Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS). However, the effect of succinate dehydrogenase on M2 macrophage polarization remains incompletely understood. We employed dimethyl malonate (DMM) to inhibit succinate dehydrogenase activity and took use of RNA-seq to analyze the changes of inflammatory response of LPS-activated M1 macrophages or IL 4-activated M2 macrophages. Our data revealed that inhibition of SDH with DMM increased expression of M2 macrophages-associated signature genes, including Arg1, Ym1 and Mrc1. Consistent with previous work, we also observed that inhibition of SDH decreased the expression of IL-1β and enhanced the levels of IL-10 in M1 macrophages. Additionally, inhibition of SDH with DMM inhibited the production of chemokines, such as Cxcl3, Cxcl12, Ccl20 and Ccl9. DMM also amplified the M2 macrophages-related signature genes in IL-13-activated M2 macrophages. Mechanistic studies revealed that DMM promoted M2 macrophages polarization through mitochondrial ROS dependent STAT6 activation. Blocking ROS with mitoTEMPO or inhibiting STAT6 activation with ruxolitinib abrogated the promotion effect of DMM on M2 macrophages. Finally, dimethyl malonate treatment promoted peritoneal M2 macrophages differentiation and exacerbated OVA-induced allergy asthma in vivo. Collectively, we identified SDH as a braker to suppress M2 macrophage polarization via mitochondrial ROS, suggesting a novel strategy to treatment of M2 macrophages-mediated inflammatory diseases.
{"title":"Inhibition of Mitochondrial Succinate Dehydrogenase with Dimethyl Malonate Promotes M2 Macrophage Polarization by Enhancing STAT6 Activation.","authors":"Chaowen He, Pengfei Chen, Luwen Ning, Xiuping Huang, Huimin Sun, Yuanyuan Wang, Yanli Zhao, Changchun Zeng, Dongsheng Huang, Hanchao Gao, Mengtao Cao","doi":"10.1007/s10753-024-02207-y","DOIUrl":"https://doi.org/10.1007/s10753-024-02207-y","url":null,"abstract":"<p><p>Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS). However, the effect of succinate dehydrogenase on M2 macrophage polarization remains incompletely understood. We employed dimethyl malonate (DMM) to inhibit succinate dehydrogenase activity and took use of RNA-seq to analyze the changes of inflammatory response of LPS-activated M1 macrophages or IL 4-activated M2 macrophages. Our data revealed that inhibition of SDH with DMM increased expression of M2 macrophages-associated signature genes, including Arg1, Ym1 and Mrc1. Consistent with previous work, we also observed that inhibition of SDH decreased the expression of IL-1β and enhanced the levels of IL-10 in M1 macrophages. Additionally, inhibition of SDH with DMM inhibited the production of chemokines, such as Cxcl3, Cxcl12, Ccl20 and Ccl9. DMM also amplified the M2 macrophages-related signature genes in IL-13-activated M2 macrophages. Mechanistic studies revealed that DMM promoted M2 macrophages polarization through mitochondrial ROS dependent STAT6 activation. Blocking ROS with mitoTEMPO or inhibiting STAT6 activation with ruxolitinib abrogated the promotion effect of DMM on M2 macrophages. Finally, dimethyl malonate treatment promoted peritoneal M2 macrophages differentiation and exacerbated OVA-induced allergy asthma in vivo. Collectively, we identified SDH as a braker to suppress M2 macrophage polarization via mitochondrial ROS, suggesting a novel strategy to treatment of M2 macrophages-mediated inflammatory diseases.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142978268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear. Utilizing both bulk transcriptome data and single-cell RNA sequencing data, we assessed the diverse expression patterns of RLRs in the lung tissues of COPD patients. A lower R-loop score was found in patients with COPD and in neutrophils. 12 machine learning algorithms (150 combinations) identified 14 hub RLRs (CBX8, EHD4, HDLBP, KDM6B, NFAT5, NLRP3, NUP214, PAFAH1B3, PINX1, PLD1, POLB, RCC2, RNF213, and VIM) associated with COPD. A RiskScore based on 14 RLRs identified two distinct COPD subtypes. Patient groups at high risk of COPD (low R-loop scores) had a higher immune score and a significant increase in neutrophils in their immune microenvironment compared to low-risk groups. PD-0325901 and QL-X-138 represent prospective COPD treatments for high-risk (low R-loop score) and low-risk (high R-loop score) patients. Finally, RT-PCR experiments confirmed expression differences of 8 RLRs (EHD4, HDLBP, NFAT5, NLRP3, PLD1, PINX1, POLB, and VIM) in COPD mice lung tissue. R-loops significantly contribute to the development of COPD and constructing predictive models based on RLRs may provide crucial insight into personalized treatment strategies for patients with COPD.
