首页 > 最新文献

IEEE Transactions on Services Computing最新文献

英文 中文
EBFL: An Efficient Blockchain Framework for Federated Learning Services EBFL:联邦学习服务的高效区块链框架
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-18 DOI: 10.1109/tsc.2025.3646060
Ze Yin, Haotian Wang, Chubo Liu, Yan Ding, Keqin Li, Kenli Li
{"title":"EBFL: An Efficient Blockchain Framework for Federated Learning Services","authors":"Ze Yin, Haotian Wang, Chubo Liu, Yan Ding, Keqin Li, Kenli Li","doi":"10.1109/tsc.2025.3646060","DOIUrl":"https://doi.org/10.1109/tsc.2025.3646060","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"20 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145778087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparent Business Process Outcome Prediction Using a Graph Stochastic Attention Mechanism 基于图随机注意机制的透明业务流程结果预测
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-16 DOI: 10.1109/TSC.2025.3644861
Xiwei Zhang;Xianwen Fang;Jianhua Gong;Gubao Mao;Cong Liu
Predictive Process Monitoring (PPM) aims to predict the future states of ongoing process instances. A primary objective is to accurately predict process outcomes while ensuring decision transparency, which is critical for enhancing process efficiency and reducing operational risk. Existing interpretable approaches to process monitoring often struggle with balancing transparency and reliability.Specifically, approaches that prioritize transparency often fall short in predictive accuracy and generalization, while those that achieve higher prediction performance often provide less reliable explanations. To address these limitations, we propose a novel Transparent Process Outcome Prediction framework (TPOP) using a graph neural network with stochastic attention. We begin by applying a SHAP-based feature selection technique to identify and extract the most relevant attributes from the log, thereby improving the quality of graph-based process representations. Next, we introduce a graph stochastic attention mechanism, which helps the model in concentrate on key paths and activities during training, leading to transparent and trustworthy predictions. Experimental evaluations on ten real-life event logs demonstrate that our approach outperforms state-of-the-art approaches in both predictive performance and interpretability. Furthermore, by visualizing how specific activities influence process outcomes across various cases, we confirm the reliability of the explanations generated by our approach.
预测性流程监控(PPM)旨在预测正在进行的流程实例的未来状态。主要目标是在确保决策透明度的同时准确地预测流程结果,这对于提高流程效率和降低操作风险至关重要。现有的可解释过程监控方法经常在平衡透明性和可靠性方面遇到困难。具体来说,优先考虑透明度的方法通常在预测准确性和泛化方面不足,而那些实现更高预测性能的方法通常提供更不可靠的解释。为了解决这些限制,我们提出了一种新的透明过程结果预测框架(TPOP),该框架使用具有随机注意的图神经网络。我们首先应用基于shap的特征选择技术,从日志中识别和提取最相关的属性,从而提高基于图的过程表示的质量。接下来,我们引入了一个图随机注意机制,这有助于模型在训练过程中专注于关键路径和活动,从而实现透明和可信的预测。对10个真实事件日志的实验评估表明,我们的方法在预测性能和可解释性方面都优于最先进的方法。此外,通过可视化具体活动如何影响各种情况下的过程结果,我们确认了由我们的方法产生的解释的可靠性。
{"title":"Transparent Business Process Outcome Prediction Using a Graph Stochastic Attention Mechanism","authors":"Xiwei Zhang;Xianwen Fang;Jianhua Gong;Gubao Mao;Cong Liu","doi":"10.1109/TSC.2025.3644861","DOIUrl":"10.1109/TSC.2025.3644861","url":null,"abstract":"Predictive Process Monitoring (PPM) aims to predict the future states of ongoing process instances. A primary objective is to accurately predict process outcomes while ensuring decision transparency, which is critical for enhancing process efficiency and reducing operational risk. Existing interpretable approaches to process monitoring often struggle with balancing transparency and reliability.Specifically, approaches that prioritize transparency often fall short in predictive accuracy and generalization, while those that achieve higher prediction performance often provide less reliable explanations. To address these limitations, we propose a novel Transparent Process Outcome Prediction framework (TPOP) using a graph neural network with stochastic attention. We begin by applying a SHAP-based feature selection technique to identify and extract the most relevant attributes from the log, thereby improving the quality of graph-based process representations. Next, we introduce a graph stochastic attention mechanism, which helps the model in concentrate on key paths and activities during training, leading to transparent and trustworthy predictions. Experimental evaluations on ten real-life event logs demonstrate that our approach outperforms state-of-the-art approaches in both predictive performance and interpretability. Furthermore, by visualizing how specific activities influence process outcomes across various cases, we confirm the reliability of the explanations generated by our approach.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"19 1","pages":"712-725"},"PeriodicalIF":5.8,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145770767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain-Enabled Elastic Task Offloading and Migration Scheme in Edge Computing System 边缘计算系统中基于区块链的弹性任务卸载与迁移方案
