Pub Date : 2020-01-01Epub Date: 2020-06-10DOI: 10.20900/immunometab20200020
Halil-Ibrahim Aksoylar, Natalia M Tijaro-Ovalle, Vassiliki A Boussiotis, Nikolaos Patsoukis
Immune checkpoint therapies aiming to enhance T cell responses have revolutionized cancer immunotherapy. However, although a small fraction of patients develops durable anti-tumor responses, the majority of patients display only transient responses, underlying the need for finding auxiliary approaches. Tumor microenvironment poses a major metabolic barrier to efficient anti-tumor T cell activity. As it is now well accepted that metabolism regulates T cell fate and function, harnessing metabolism may be a new strategy to potentiate T cell-based immunotherapies.
{"title":"T Cell Metabolism in Cancer Immunotherapy.","authors":"Halil-Ibrahim Aksoylar, Natalia M Tijaro-Ovalle, Vassiliki A Boussiotis, Nikolaos Patsoukis","doi":"10.20900/immunometab20200020","DOIUrl":"https://doi.org/10.20900/immunometab20200020","url":null,"abstract":"<p><p>Immune checkpoint therapies aiming to enhance T cell responses have revolutionized cancer immunotherapy. However, although a small fraction of patients develops durable anti-tumor responses, the majority of patients display only transient responses, underlying the need for finding auxiliary approaches. Tumor microenvironment poses a major metabolic barrier to efficient anti-tumor T cell activity. As it is now well accepted that metabolism regulates T cell fate and function, harnessing metabolism may be a new strategy to potentiate T cell-based immunotherapies.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38133108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-05-07DOI: 10.20900/immunometab20200019
Colleen E Hayes, James M Ntambi
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4+ Th17 cells over protective CD4+ Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D3 signaling from microglia to CD4+ T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate DRB1*1501 expression were observed in MS patient CD4+ T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of DRB1*1501 and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4+ T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.
多发性硬化症(MS)是一种中枢神经系统炎症性脱髓鞘疾病。我们回顾了多发性硬化症的两个核心特征:髓鞘不稳定、碎裂和再髓鞘化失败,以及致病性 CD4+ Th17 细胞对保护性 CD4+ Treg 细胞的支配作用。为了更好地理解髓鞘病理学,我们描述了髓鞘的生物合成、结构和功能,然后强调了神经酸生物合成中的硬脂酰-CoA去饱和酶(SCD)以及神经酸对髓鞘稳定性的贡献。我们注意到维生素 D 缺乏会降低外周的 SCD,因此建议维生素 D 缺乏也会降低少突胶质细胞中的 SCD,从而破坏神经酸的供应并导致髓鞘不稳定和碎裂。为了更好地理解被扭曲的 Th17/Treg 细胞平衡,我们总结了 Th17 细胞对多发性硬化症发病机制的贡献,然后强调了 1,25- 二羟维生素 D3 信号如何从小胶质细胞传递到 CD4+ T 细胞,从而恢复 Treg 细胞的优势。这种信号传递迅速增加了蛋氨酸循环的通量,清除了同型半胱氨酸,补充了 S-腺苷蛋氨酸,并改善了表观遗传标记。我们注意到在多发性硬化症患者的 CD4+ T 细胞中观察到了 DNA 低甲基化和不恰当的 DRB1*1501 表达,因此提出维生素 D 缺乏会阻碍 DRB1*1501 和 Th17 细胞特征基因的表观遗传下调,以及 Treg 细胞特征基因的上调,从而导致 CD4+ T 细胞区内的失调。我们解释了肥胖如何降低维生素 D 状态,以及雌激素和维生素 D 如何协同促进女性 Treg 细胞优势。最后,我们讨论了这些有关髓鞘和 Th17/Treg 细胞平衡的新知识的意义,并提倡努力解决肥胖和维生素 D 缺乏的全球流行问题,以期望减少多发性硬化症的影响。
{"title":"Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D.","authors":"Colleen E Hayes, James M Ntambi","doi":"10.20900/immunometab20200019","DOIUrl":"10.20900/immunometab20200019","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4<sup>+</sup> Th17 cells over protective CD4<sup>+</sup> Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D<sub>3</sub> signaling from microglia to CD4<sup>+</sup> T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate <i>DRB1*1501</i> expression were observed in MS patient CD4<sup>+</sup> T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of <i>DRB1*1501</i> and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4<sup>+</sup> T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38036101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-03-31DOI: 10.20900/immunometab20200012
Paramarjan Piranavan, Manjeet Bhamra, Andras Perl
There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.
{"title":"Metabolic Targets for Treatment of Autoimmune Diseases.","authors":"Paramarjan Piranavan, Manjeet Bhamra, Andras Perl","doi":"10.20900/immunometab20200012","DOIUrl":"https://doi.org/10.20900/immunometab20200012","url":null,"abstract":"<p><p>There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37878196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-02-10DOI: 10.20900/immunometab20200009
Milena Vukelic, Michihito Kono, George C Tsokos
Abnormal T cell responses are central to the development of autoimmunity and organ damage in systemic lupus erythematosus. Following stimulation, naïve T cells undergo rapid proliferation, differentiation and cytokine production. Since the initial report, approximately two decades ago, that engagement of CD28 enhances glycolysis but PD-1 and CTLA-4 decrease it, significant information has been generated which has linked metabolic reprogramming with the fate of differentiating T cell in health and autoimmunity. Herein we summarize how defects in mitochondrial dysfunction, oxidative stress, glycolysis, glutaminolysis and lipid metabolism contribute to pro-inflammatory T cell responses in systemic lupus erythematosus and discuss how metabolic defects can be exploited therapeutically.