{"title":"Identification and Construction of a R-loop Mediated Diagnostic Model and Associated Immune Microenvironment of COPD through Machine Learning and Single-Cell Transcriptomics.","authors":"Jianing Lin, Yayun Nan, Jingyi Sun, Anqi Guan, Meijuan Peng, Ziyu Dai, Suying Mai, Qiong Chen, Chen Jiang","doi":"10.1007/s10753-024-02232-x","DOIUrl":"https://doi.org/10.1007/s10753-024-02232-x","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear. Utilizing both bulk transcriptome data and single-cell RNA sequencing data, we assessed the diverse expression patterns of RLRs in the lung tissues of COPD patients. A lower R-loop score was found in patients with COPD and in neutrophils. 12 machine learning algorithms (150 combinations) identified 14 hub RLRs (CBX8, EHD4, HDLBP, KDM6B, NFAT5, NLRP3, NUP214, PAFAH1B3, PINX1, PLD1, POLB, RCC2, RNF213, and VIM) associated with COPD. A RiskScore based on 14 RLRs identified two distinct COPD subtypes. Patient groups at high risk of COPD (low R-loop scores) had a higher immune score and a significant increase in neutrophils in their immune microenvironment compared to low-risk groups. PD-0325901 and QL-X-138 represent prospective COPD treatments for high-risk (low R-loop score) and low-risk (high R-loop score) patients. Finally, RT-PCR experiments confirmed expression differences of 8 RLRs (EHD4, HDLBP, NFAT5, NLRP3, PLD1, PINX1, POLB, and VIM) in COPD mice lung tissue. R-loops significantly contribute to the development of COPD and constructing predictive models based on RLRs may provide crucial insight into personalized treatment strategies for patients with COPD.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the role of Piezo1 in nasal epithelial barrier dysfunction in allergic rhinitis (AR) using both in vitro and in vivo experimental methods. A total of 79 human nasal mucosal samples were collected, including 43 from AR patients and 36 from healthy controls. Additionally, 12 BALB/c mice were used for the in vivo experiments. Human nasal epithelial cells (HNEpCs) were employed for the in vitro studies. In the in vivo study, mice were sensitized with ovalbumin (OVA) to induce AR. In the in vitro experiments, Piezo1 expression in HNEpCs was silenced using shRNA, followed by stimulation with IL-13. The expression of Piezo1, ERK1/2, and tight junctions (TJs) components (including ZO-1, Occludin, and Claudin-1) was assessed using quantitative RT-PCR, immunofluorescence, and Western blotting. Statistical analyses included paired Student's t-test and one-way ANOVA. Piezo1 expression was significantly elevated in both AR patients and OVA-induced AR mice, while TJs components were significantly reduced (p < 0.05). Knockdown of Piezo1 in HNEpCs restored the levels of TJs and improved barrier integrity. A negative correlation between Piezo1 and ERK1/2 expression was observed. Piezo1 plays a crucial role in nasal epithelial barrier dysfunction in AR by modulating TJs and the ERK1/2 pathway. These findings suggest that Piezo1 may serve as a potential therapeutic target for AR.
