Pub Date : 2024-01-02DOI: 10.1007/s13577-023-01019-w
Changsheng Wang, Rongsheng Chen, Xitian Zhu, Xiaobo Zhang, Nancheng Lian
This study aims to explore the functions and mechanisms of long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) in chronic constriction injury (CCI)-induced neuropathic pain (NP). An NP rat model was established using the CCI method and the NP severity was evaluated by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The expression of SNHG5, CDK9, and SCN9A was quantified in rat dorsal root ganglion, in addition to the detections of apoptosis, pathological changes, neuron number, and the co-localization of Nav1.7 and cleaved caspase-3 with NeuN. In ND7/23 cells, the apoptosis and lactate dehydrogenase concentration were assessed, as well as the relationship between SNHG5, CDK9, and SCN9A. In the dorsal root ganglion of CCI-treated rats, SNHG5 and SCN9A were upregulated and downregulation of SNHG5 suppressed SCN9A expression, increased the PWT and PWL, blocked neuroinflammation and neuronal apoptosis, and alleviated NP. Mechanistically, SNHG5 recruited CDK9 to enhance SCN9A-encoded Nav1.7 expression and promoted peripheral neuronal apoptosis and injury. In addition, SCN9A overexpression nullified the alleviative effects of SNHG5 deficiency on NP and neuron loss in CCI rats. In conclusion, SNHG5 promotes SCN9A-encoded Nav1.7 expression by recruiting CDK9, thereby facilitating neuron loss and NP after spinal nerve injury, which may offer a promising target for the management of NP.
{"title":"Long noncoding RNA small nucleolar RNA host gene 5 facilitates neuropathic pain in spinal nerve injury by promoting SCN9A expression via CDK9","authors":"Changsheng Wang, Rongsheng Chen, Xitian Zhu, Xiaobo Zhang, Nancheng Lian","doi":"10.1007/s13577-023-01019-w","DOIUrl":"https://doi.org/10.1007/s13577-023-01019-w","url":null,"abstract":"<p>This study aims to explore the functions and mechanisms of long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) in chronic constriction injury (CCI)-induced neuropathic pain (NP). An NP rat model was established using the CCI method and the NP severity was evaluated by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The expression of SNHG5, CDK9, and SCN9A was quantified in rat dorsal root ganglion, in addition to the detections of apoptosis, pathological changes, neuron number, and the co-localization of Nav1.7 and cleaved caspase-3 with NeuN. In ND7/23 cells, the apoptosis and lactate dehydrogenase concentration were assessed, as well as the relationship between SNHG5, CDK9, and SCN9A. In the dorsal root ganglion of CCI-treated rats, SNHG5 and SCN9A were upregulated and downregulation of SNHG5 suppressed SCN9A expression, increased the PWT and PWL, blocked neuroinflammation and neuronal apoptosis, and alleviated NP. Mechanistically, SNHG5 recruited CDK9 to enhance SCN9A-encoded Nav1.7 expression and promoted peripheral neuronal apoptosis and injury. In addition, SCN9A overexpression nullified the alleviative effects of SNHG5 deficiency on NP and neuron loss in CCI rats. In conclusion, SNHG5 promotes SCN9A-encoded Nav1.7 expression by recruiting CDK9, thereby facilitating neuron loss and NP after spinal nerve injury, which may offer a promising target for the management of NP.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"27 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139083540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.
支气管肺发育不良(BPD)是新生儿的一种常见肺部疾病,与多种并发症和高死亡率有关。使用间充质干细胞(MSCs)治疗支气管肺发育不良是一种很有前景的方法,但目前使用间充质干细胞治疗存在安全性问题,包括血管闭塞和致瘤性。在这项研究中,我们下载了2023年1月《科学网核心文库》(Web of Science Core Collection)中的相关出版物。利用 CiteSpace 软件对获取的数据进行了分析,并预测了该领域的趋势和热点。结果显示,近年来,共引参考文献的焦点主要集中在间充质干细胞的临床研究以及间充质干细胞衍生物在治疗BPD模型中的应用。备受关注的关键词是细胞外囊泡和外泌体。美国已成为该领域最有影响力的合著国。在合著期刊中,《美国呼吸与危重症医学杂志》的影响力最大。因此,本研究提供了论文发表、合作、研究兴趣和热点方面的趋势,并为间充质干细胞进一步治疗BPD的新思路和策略提供了线索。
{"title":"Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia","authors":"Meng Ao, Heqian Ma, Meizhen Guo, Xuelin Dai, Xiaoying Zhang","doi":"10.1007/s13577-023-01018-x","DOIUrl":"https://doi.org/10.1007/s13577-023-01018-x","url":null,"abstract":"<p>Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus,<b> t</b>his study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"121 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.