{"title":"T cell Metabolism in Lupus.","authors":"Milena Vukelic, Michihito Kono, George C Tsokos","doi":"10.20900/immunometab20200009","DOIUrl":"https://doi.org/10.20900/immunometab20200009","url":null,"abstract":"<p><p>Abnormal T cell responses are central to the development of autoimmunity and organ damage in systemic lupus erythematosus. Following stimulation, naïve T cells undergo rapid proliferation, differentiation and cytokine production. Since the initial report, approximately two decades ago, that engagement of CD28 enhances glycolysis but PD-1 and CTLA-4 decrease it, significant information has been generated which has linked metabolic reprogramming with the fate of differentiating T cell in health and autoimmunity. Herein we summarize how defects in mitochondrial dysfunction, oxidative stress, glycolysis, glutaminolysis and lipid metabolism contribute to pro-inflammatory T cell responses in systemic lupus erythematosus and discuss how metabolic defects can be exploited therapeutically.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37808766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perturbations in early life environments, including intrauterine exposure to maternal gestational diabetes (GDM), are hypothesized to lead to metabolic imprinting resulting in increased risk of cardiometabolic outcomes later in life. We aimed to 1) identify candidate genes and biological pathways associated with differentially methylated regions (DMRs) in relation to exposure to GDM in utero and, 2) using mediation analysis, more definitively investigate the potential for mediation of the effect of exposure to maternal diabetes in utero on cardiometabolic traits in childhood risk through our identified DMRs. Genome-wide methylation analysis of peripheral blood mononuclear cell's DNA was conducted in 21 healthy children, ages 8-12 years. P-values from multiple linear regression analyses for >27,000 CpG sites were ranked to identify DMRs between the exposure groups. Among the top 10 ranked DMRs, we identified several genes, including NPR1, PANK1, SCAND1, and GJA4, which are known to be associated with cardiometabolic traits. Gene enrichment analysis of the top 84 genes, each with p<=0.005, identified the ubiquitin proteasome system (UPS) as the most enriched biological pathway (p = 0.07). The UPS pathway reflects biological processes known to be associated with endothelial function, inflammation, lipid metabolism, insulin resistance and β-cell apoptosis, whose derangements are central to the pathogenesis of cardiometabolic diseases. Increased methylation of PYGO1 and CLN8 had the greatest relative mediation effect (RME = 87%, p=0.005 and RME=50%, p=0.01) on the impact of exposure to maternal diabetes in utero on VCAM-1 levels in the offspring. Multiple candidate genes and the UPS were identified for future study as possible links between exposure to maternal gestational diabetes in utero and adverse cardiometabolic traits in the offspring. In particular, increased methylation of PYGO1 and CLN8 may be biological links between intrauterine exposure to maternal diabetes and significantly increased VCAM-1 levels in the offspring.
{"title":"Exposure to Maternal Diabetes in Utero and DNA Methylation Patterns in the Offspring.","authors":"Nancy A West, Katerina Kechris, Dana Dabelea","doi":"10.2478/immun-2013-0001","DOIUrl":"https://doi.org/10.2478/immun-2013-0001","url":null,"abstract":"<p><p>Perturbations in early life environments, including intrauterine exposure to maternal gestational diabetes (GDM), are hypothesized to lead to metabolic imprinting resulting in increased risk of cardiometabolic outcomes later in life. We aimed to 1) identify candidate genes and biological pathways associated with differentially methylated regions (DMRs) in relation to exposure to GDM <i>in utero</i> and, 2) using mediation analysis, more definitively investigate the potential for mediation of the effect of exposure to maternal diabetes <i>in utero</i> on cardiometabolic traits in childhood risk through our identified DMRs. Genome-wide methylation analysis of peripheral blood mononuclear cell's DNA was conducted in 21 healthy children, ages 8-12 years. P-values from multiple linear regression analyses for >27,000 CpG sites were ranked to identify DMRs between the exposure groups. Among the top 10 ranked DMRs, we identified several genes, including NPR1, PANK1, SCAND1, and GJA4, which are known to be associated with cardiometabolic traits. Gene enrichment analysis of the top 84 genes, each with p<=0.005, identified the ubiquitin proteasome system (UPS) as the most enriched biological pathway (p = 0.07). The UPS pathway reflects biological processes known to be associated with endothelial function, inflammation, lipid metabolism, insulin resistance and β-cell apoptosis, whose derangements are central to the pathogenesis of cardiometabolic diseases. Increased methylation of <i>PYGO1</i> and <i>CLN8</i> had the greatest relative mediation effect (RME = 87%, p=0.005 and RME=50%, p=0.01) on the impact of exposure to maternal diabetes <i>in utero</i> on VCAM-1 levels in the offspring. Multiple candidate genes and the UPS were identified for future study as possible links between exposure to maternal gestational diabetes <i>in utero</i> and adverse cardiometabolic traits in the offspring. In particular, increased methylation of <i>PYGO1</i> and <i>CLN8</i> may be biological links between intrauterine exposure to maternal diabetes and significantly increased VCAM-1 levels in the offspring.</p>","PeriodicalId":13361,"journal":{"name":"Immunometabolism","volume":"1 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/immun-2013-0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31577720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}