{"title":"Piezo1-Induced Nasal Epithelial Barrier Dysfunction in Allergic Rhinitis.","authors":"Shengyang Liu, Jianhua Wu, Linghui Meng, Yuan Liu, Jinzhuang Yu, Jing Yue, Dingqian Hao, Peng Yu, YuZhu Wan, Ping Li, Peng Jin, Li Shi","doi":"10.1007/s10753-024-02234-9","DOIUrl":"https://doi.org/10.1007/s10753-024-02234-9","url":null,"abstract":"<p><p>This study aimed to investigate the role of Piezo1 in nasal epithelial barrier dysfunction in allergic rhinitis (AR) using both in vitro and in vivo experimental methods. A total of 79 human nasal mucosal samples were collected, including 43 from AR patients and 36 from healthy controls. Additionally, 12 BALB/c mice were used for the in vivo experiments. Human nasal epithelial cells (HNEpCs) were employed for the in vitro studies. In the in vivo study, mice were sensitized with ovalbumin (OVA) to induce AR. In the in vitro experiments, Piezo1 expression in HNEpCs was silenced using shRNA, followed by stimulation with IL-13. The expression of Piezo1, ERK1/2, and tight junctions (TJs) components (including ZO-1, Occludin, and Claudin-1) was assessed using quantitative RT-PCR, immunofluorescence, and Western blotting. Statistical analyses included paired Student's t-test and one-way ANOVA. Piezo1 expression was significantly elevated in both AR patients and OVA-induced AR mice, while TJs components were significantly reduced (p < 0.05). Knockdown of Piezo1 in HNEpCs restored the levels of TJs and improved barrier integrity. A negative correlation between Piezo1 and ERK1/2 expression was observed. Piezo1 plays a crucial role in nasal epithelial barrier dysfunction in AR by modulating TJs and the ERK1/2 pathway. These findings suggest that Piezo1 may serve as a potential therapeutic target for AR.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s10753-024-02235-8
Heyu Liu, Li Ma, Huiyi Wang, Xin Huang, Yan Peng, Zhengkun Yang, Junhong Xiao, Hantao Huang, Qiudong Yang, Jiahui Sun, Xiaoxuan Wang, Chuan Wang, Liu Yang, Zhengguo Cao
Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.
Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence. Porphyromonas gingivalis was co-cultured with cementoblasts that simultaneously overexpressed Dnmt3a. Additionally, cementoblasts were subjected to either Dnmt3a knockout or DNA methylation inhibition. Changes in global DNA methylation were analyzed, and quantitative PCR, western blotting, alkaline phosphatase (ALP) activity assays, and Alizarin Red staining were employed to evaluate alterations in the mineralization capacity of cementoblasts.RNA sequencing further showed the mechanisms by which Dnmt3a regulated mineralization. Flow cytometry, MitoSox, and TRMR staining were used to verify the participation of mitochondria-dependent apoptosis.
Results: The effect of P. gingivalis on Dnmt3a and global DNA methylation in cementoblasts was first verified. Dnmt3a expression and global DNA methylation were upregulated during cementoblast mineralization. Samples with periapical inflammation exhibited reduced Dnmt3a expression. P. gingivalis stimulation reduced the global DNA methylation and the mineralization ability of cementoblasts. Both the knockdown of Dnmt3a and using DNA methylation inhibitors suppressed cementoblast mineralization. In addition, Dnm3a depletion was significantly correlated with the mitochondria-dependent apoptosis pathway in cementoblasts.
Conclusions: P. gingivalis blocks DNA methylation by silencing Dnmt3a in cementoblasts, thereby inducing mitochondrial-dependent apoptosis and, ultimately, impaired cementogenesis.