{"title":"Generation of iPSC lines (KAIMRCi003A, KAIMRCi003B) from a Saudi patient with Dravet syndrome carrying homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A","authors":"Maryam Alowaysi, Mohammad Al-Shehri, Amani Badkok, Hanouf Attas, Doaa Aboalola, Moayad Baadhaim, Hajar Alzahrani, Mustafa Daghestani, Asima Zia, Khalid Al-Ghamdi, Asayil Al-Ghamdi, Samer Zakri, Sihem Aouabdi, Jesper Tegner, Khaled Alsayegh","doi":"10.1007/s13577-023-01016-z","DOIUrl":"https://doi.org/10.1007/s13577-023-01016-z","url":null,"abstract":"<p>The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"25 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138744710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1007/s13577-023-01008-z
Nengqing Liu, Yi Cheng, Ding Wang, Hongmei Guan, Diyu Chen, Juan Zeng, Dian Lu, Yuanshuai Li, Yinghong Yang, Qian Luo, Lifen Zhu, Bin Jiang, Xiaofang Sun, Bing Song
Amniotic fluid derived mesenchymal stem cells (AFMSCs), shed along the fetal development, exhibit superior multipotency and immunomodulatory properties compared to MSCs derived from other somatic tissues (e.g., bone marrow and fat). However, AFMSCs display heterogeneity due to source ambiguity, making them an underutilized stem cells source for translational clinical trials. Consequently, there is an urgent need to identify a method to purify the AFMSCs for clinical use. We found that the AFMSCs can be categorized into three distinct groups: kidney-specific AFMSCs (AFMSCs-K), lung-specific AFMSCs (AFMSCs-L), and AFMSCs with an undefined tissue source (AFMSCs-X). This classification was based on tissue-specific gene expression pattern of single cell colony. Additionally, we observed that AFMSCs-X, a minority population within the AFMSCs, exhibited the highest multipotency, proliferation, resistance to senescence and immuno-modulation. Our results showed that AFMSCs-X significantly improved survival rates and reduced bacterial colony forming units (CFU) in cecal ligation and puncture (CLP)-induced septic mice. Therefore, our study introduces a novel classification method to enhance the consistency and efficacy of AFMSCs. These subpopulations, originating from different tissue source, may offer a valuable and innovative resource of cells for regenerative medicine purposes.