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-15 DOI: 10.1109/tsc.2025.3634215
Qiang He, Tianyi Qiu, Xingwei Wang, Ammar Hawbani, Lianbo Ma, Keping Yu, Liang Zhao
{"title":"Blockchain-Enabled Elastic Task Offloading and Migration Scheme in Edge Computing System","authors":"Qiang He, Tianyi Qiu, Xingwei Wang, Ammar Hawbani, Lianbo Ma, Keping Yu, Liang Zhao","doi":"10.1109/tsc.2025.3634215","DOIUrl":"https://doi.org/10.1109/tsc.2025.3634215","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"14 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2025 Reviewers List* 2025审稿人名单*
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-11 DOI: 10.1109/TSC.2025.3637913
{"title":"2025 Reviewers List*","authors":"","doi":"10.1109/TSC.2025.3637913","DOIUrl":"https://doi.org/10.1109/TSC.2025.3637913","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 6","pages":"4425-4431"},"PeriodicalIF":5.8,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11298394","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAWSSP: A Two-stage Parallelism-aware Algorithm for Joint Workflow Scheduling and Service Placement in Edge Computing 边缘计算中联合工作流调度和服务放置的两阶段并行感知算法
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-11 DOI: 10.1109/tsc.2025.3643326
Guanyu Chen, Weiwei Lin, Fang Shi, Haotong Zhang, Bin Wang
{"title":"PAWSSP: A Two-stage Parallelism-aware Algorithm for Joint Workflow Scheduling and Service Placement in Edge Computing","authors":"Guanyu Chen, Weiwei Lin, Fang Shi, Haotong Zhang, Bin Wang","doi":"10.1109/tsc.2025.3643326","DOIUrl":"https://doi.org/10.1109/tsc.2025.3643326","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"6 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145728857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DQO-P5PI: A Preservation DRIBL Privacy and Data Quality Scheme using Fuzzy Sets for MCS Service System 一种基于模糊集的MCS服务系统数据保密性和数据质量保护方案
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-11 DOI: 10.1109/tsc.2025.3643482
Yubao Deng, Mande Xie, Houbing Herbert Song, Anfeng Liu, Yuxin Liu
{"title":"DQO-P5PI: A Preservation DRIBL Privacy and Data Quality Scheme using Fuzzy Sets for MCS Service System","authors":"Yubao Deng, Mande Xie, Houbing Herbert Song, Anfeng Liu, Yuxin Liu","doi":"10.1109/tsc.2025.3643482","DOIUrl":"https://doi.org/10.1109/tsc.2025.3643482","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"15 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145728855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SEPP-FLBC: A Secure and Efficient Privacy Protection Scheme Using Federate Learning and Blockchain for Edge-End-Cloud Devices SEPP-FLBC:基于联邦学习和区块链的边缘云设备安全高效的隐私保护方案
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-09 DOI: 10.1109/tsc.2025.3641964
Libo Feng, Junwei Guo, Fake Fang, Zhenli He, Yimin Yu, Shaowen Yao, and Xiaohui Peng
{"title":"SEPP-FLBC: A Secure and Efficient Privacy Protection Scheme Using Federate Learning and Blockchain for Edge-End-Cloud Devices","authors":"Libo Feng, Junwei Guo, Fake Fang, Zhenli He, Yimin Yu, Shaowen Yao, and Xiaohui Peng","doi":"10.1109/tsc.2025.3641964","DOIUrl":"https://doi.org/10.1109/tsc.2025.3641964","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"96 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Task Offloading Strategy in Vehicle-assisted Mobile Edge Computing 车辆辅助移动边缘计算中的自适应任务卸载策略
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-09 DOI: 10.1109/tsc.2025.3642186
Hui Zhao, Yuhang Dong, Chao Zhang, Jing Wang, Quan Wang
{"title":"Adaptive Task Offloading Strategy in Vehicle-assisted Mobile Edge Computing","authors":"Hui Zhao, Yuhang Dong, Chao Zhang, Jing Wang, Quan Wang","doi":"10.1109/tsc.2025.3642186","DOIUrl":"https://doi.org/10.1109/tsc.2025.3642186","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"40 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trusted Lifecycle Management for AIGC Services in Metaverse: a Blockchain-Empowered Collaborative Service Framework Metaverse中AIGC服务的可信生命周期管理:区块链授权的协作服务框架
IF 8.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-09 DOI: 10.1109/tsc.2025.3642033