{"title":"Dnmt3a-mediated DNA Methylation Regulates P. gingivalis-suppressed Cementoblast Mineralization Partially Via Mitochondria-dependent Apoptosis Pathway.","authors":"Heyu Liu, Li Ma, Huiyi Wang, Xin Huang, Yan Peng, Zhengkun Yang, Junhong Xiao, Hantao Huang, Qiudong Yang, Jiahui Sun, Xiaoxuan Wang, Chuan Wang, Liu Yang, Zhengguo Cao","doi":"10.1007/s10753-024-02235-8","DOIUrl":"https://doi.org/10.1007/s10753-024-02235-8","url":null,"abstract":"<p><strong>Background: </strong>DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.</p><p><strong>Methods: </strong>The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence. Porphyromonas gingivalis was co-cultured with cementoblasts that simultaneously overexpressed Dnmt3a. Additionally, cementoblasts were subjected to either Dnmt3a knockout or DNA methylation inhibition. Changes in global DNA methylation were analyzed, and quantitative PCR, western blotting, alkaline phosphatase (ALP) activity assays, and Alizarin Red staining were employed to evaluate alterations in the mineralization capacity of cementoblasts.RNA sequencing further showed the mechanisms by which Dnmt3a regulated mineralization. Flow cytometry, MitoSox, and TRMR staining were used to verify the participation of mitochondria-dependent apoptosis.</p><p><strong>Results: </strong>The effect of P. gingivalis on Dnmt3a and global DNA methylation in cementoblasts was first verified. Dnmt3a expression and global DNA methylation were upregulated during cementoblast mineralization. Samples with periapical inflammation exhibited reduced Dnmt3a expression. P. gingivalis stimulation reduced the global DNA methylation and the mineralization ability of cementoblasts. Both the knockdown of Dnmt3a and using DNA methylation inhibitors suppressed cementoblast mineralization. In addition, Dnm3a depletion was significantly correlated with the mitochondria-dependent apoptosis pathway in cementoblasts.</p><p><strong>Conclusions: </strong>P. gingivalis blocks DNA methylation by silencing Dnmt3a in cementoblasts, thereby inducing mitochondrial-dependent apoptosis and, ultimately, impaired cementogenesis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells. The results of the siRNA-mediated transfection of keratinized cells with downregulated β2-AR expression were further verified in vitro. Our results suggest that UVB alters the color of the dorsal skin in mice by activating the AP-1/IL-6 pathway, which triggers the sympathetic release of norepinephrine, thereby increasing β2-AR expression in keratinocytes. Overall, our study improves the current understanding of how UVB light influences skin color changes and highlights the complex interplay between ultraviolet radiation and skin physiology.
{"title":"UVB Induces Sympathetic Nervous System Activation and Norepinephrine Secretion to Regulate The Skin Color of Mice Through the β2-AR/AP-1 Pathway in Epidermal Keratinocytes.","authors":"Qirui Deng, Xinyan Liu, Xiujuan Wen, Hao Huang, Hongfeng Tang","doi":"10.1007/s10753-024-02221-0","DOIUrl":"https://doi.org/10.1007/s10753-024-02221-0","url":null,"abstract":"<p><p>The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells. The results of the siRNA-mediated transfection of keratinized cells with downregulated β2-AR expression were further verified in vitro. Our results suggest that UVB alters the color of the dorsal skin in mice by activating the AP-1/IL-6 pathway, which triggers the sympathetic release of norepinephrine, thereby increasing β2-AR expression in keratinocytes. Overall, our study improves the current understanding of how UVB light influences skin color changes and highlights the complex interplay between ultraviolet radiation and skin physiology.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation. This was particularly evident in the subpopulation post-capillary venules (PCV), especially the cluster from EP. Cell-cell communication studies revealed intensified interactions between PCV and leukocytes, mediated by SELE and ICAM1, predominantly in EP. Trajectory analysis suggested differentiation direction of venules-PCV-CAP. 1 with a concomitant reduction in NF2R2 expression. Elevated and activated PCVs were found in EP patient biopsies and mouse models. These findings underscore the significance of PCV in EP pathogenesis, presenting new therapeutic avenues for this debilitating disease.