{"title":"Tissue-specific populations from amniotic fluid-derived mesenchymal stem cells manifest variant in vitro and in vivo properties","authors":"Nengqing Liu, Yi Cheng, Ding Wang, Hongmei Guan, Diyu Chen, Juan Zeng, Dian Lu, Yuanshuai Li, Yinghong Yang, Qian Luo, Lifen Zhu, Bin Jiang, Xiaofang Sun, Bing Song","doi":"10.1007/s13577-023-01008-z","DOIUrl":"https://doi.org/10.1007/s13577-023-01008-z","url":null,"abstract":"<p>Amniotic fluid derived mesenchymal stem cells (AFMSCs), shed along the fetal development, exhibit superior multipotency and immunomodulatory properties compared to MSCs derived from other somatic tissues (e.g., bone marrow and fat). However, AFMSCs display heterogeneity due to source ambiguity, making them an underutilized stem cells source for translational clinical trials. Consequently, there is an urgent need to identify a method to purify the AFMSCs for clinical use. We found that the AFMSCs can be categorized into three distinct groups: kidney-specific AFMSCs (AFMSCs-K), lung-specific AFMSCs (AFMSCs-L), and AFMSCs with an undefined tissue source (AFMSCs-X). This classification was based on tissue-specific gene expression pattern of single cell colony. Additionally, we observed that AFMSCs-X, a minority population within the AFMSCs, exhibited the highest multipotency, proliferation, resistance to senescence and immuno-modulation. Our results showed that AFMSCs-X significantly improved survival rates and reduced bacterial colony forming units (CFU) in cecal ligation and puncture (CLP)-induced septic mice. Therefore, our study introduces a novel classification method to enhance the consistency and efficacy of AFMSCs. These subpopulations, originating from different tissue source, may offer a valuable and innovative resource of cells for regenerative medicine purposes.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"9 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1007/s13577-023-01011-4
Meimei Yang, Jing He, Sixuan Xia, Yudong Wang, Jun Xiong, Cong Liao, Nan Li, Sanfu Qu, Chao Shen
Human cancer cell lines have an essential role in cancer research, but only authentic cell lines should be used as biological models. Authentication testing using short tandem repeat (STR) loci has shown that MGC-803 cells, which were reported to come from gastric adenocarcinoma, are similar to HeLa. In this study, we confirmed that the MGC-803 cell line contains genetic material from HeLa, including genetic sequence from human papilloma virus 18 (HPV18). Additional alleles were present on STR analysis that remained stable after extensive passaging and generation of mono-clones. This behavior is consistent with a hybrid cell line arising from cell–cell fusion. Further genetic analysis revealed that MGC-803 originated from donors with different genetic ancestries, one African (HeLa) and the other Asian. Transcriptomic analysis demonstrated that MGC-803 closely resembles HeLa and another nasopharyngeal–HeLa hybrid cell line CNE-2. Based on these findings, we conclude that MGC-803 is a hybrid cell line derived from HeLa and other cells, the latter derived from a different patient with Asian genetic ancestry.
人类癌症细胞系在癌症研究中发挥着重要作用,但只有真实的细胞系才能被用作生物模型。使用短串联重复(STR)位点进行的鉴定测试表明,据报道来自胃腺癌的 MGC-803 细胞与 HeLa 相似。在本研究中,我们证实 MGC-803 细胞系含有来自 HeLa 的遗传物质,包括人类乳头状瘤病毒 18(HPV18)的遗传序列。在 STR 分析中还发现了其他等位基因,这些等位基因在经过大量传代和单克隆产生后仍然保持稳定。这种行为与细胞-细胞融合产生的杂交细胞系一致。进一步的遗传分析表明,MGC-803 源自不同基因血统的供体,一个是非洲人(HeLa),另一个是亚洲人。转录组分析表明,MGC-803 与 HeLa 和另一种鼻咽-HeLa 杂交细胞株 CNE-2 非常相似。基于这些研究结果,我们得出结论:MGC-803 是一种杂交细胞系,它来源于 HeLa 和其他细胞,后者来源于另一位具有亚洲遗传血统的患者。