Yu Song, Yinlin Ren, Xuesong Qiu, Ao Xiong, Shaoyong Guo
{"title":"Trusted Lifecycle Management for AIGC Services in Metaverse: a Blockchain-Empowered Collaborative Service Framework","authors":"Yu Song, Yinlin Ren, Xuesong Qiu, Ao Xiong, Shaoyong Guo","doi":"10.1109/tsc.2025.3642033","DOIUrl":"https://doi.org/10.1109/tsc.2025.3642033","url":null,"abstract":"","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"46 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145718349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VeriFuzzy: A Dynamic Verifiable Fuzzy Search Service Framework for Encrypted Cloud Data VeriFuzzy:一种用于加密云数据的动态可验证模糊搜索服务框架
IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-09 DOI: 10.1109/TSC.2025.3641367
Jie Zhang;Xiaohong Li;Man Zheng;Ruitao Feng;Shanshan Xu;Zhe Hou;Guangdong Bai
Enabling search over encrypted cloud data is essential for privacy-preserving data outsourcing. While searchable encryption has evolved to support individual requirements like fuzzy matching (tolerance to typos and variants in query keywords), dynamic updates, and result verification, designing a service that supports Dynamic Verifiable Fuzzy Search (DVFS) over encrypted cloud data remains a fundamental challenge due to inherent conflicts between underlying technologies. Existing approaches struggle with simultaneously achieving efficiency, functionality, and security, often forcing impractical trade-offs. This paper presents VeriFuzzy, a novel DVFS service framework that cohesively integrates three innovations: an Enhanced Virtual Binary Tree (EVBTree) that decouples fuzzy semantics from index logic to support $O(log n)$ search/updates; a blockchain-reconstructed verification mechanism that ensures result integrity with logarithmic complexity; and a dual-repository state management scheme that achieves IND-CKA2 security by neutralizing branch leakage. Extensive evaluation on 3,500+ documents shows VeriFuzzy achieves 41% faster search, $5times$ more efficient verification, and constant-time index updates compared to state-of-the-art alternatives. Our code and dataset are now open source, hoping to inspire future DVFS research.
启用对加密云数据的搜索对于保护隐私的数据外包至关重要。虽然可搜索加密已经发展到支持模糊匹配(允许查询关键字中的错字和变体)、动态更新和结果验证等个人需求,但由于底层技术之间的内在冲突,设计一个支持加密云数据上的动态可验证模糊搜索(DVFS)的服务仍然是一个根本性的挑战。现有的方法难以同时实现效率、功能和安全性,常常迫使人们做出不切实际的权衡。本文提出了一种新的DVFS服务框架VeriFuzzy,它紧密地集成了三个创新:一种增强型虚拟二叉树(EVBTree),它将模糊语义与索引逻辑解耦,以支持$O(log n)$搜索/更新;一种区块链重构的验证机制,以对数复杂度确保结果完整性;双存储库状态管理方案,通过中和分支泄漏实现IND-CKA2安全性。对3,500多个文件的广泛评估表明,与最先进的替代品相比,VeriFuzzy实现了41%的搜索速度,5倍的验证效率和恒定的索引更新。我们的代码和数据集现在是开源的,希望能启发未来的DVFS研究。
{"title":"VeriFuzzy: A Dynamic Verifiable Fuzzy Search Service Framework for Encrypted Cloud Data","authors":"Jie Zhang;Xiaohong Li;Man Zheng;Ruitao Feng;Shanshan Xu;Zhe Hou;Guangdong Bai","doi":"10.1109/TSC.2025.3641367","DOIUrl":"10.1109/TSC.2025.3641367","url":null,"abstract":"Enabling search over encrypted cloud data is essential for privacy-preserving data outsourcing. While searchable encryption has evolved to support individual requirements like fuzzy matching (tolerance to typos and variants in query keywords), dynamic updates, and result verification, designing a service that supports Dynamic Verifiable Fuzzy Search (DVFS) over encrypted cloud data remains a fundamental challenge due to inherent conflicts between underlying technologies. Existing approaches struggle with simultaneously achieving efficiency, functionality, and security, often forcing impractical trade-offs. This paper presents <b>VeriFuzzy</b>, a novel DVFS service framework that cohesively integrates three innovations: an <i>Enhanced Virtual Binary Tree (EVBTree)</i> that decouples fuzzy semantics from index logic to support <inline-formula><tex-math>$O(log n)$</tex-math></inline-formula> search/updates; a <i>blockchain-reconstructed verification</i> mechanism that ensures result integrity with logarithmic complexity; and a <i>dual-repository state management</i> scheme that achieves IND-CKA2 security by neutralizing branch leakage. Extensive evaluation on 3,500+ documents shows VeriFuzzy achieves 41% faster search, <inline-formula><tex-math>$5times$</tex-math></inline-formula> more efficient verification, and constant-time index updates compared to state-of-the-art alternatives. Our code and dataset are now open source, hoping to inspire future DVFS research.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"19 1","pages":"780-793"},"PeriodicalIF":5.8,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Services Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1