{"title":"Single-Cell RNA-seq Reveals Increased and Activated Post-Capillary Venule Endothelial Cells in Erythrodermic Psoriasis.","authors":"Xiaoyan Wu, Yun Luo, Leying Liu, Changxu Han, Yuhua Liu, Zhenying Zhang","doi":"10.1007/s10753-024-02216-x","DOIUrl":"https://doi.org/10.1007/s10753-024-02216-x","url":null,"abstract":"<p><p>Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation. This was particularly evident in the subpopulation post-capillary venules (PCV), especially the cluster from EP. Cell-cell communication studies revealed intensified interactions between PCV and leukocytes, mediated by SELE and ICAM1, predominantly in EP. Trajectory analysis suggested differentiation direction of venules-PCV-CAP. 1 with a concomitant reduction in NF2R2 expression. Elevated and activated PCVs were found in EP patient biopsies and mouse models. These findings underscore the significance of PCV in EP pathogenesis, presenting new therapeutic avenues for this debilitating disease.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases. The "gut-lung axis" theory suggests that FMT may have significant therapeutic potential for asthma. In this study, we established an Ovalbumin (OVA)-induced rat model of asthma to investigate the protective effect of FMT on airway inflammation and the restoration of intestinal short-chain fatty acids (SCFAs), aiming to explore its underlying mechanism. Rats in the Control group underwent fecal treatment via gavage (Control-FMT, C-FMT group), while rats in the Asthma group underwent fecal treatment via gavage after asthma induction (Asthma-FMT, A-FMT group). Following a two-week period of continuous intragastric administration, various measurements were conducted to assess pulmonary function, peripheral blood neutrophil, lymphocyte, and eosinophil content, lung tissue pathology, and collagen fiber deposition in the lungs. Additionally, neutrophil and eosinophil content in bronchoalveolar lavage fluid (BALF), expression levels of Interleukin-4 (IL-4), IL-5, IL-13, IL-17, IL-33, leukotrienes (LT), thymic stromal lymphopoietin (TSLP), prostaglandin D2 (PGD2) protein and mRNA in lung tissue, and SCFAs content in stool were evaluated. In the C-FMT group, lung function significantly improved, inflammatory cell content in peripheral blood and BALF decreased, lung tissue pathology and collagen fiber deposition significantly improved, the protein and mRNA levels of lung inflammatory factors IL-4, IL-5, IL-13, IL-17, IL-33, LT, TSLP, PGD2 were significantly decreased, and SCFAs such as acetate (C2), propionate (C3), butyrate (C4), isobutyric acid (I-C4), valeric acid (C5), and isovaleric acid (I-C5) content in stool significantly increased. However, the indexes in the A-FMT group did not show significant recovery, and the treatment effect on asthma symptoms in rats was inferior to that in the C-FMT group. Asthma induced intestinal flora disorders in rats, and FMT treatment improved the inflammatory response in asthmatic rat models and corrected their intestinal SCFAs disorders. Encouraging the recovery of intestinal SCFAs may play a significant role, and beneficial bacteria present in feces may improve asthma symptoms by promoting the remodeling of intestinal flora. This experiment provides further scientific evidence supporting the "gut-lung axis" theory.