{"title":"Investigation of the mixed origins of the MGC-803 cell line reveals that it is a hybrid cell line derived from HeLa","authors":"Meimei Yang, Jing He, Sixuan Xia, Yudong Wang, Jun Xiong, Cong Liao, Nan Li, Sanfu Qu, Chao Shen","doi":"10.1007/s13577-023-01011-4","DOIUrl":"https://doi.org/10.1007/s13577-023-01011-4","url":null,"abstract":"<p>Human cancer cell lines have an essential role in cancer research, but only authentic cell lines should be used as biological models. Authentication testing using short tandem repeat (STR) loci has shown that MGC-803 cells, which were reported to come from gastric adenocarcinoma, are similar to HeLa. In this study, we confirmed that the MGC-803 cell line contains genetic material from HeLa, including genetic sequence from human papilloma virus 18 (HPV18). Additional alleles were present on STR analysis that remained stable after extensive passaging and generation of mono-clones. This behavior is consistent with a hybrid cell line arising from cell–cell fusion. Further genetic analysis revealed that MGC-803 originated from donors with different genetic ancestries, one African (HeLa) and the other Asian. Transcriptomic analysis demonstrated that MGC-803 closely resembles HeLa and another nasopharyngeal–HeLa hybrid cell line CNE-2. Based on these findings, we conclude that MGC-803 is a hybrid cell line derived from HeLa and other cells, the latter derived from a different patient with Asian genetic ancestry.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"60 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138566954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1007/s13577-023-01013-2
Jing Yi Lee, Peiyong Guan, Abner Herbert Lim, Zexi Guo, Zhimei Li, Jessica Sook Ting Kok, Elizabeth Chun Yong Lee, Boon Yee Lim, Bavani Kannan, Jui Wan Loh, Cedric Chuan-Young Ng, Kah Suan Lim, Bin Tean Teh, Tun Kiat Ko, Jason Yongsheng Chan
Solitary fibrous tumor/Hemangiopericytoma (SFT/HPC) is a rare subtype of soft tissue sarcoma harboring NAB2–STAT6 gene fusions. Mechanistic studies and therapeutic development on SFT/HPC are impeded by scarcity and lack of system models. In this study, we established and characterized a novel SFT/HPC patient-derived cell line (PDC), SFT-S1, and screened for potential drug candidates that could be repurposed for the treatment of SFT/HPC. Immunohistochemistry profiles of the PDC was consistent with the patient’s tumor sample (CD99+/CD34+/desmin−). RNA sequencing, followed by Sanger sequencing confirmed the pathognomonic NAB2exon3–STAT6exon18 fusion in both the PDC and the original tumor. Transcriptomic data showed strong enrichment for oncogenic pathways (epithelial–mesenchymal transition, FGF, EGR1 and TGFβ signaling pathways) in the tumor. Whole genome sequencing identified potentially pathogenic somatic variants such as MAGEA10 and ABCA2. Among a panel of 14 targeted agents screened, dasatinib was identified to be the most potent small molecule inhibitor against the PDC (IC50, 473 nM), followed by osimertinib (IC50, 730 nM) and sunitinib (IC50, 1765 nM). Methylation profiling of the tumor suggests that this specific variant of SFT/HPC could lead to genome-wide hypomethylation. In conclusion, we established a novel PDC model of SFT/HPC with comprehensive characterization of its genomic, epigenomic and transcriptomic landscape, which can facilitate future preclinical studies of SFT/HPC, such as in vitro drug screening and in vivo drug testing.
{"title":"Establishment and characterization of a patient-derived solitary fibrous tumor/hemangiopericytoma cell line model","authors":"Jing Yi Lee, Peiyong Guan, Abner Herbert Lim, Zexi Guo, Zhimei Li, Jessica Sook Ting Kok, Elizabeth Chun Yong Lee, Boon Yee Lim, Bavani Kannan, Jui Wan Loh, Cedric Chuan-Young Ng, Kah Suan Lim, Bin Tean Teh, Tun Kiat Ko, Jason Yongsheng Chan","doi":"10.1007/s13577-023-01013-2","DOIUrl":"https://doi.org/10.1007/s13577-023-01013-2","url":null,"abstract":"<p>Solitary fibrous tumor/Hemangiopericytoma (SFT/HPC) is a rare subtype of soft tissue sarcoma harboring <i>NAB2–STAT6</i> gene fusions. Mechanistic studies and therapeutic development on SFT/HPC are impeded by scarcity and lack of system models. In this study, we established and characterized a novel SFT/HPC patient-derived cell line (PDC), SFT-S1, and screened for potential drug candidates that could be repurposed for the treatment of