标注视频数据要耗费大量人力物力,这给视频算法的训练带来了巨大挑战,也限制了视频算法的实际应用。虽然针对图像数据的标签高效技术已经取得了进步,但针对视频数据的解决方案仍在不断涌现。无标签视频数据具有固有的结构化特性,为标签高效学习提供了宝贵的资产。与图像数据不同,视频数据能自然捕捉真实的变换,为学习提供丰富的样本。此外,从边界的角度来看,视频任务在自动驾驶和视频监控等应用中具有巨大的潜力,但由于需要同时了解空间和时间方面,因此也带来了独特的挑战。利用标签高效学习对于全面理解视觉内容和实现广泛的真实世界视频应用至关重要。本特刊的主题是 "视频数据的标签高效学习",旨在推动该领域的研究,为研究人员和从业人员提供新的见解和解决方案。
{"title":"Guest Editorial Introduction to the Special Issue on Label-Efficient Learning on Video Data","authors":"Wenguan Wang;Tianfei Zhou;Dongfang Liu;Zheng Thomas Tang;Alexander C. Loui","doi":"10.1109/TCSVT.2024.3418228","DOIUrl":"https://doi.org/10.1109/TCSVT.2024.3418228","url":null,"abstract":"Currently, the success of image processing relies heavily on large well-annotated datasets. However, collecting and labeling video data are significantly more labor-intensive, posing major challenges for training video algorithms and limiting their practical applications. While label-efficient techniques for image data have advanced, solutions for video data are still emerging. Unlabeled video data, with their inherent structured nature, offer valuable assets for label-efficient learning. Unlike image data, video data naturally captures realistic transformations, providing rich samples for learning. Moreover, from a border perspective, video tasks hold great potential for applications like autonomous driving and video surveillance but present unique challenges due to the need to understand both spatial and temporal aspects. Leveraging label-efficient learning is essential for comprehensively understanding visual content and enabling a wide range of real-world video applications. This Special Issue on “Label-Efficient Learning for Video Data” seeks to advance research in this area, offering new insights and solutions to benefit both researchers and practitioners.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 8","pages":"6615-6619"},"PeriodicalIF":8.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10634312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Circuits and Systems for Video Technology Publication Information IEEE 视频技术电路与系统论文集》出版信息
IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-12 DOI: 10.1109/TCSVT.2024.3436237
{"title":"IEEE Transactions on Circuits and Systems for Video Technology Publication Information","authors":"","doi":"10.1109/TCSVT.2024.3436237","DOIUrl":"https://doi.org/10.1109/TCSVT.2024.3436237","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 8","pages":"C2-C2"},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10634007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the Special Issue on AI-Generated Content for Multimedia 人工智能生成的多媒体内容特刊简介
IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-12 DOI: 10.1109/TCSVT.2024.3427488
Shengxi Li;Xuelong Li;Leonardo Chiariglione;Jiebo Luo;Wenwu Wang;Zhengyuan Yang;Danilo Mandic;Hamido Fujita
Our world is becoming rapidly dependent on data of increasing complexity, diversity, and volume which calls for robust and powerful tools to process such big data. Probabilistic generative models fulfill this goal by learning latent characteristic data relations, especially for the recent emergence of large-scale deep generative models that are able to create realistic content, namely, artificial intelligence-generated content (AIGC). The applications of AIGC span across various domains, and witness rich potential in multimedia content creation, including dialog generation, text-to-speech conversion, image/video generation, and cross-modal content generation.
我们的世界正变得越来越依赖于复杂性、多样性和数量不断增加的数据,这就需要强大而有力的工具来处理这些大数据。概率生成模型通过学习潜在的特征数据关系实现了这一目标,特别是最近出现的大规模深度生成模型,能够创建逼真的内容,即人工智能生成内容(AIGC)。人工智能生成内容(AIGC)的应用横跨多个领域,在多媒体内容创建方面具有巨大潜力,包括对话生成、文本到语音转换、图像/视频生成和跨模态内容生成。
{"title":"Introduction to the Special Issue on AI-Generated Content for Multimedia","authors":"Shengxi Li;Xuelong Li;Leonardo Chiariglione;Jiebo Luo;Wenwu Wang;Zhengyuan Yang;Danilo Mandic;Hamido Fujita","doi":"10.1109/TCSVT.2024.3427488","DOIUrl":"https://doi.org/10.1109/TCSVT.2024.3427488","url":null,"abstract":"Our world is becoming rapidly dependent on data of increasing complexity, diversity, and volume which calls for robust and powerful tools to process such big data. Probabilistic generative models fulfill this goal by learning latent characteristic data relations, especially for the recent emergence of large-scale deep generative models that are able to create realistic content, namely, artificial intelligence-generated content (AIGC). The applications of AIGC span across various domains, and witness rich potential in multimedia content creation, including dialog generation, text-to-speech conversion, image/video generation, and cross-modal content generation.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 8","pages":"6809-6813"},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10634078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Circuits and Systems Society Information 电气和电子工程师学会电路与系统协会信息
IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-12 DOI: 10.1109/TCSVT.2024.3436239
{"title":"IEEE Circuits and Systems Society Information","authors":"","doi":"10.1109/TCSVT.2024.3436239","DOIUrl":"https://doi.org/10.1109/TCSVT.2024.3436239","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 8","pages":"C3-C3"},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10634008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and Authentication DiffVein:用于指静脉分割和身份验证的统一扩散网络
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-09 DOI: 10.1109/tcsvt.2024.3404865
Yanjun Liu, Wenming Yang, Qingmin Liao
{"title":"DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and Authentication","authors":"Yanjun Liu, Wenming Yang, Qingmin Liao","doi":"10.1109/tcsvt.2024.3404865","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3404865","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"23 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preprocessing Enhanced Image Compression for Machine Vision 用于机器视觉的预处理增强型图像压缩技术
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-09 DOI: 10.1109/tcsvt.2024.3441049
Guo Lu, Xingtong Ge, Tianxiong Zhong, Qiang Hu, Jing Geng
{"title":"Preprocessing Enhanced Image Compression for Machine Vision","authors":"Guo Lu, Xingtong Ge, Tianxiong Zhong, Qiang Hu, Jing Geng","doi":"10.1109/tcsvt.2024.3441049","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3441049","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"8 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Common Feature Mining for Efficient Video Semantic Segmentation 挖掘深度共性特征,实现高效视频语义分割
IF 8.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-09 DOI: 10.1109/tcsvt.2024.3441036
Yaoyan Zheng, Hongyu Yang, Di Huang
{"title":"Deep Common Feature Mining for Efficient Video Semantic Segmentation","authors":"Yaoyan Zheng, Hongyu Yang, Di Huang","doi":"10.1109/tcsvt.2024.3441036","DOIUrl":"https://doi.org/10.1109/tcsvt.2024.3441036","url":null,"abstract":"","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"58 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Circuits and Systems for Video Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1