{"title":"Fecal Microbiota Transplantation Alleviates Airway Inflammation in Asthmatic Rats by Increasing the Level of Short-Chain Fatty Acids in the Intestine.","authors":"Yitian Lai, Ranran Qiu, Jingying Zhou, Ling Ren, Yizhuo Qu, Guoshan Zhang","doi":"10.1007/s10753-024-02233-w","DOIUrl":"https://doi.org/10.1007/s10753-024-02233-w","url":null,"abstract":"<p><p>Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the \"gut-lung axis\" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases. The \"gut-lung axis\" theory suggests that FMT may have significant therapeutic potential for asthma. In this study, we established an Ovalbumin (OVA)-induced rat model of asthma to investigate the protective effect of FMT on airway inflammation and the restoration of intestinal short-chain fatty acids (SCFAs), aiming to explore its underlying mechanism. Rats in the Control group underwent fecal treatment via gavage (Control-FMT, C-FMT group), while rats in the Asthma group underwent fecal treatment via gavage after asthma induction (Asthma-FMT, A-FMT group). Following a two-week period of continuous intragastric administration, various measurements were conducted to assess pulmonary function, peripheral blood neutrophil, lymphocyte, and eosinophil content, lung tissue pathology, and collagen fiber deposition in the lungs. Additionally, neutrophil and eosinophil content in bronchoalveolar lavage fluid (BALF), expression levels of Interleukin-4 (IL-4), IL-5, IL-13, IL-17, IL-33, leukotrienes (LT), thymic stromal lymphopoietin (TSLP), prostaglandin D2 (PGD2) protein and mRNA in lung tissue, and SCFAs content in stool were evaluated. In the C-FMT group, lung function significantly improved, inflammatory cell content in peripheral blood and BALF decreased, lung tissue pathology and collagen fiber deposition significantly improved, the protein and mRNA levels of lung inflammatory factors IL-4, IL-5, IL-13, IL-17, IL-33, LT, TSLP, PGD2 were significantly decreased, and SCFAs such as acetate (C2), propionate (C3), butyrate (C4), isobutyric acid (I-C4), valeric acid (C5), and isovaleric acid (I-C5) content in stool significantly increased. However, the indexes in the A-FMT group did not show significant recovery, and the treatment effect on asthma symptoms in rats was inferior to that in the C-FMT group. Asthma induced intestinal flora disorders in rats, and FMT treatment improved the inflammatory response in asthmatic rat models and corrected their intestinal SCFAs disorders. Encouraging the recovery of intestinal SCFAs may play a significant role, and beneficial bacteria present in feces may improve asthma symptoms by promoting the remodeling of intestinal flora. This experiment provides further scientific evidence supporting the \"gut-lung axis\" theory.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma. There are few studies reporting on the therapeutic effects of PI3Kγ-selective inhibitors in asthma disease. In this study, we investigated the anti-inflammatory and therapeutic effects of PI3Kγ-selective inhibitor JN-KI3 for treating asthma by utilizing both in vivo and in vitro approaches, thereby proving that PI3Kγ-selective inhibitors could be valuable in the treatment of asthma. In RAW264.7 macrophages, JN-KI3 effectively suppressed C5a-induced Akt phosphorylation in a concentration-dependent manner, with no discernible toxicity observed in RAW264.7 cells. Furthermore, JN-KI3 can inhibit the PI3K/Akt signaling pathway in lipopolysaccharide-induced RAW264.7 cells, leading to the suppression of transcription and expression of the classical inflammatory cytokines in a concentration-dependent manner. Finally, an ovalbumin-induced murine asthma model was constructed to evaluate the initial therapeutic effect of JN-KI3 for treating asthma. Oral administration of JN-KI3 inhibited the infiltration of inflammatory cells and the expression of T-helper type 2 cytokines in bronchoalveolar lavage fluid, which was associated with the suppression of the PI3K signaling pathway. Lung tissue and immunohistochemical studies demonstrated that JN-KI3 inhibited the accumulation of inflammatory cells around the bronchus and blood vessels, as well as the secretion of mucus and excessive deposition of collagen around the airway. In addition, it reduced the infiltration of white blood cells into the lungs. In summary, JN-KI3 shows promise as a candidate for the treatment of asthma. Our study also suggests that the inhibitory effects of PI3Kγ on inflammation could offer an additional therapeutic strategy for pulmonary inflammatory diseases.