SFT/HPC. Immunohistochemistry profiles of the PDC was consistent with the patient’s tumor sample (CD99+/CD34+/desmin−). RNA sequencing, followed by Sanger sequencing confirmed the pathognomonic <i>NAB2</i>exon3–<i>STAT6</i>exon18 fusion in both the PDC and the original tumor. Transcriptomic data showed strong enrichment for oncogenic pathways (epithelial–mesenchymal transition, FGF, EGR1 and TGFβ signaling pathways) in the tumor. Whole genome sequencing identified potentially pathogenic somatic variants such as <i>MAGEA10</i> and <i>ABCA2</i>. Among a panel of 14 targeted agents screened, dasatinib was identified to be the most potent small molecule inhibitor against the PDC (IC<sub>50</sub>, 473 nM), followed by osimertinib (IC<sub>50</sub>, 730 nM) and sunitinib (IC<sub>50</sub>, 1765 nM). Methylation profiling of the tumor suggests that this specific variant of SFT/HPC could lead to genome-wide hypomethylation. In conclusion, we established a novel PDC model of SFT/HPC with comprehensive characterization of its genomic, epigenomic and transcriptomic landscape, which can facilitate future preclinical studies of SFT/HPC, such as in vitro drug screening and in vivo drug testing.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"36 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01Epub Date: 2022-08-09DOI: 10.1007/s13577-022-00753-x
Ziang Yang, Bei Xu, Sheng Wu, Weige Yang, Rongkui Luo, Shengkai Geng, Zhaochen Xin, Wen Jin, Xiong Shen, Xixi Gu, Hongwei Zhang, Hong Wang
Mesenchymal stromal cells (MSCs) play an important role in the development of human cancer. Meanwhile, exosomes released by MSCs can mediate cell-cell communication by delivering microRNAs (miRNAs/miRs). Hence, this study aimed to explore the role of bone marrow mesenchymal stromal cell (BMSC)-derived exosomal miR-551b-3p in breast cancer. In this study, we found that upregulation of miR-551b-5p suppressed the proliferation and migration and induced the apoptosis of breast cancer cells via downregulating tripartite motif-containing protein 31 (TRIM31). In addition, miR-551b-5p could be transferred from BMSCs to breast cancer cells via exosomes; BMSC-derived exosomal miR-551b-3p suppressed the proliferation and migration and promoted the apoptosis and oxidative stress of MDA-MB-231 cells via inhibiting TRIM31. Furthermore, a xenograft mouse model was used to explore the role of BMSC-derived exosomal miR-551b-3p in vivo. We found that BMSC-derived exosomal miR-551b-3p inhibited tumor growth in a mouse xenograft model of breast cancer in vivo. Collectively, these findings indicated that BMSC-derived exosomal miR-551b-3p could suppress the development of breast cancer via downregulating TRIM31. Thus, miR-551b-3p could serve as a potential target for the treatment of breast cancer.
间充质间质细胞(MSCs)在人类癌症的发生发展中起着重要作用。同时,MSCs释放的外泌体可以通过传递microRNAs (miRNAs/miRs)介导细胞间通讯。因此,本研究旨在探讨骨髓间充质间质细胞(BMSC)来源的外泌体miR-551b-3p在乳腺癌中的作用。在本研究中,我们发现上调miR-551b-5p通过下调TRIM31 (tripartite motif-containing protein 31)抑制乳腺癌细胞的增殖和迁移,诱导乳腺癌细胞凋亡。此外,miR-551b-5p可以通过外泌体从骨髓间充质干细胞转移到乳腺癌细胞;bmsc来源的外泌体miR-551b-3p通过抑制TRIM31抑制MDA-MB-231细胞的增殖和迁移,促进细胞凋亡和氧化应激。此外,采用异种移植小鼠模型来探索bmsc来源的外泌体miR-551b-3p在体内的作用。我们发现骨髓间充质干细胞来源的外泌体miR-551b-3p在小鼠乳腺癌异种移植模型中抑制肿瘤生长。总之,这些发现表明bmsc来源的外泌体miR-551b-3p可以通过下调TRIM31来抑制乳腺癌的发展。因此,miR-551b-3p可以作为治疗乳腺癌的潜在靶点。
{"title":"Exosomal microRNA-551b-3p from bone marrow-derived mesenchymal stromal cells inhibits breast cancer progression via regulating TRIM31/Akt signaling.","authors":"Ziang Yang, Bei Xu, Sheng Wu, Weige Yang, Rongkui Luo, Shengkai Geng, Zhaochen Xin, Wen Jin, Xiong Shen, Xixi Gu, Hongwei Zhang, Hong Wang","doi":"10.1007/s13577-022-00753-x","DOIUrl":"https://doi.org/10.1007/s13577-022-00753-x","url":null,"abstract":"<p><p>Mesenchymal stromal cells (MSCs) play an important role in the development of human cancer. Meanwhile, exosomes released by MSCs can mediate cell-cell communication by delivering microRNAs (miRNAs/miRs). Hence, this study aimed to explore the role of bone marrow