{"title":"Evaluating the Anti-inflammatory Potential of JN-KI3: The Therapeutic Role of PI3Kγ-Selective Inhibitors in Asthma Treatment.","authors":"Lei Jia, Mengyun Ma, Wendian Xiong, Jingyu Zhu, Yanfei Cai, Yun Chen, Jian Jin, Mingzhu Gao","doi":"10.1007/s10753-024-02180-6","DOIUrl":"https://doi.org/10.1007/s10753-024-02180-6","url":null,"abstract":"<p><p>Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma. There are few studies reporting on the therapeutic effects of PI3Kγ-selective inhibitors in asthma disease. In this study, we investigated the anti-inflammatory and therapeutic effects of PI3Kγ-selective inhibitor JN-KI3 for treating asthma by utilizing both in vivo and in vitro approaches, thereby proving that PI3Kγ-selective inhibitors could be valuable in the treatment of asthma. In RAW264.7 macrophages, JN-KI3 effectively suppressed C5a-induced Akt phosphorylation in a concentration-dependent manner, with no discernible toxicity observed in RAW264.7 cells. Furthermore, JN-KI3 can inhibit the PI3K/Akt signaling pathway in lipopolysaccharide-induced RAW264.7 cells, leading to the suppression of transcription and expression of the classical inflammatory cytokines in a concentration-dependent manner. Finally, an ovalbumin-induced murine asthma model was constructed to evaluate the initial therapeutic effect of JN-KI3 for treating asthma. Oral administration of JN-KI3 inhibited the infiltration of inflammatory cells and the expression of T-helper type 2 cytokines in bronchoalveolar lavage fluid, which was associated with the suppression of the PI3K signaling pathway. Lung tissue and immunohistochemical studies demonstrated that JN-KI3 inhibited the accumulation of inflammatory cells around the bronchus and blood vessels, as well as the secretion of mucus and excessive deposition of collagen around the airway. In addition, it reduced the infiltration of white blood cells into the lungs. In summary, JN-KI3 shows promise as a candidate for the treatment of asthma. Our study also suggests that the inhibitory effects of PI3Kγ on inflammation could offer an additional therapeutic strategy for pulmonary inflammatory diseases.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1007/s10753-024-02227-8
Gwanghui Ryu, Jun-Sang Bae, Shin Hyuk Yoo, Eun Hee Kim, Ji-Hun Mo
During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A. We sought to identify the cellular expression of IL-17A and Treg markers in sinonasal tissue from CRSwNP patients and to investigate whether Tregs are involved in IL-17A secretion. The uncinate process (UP) and NP tissues were harvested from patients with CRSwNP, CRS without NP (CRSsNP), and normal controls. Expression of IL-17A and Foxp3 in each group was observed with immunohistochemistry and immunofluorescence. Expression of IL-17A in Treg was evaluated by flow cytometry of single cells isolated from sinonasal tissues. UP tissue from controls (n = 17), UP from CRSsNP (n = 24), and UP (n = 19) and NP (n = 29) from CRSwNP were obtained. The percentage of Foxp3+ cells was higher in CRS tissues compared with normal controls. IL-17A+ cells were most increased in NP tissues from CRSwNP patients. Expression of IL-17A in some Foxp3+ cells was observed in double immunofluorescence. Foxp3+ cells, IL-17A+ cells, and Foxp3+IL-17A+ cells were increased in the UP and NP tissues from CRSwNP patients. CD45RA-Foxp3+ cells were increased in CRSwNP, and IL-17A+ cells were observed most frequently in CD4+CD45RA-Foxp3+ cells from NP tissues. These findings show that CD4+CD45RA-Foxp3+ Tregs are involved in NP pathogenesis by producing IL-17A.