mesenchymal stromal cell (BMSC)-derived exosomal miR-551b-3p in breast cancer. In this study, we found that upregulation of miR-551b-5p suppressed the proliferation and migration and induced the apoptosis of breast cancer cells via downregulating tripartite motif-containing protein 31 (TRIM31). In addition, miR-551b-5p could be transferred from BMSCs to breast cancer cells via exosomes; BMSC-derived exosomal miR-551b-3p suppressed the proliferation and migration and promoted the apoptosis and oxidative stress of MDA-MB-231 cells via inhibiting TRIM31. Furthermore, a xenograft mouse model was used to explore the role of BMSC-derived exosomal miR-551b-3p in vivo. We found that BMSC-derived exosomal miR-551b-3p inhibited tumor growth in a mouse xenograft model of breast cancer in vivo. Collectively, these findings indicated that BMSC-derived exosomal miR-551b-3p could suppress the development of breast cancer via downregulating TRIM31. Thus, miR-551b-3p could serve as a potential target for the treatment of breast cancer.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1797-1812"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40679711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-small cell lung cancer (NSCLC) is the malignancy with highest mortality and morbidity. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells in the tumor microenvironment of NSCLC. This research is performed to explore the biological functions of pirfenidone (PFD) to repress the malignant phenotypes of NSCLC cells, and its regulatory effects on exosomal microRNA-200 (exo-miR-200) derived from CAFs. In the present work, we report that, exo-miR-200 secreted by CAFs restrains the migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells; PFD treatment promotes the secretion of exo-miR-200 from CAFs and enhances the tumor-suppressive properties of exo-miR-200 on NSCLC cells; zinc finger E-box binding homeobox 1 (ZEB1) is identified as a target of miR-200, and PFD treatment repressed the expression of ZEB1 in NSCLC cells via inducing the expression and secretion of miR-200 in CAFs. In conclusion, PFD-induced miR-200 overexpression in CAFs inhibits ZEB1 expression in NSCLC cells, and thus decelerates the migration, invasion and EMT process. Our study may provide clues for the treatment of NSCLC.
{"title":"Pirfenidone promotes the levels of exosomal miR-200 to down-regulate ZEB1 and represses the epithelial-mesenchymal transition of non-small cell lung cancer cells.","authors":"Jingjing Liu, Liming Cao, Yuanyuan Li, Pengbo Deng, Pinhua Pan, Chengping Hu, Huaping Yang","doi":"10.1007/s13577-022-00766-6","DOIUrl":"https://doi.org/10.1007/s13577-022-00766-6","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is the malignancy with highest mortality and morbidity. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells in the tumor microenvironment of NSCLC. This research is performed to explore the biological functions of pirfenidone (PFD) to repress the malignant phenotypes of NSCLC cells, and its regulatory effects on exosomal microRNA-200 (exo-miR-200) derived from CAFs. In the present work, we report that, exo-miR-200 secreted by CAFs restrains the migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells; PFD treatment promotes the secretion of exo-miR-200 from CAFs and enhances the tumor-suppressive properties of exo-miR-200 on NSCLC cells; zinc finger E-box binding homeobox 1 (ZEB1) is identified as a target of miR-200, and PFD treatment repressed the expression of ZEB1 in NSCLC cells via inducing the expression and secretion of miR-200 in CAFs. In conclusion, PFD-induced miR-200 overexpression in CAFs inhibits ZEB1 expression in NSCLC cells, and thus decelerates the migration, invasion and EMT process. Our study may provide clues for the treatment of NSCLC.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1813-1823"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40636217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}