{"title":"Elevated IL-17A-Secreting Regulatory T Cells in Sinonasal Tissues of Chronic Rhinosinusitis with Nasal Polyps.","authors":"Gwanghui Ryu, Jun-Sang Bae, Shin Hyuk Yoo, Eun Hee Kim, Ji-Hun Mo","doi":"10.1007/s10753-024-02227-8","DOIUrl":"https://doi.org/10.1007/s10753-024-02227-8","url":null,"abstract":"<p><p>During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A. We sought to identify the cellular expression of IL-17A and Treg markers in sinonasal tissue from CRSwNP patients and to investigate whether Tregs are involved in IL-17A secretion. The uncinate process (UP) and NP tissues were harvested from patients with CRSwNP, CRS without NP (CRSsNP), and normal controls. Expression of IL-17A and Foxp3 in each group was observed with immunohistochemistry and immunofluorescence. Expression of IL-17A in Treg was evaluated by flow cytometry of single cells isolated from sinonasal tissues. UP tissue from controls (n = 17), UP from CRSsNP (n = 24), and UP (n = 19) and NP (n = 29) from CRSwNP were obtained. The percentage of Foxp3<sup>+</sup> cells was higher in CRS tissues compared with normal controls. IL-17A<sup>+</sup> cells were most increased in NP tissues from CRSwNP patients. Expression of IL-17A in some Foxp3<sup>+</sup> cells was observed in double immunofluorescence. Foxp3<sup>+</sup> cells, IL-17A<sup>+</sup> cells, and Foxp3<sup>+</sup>IL-17A<sup>+</sup> cells were increased in the UP and NP tissues from CRSwNP patients. CD45RA<sup>-</sup>Foxp3<sup>+</sup> cells were increased in CRSwNP, and IL-17A<sup>+</sup> cells were observed most frequently in CD4<sup>+</sup>CD45RA<sup>-</sup>Foxp3<sup>+</sup> cells from NP tissues. These findings show that CD4<sup>+</sup>CD45RA<sup>-</sup>Foxp3<sup>+</sup> Tregs are involved in NP pathogenesis by producing IL-17A.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings. Here, we found that NG-497, a previously identified human ATGL inhibitor, significantly increased LDs accumulation and inhibited LPS-induced pro-inflammatory responses in human microglia. Moreover, NG-497 also protected human neurons against neurotoxic cytokines in a humanized in vitro model of neuroinflammation. However, the anti-inflammatory capacity of NG-497 was independent of its effect on ATGL. Instead, we revealed that NG-497 alleviated microglia-mediated neuroinflammation through elevating the protein level of melatonin receptor 1A (MTNR1A). Therefore, in this study, we uncovered a novel MTNR1A-targeting compound, which exhibited anti-inflammatory and neuroprotective effect, highlighting its potential in the treatment of neuroinflammation. Moreover, the MTNRs agonist, Ramelteon, exerts comparable anti-inflammation effects with NG-497.
{"title":"NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner.","authors":"Qi Li, Pinyi Liu, Xuan Zhu, Chao Zhou, Yujie Hu, Shiying Cao, Huiya Li, Xinxin Zou, Shenghan Gao, Xiang Cao, Xinyu Bao, Yun Xu, Jingwei Li","doi":"10.1007/s10753-024-02218-9","DOIUrl":"https://doi.org/10.1007/s10753-024-02218-9","url":null,"abstract":"<p><p>Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings. Here, we found that NG-497, a previously identified human ATGL inhibitor, significantly increased LDs accumulation and inhibited LPS-induced pro-inflammatory responses in human microglia. Moreover, NG-497 also protected human neurons against neurotoxic cytokines in a humanized in vitro model of neuroinflammation. However, the anti-inflammatory capacity of NG-497 was independent of its effect on ATGL. Instead, we revealed that NG-497 alleviated microglia-mediated neuroinflammation through elevating the protein level of melatonin receptor 1A (MTNR1A). Therefore, in this study, we uncovered a novel MTNR1A-targeting compound, which exhibited anti-inflammatory and neuroprotective effect, highlighting its potential in the treatment of neuroinflammation. Moreover, the MTNRs agonist, Ramelteon, exerts comparable anti-inflammation effects with NG-497.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}