Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC). In tumor cells the MCPyV large T antigen (LT-Ag) is frequently found truncated and this is considered a major tumor-specific signature. The role of MCPyV in other, non-MCC tumours, is little known. Viral DNA and/or tumour-specific mutations have been sometimes detected in different tumours, but such data are not unequivocal and the involvement of the virus in the tumorigenesis is not clear. In a previous study, we demonstrated a significantly higher prevalence of MCPyV DNA in formalin fixed paraffin embedded (FFPE) porocarcinoma tissues compared to the normal skin. In the present study, we investigated the presence of truncating mutations in MCPyV LT-Ag coding region in porocarcinoma specimens. Using several overlapped PCR primer pairs, the complete LT-Ag sequence from two biopsies were obtained. No truncating mutations were detected. The lack of truncating mutations in LT-Ag sequence does not seem to support the role of MCPyV in porocarcinoma oncogenesis. However, an oncogenetic mechanism, different from that proposed for MCC and not associated with the LT-Ag mutations/deletions, cannot be excluded. Further studies of more sequences coding for LT-Ag would be needed to verify this hypothesis.
Background: Numerous studies have shown that Schistosoma japonicum infection correlates with an increased risk of liver hepatocellular carcinoma (LIHC). However, data regarding the role of this infection in LIHC oncogenesis are scarce. This study aimed to investigate the potential mechanisms of hepatocarcinogenesis associated with Schistosoma japonicum infection.
Methods: By examining chronic liver disease as a mediator, we identified the genes contributing to Schistosoma japonicum infection and LIHC. We selected 15 key differentially expressed genes (DEGs) using weighted gene co-expression network analysis (WGCNA) and random survival forest models. Consensus clustering revealed two subgroups with distinct prognoses. Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression identified six prognostic DEGs, forming an Schistosoma japonicum infection-associated signature for strong prognosis prediction. This signature, which is an independent LIHC risk factor, was significantly correlated with clinical variables. Four DEGs, including BMI1, were selected based on their protein expression levels in cancerous and normal tissues. We confirmed BMI1's role in LIHC using Schistosoma japonicum-infected mouse models and molecular experiments.
Results: We identified a series of DEGs that mediate schistosomiasis, the parasitic disease caused by Schistosoma japonicum infection, and hepatocarcinogenesis, and constructed a suitable prognostic model. We analyzed the mechanisms by which these DEGs regulate disease and present the differences in prognosis between the different genotypes. Finally, we verified our findings using molecular biology experiments.
Conclusion: Bioinformatics and molecular biology analyses confirmed a relationship between schistosomiasis and liver hepatocellular cancer. Furthermore, we validated the role of a potential oncoprotein factor that may be associated with infection and carcinogenesis. These findings enhance our understanding of Schistosoma japonicum infection's role in LIHC carcinogenesis.
Background: Antiviral therapies that target herpesviruses are clinically important. Nelfinavir is a protease inhibitor that targets the human immunodeficiency virus (HIV) aspartyl protease. Previous studies demonstrated that this drug could also inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) production. Our laboratory demonstrated nelfinavir can effectively inhibit herpes simplex virus type 1 (HSV-1) replication. For HSV-1 we were able to determine that virus capsids were assembled and exited the nucleus but did not mature in the cytoplasm indicating the drug inhibited secondary envelopment of virions.
Methods: For KSHV, we recently derived a tractable cell culture system that allowed us to analyze the virus replication cycle in greater detail. We used this system to further define the stage at which nelfinavir inhibits KSHV replication.
Results: We discovered that nelfinavir inhibits KSHV extracellular virus production. This was seen when the drug was incubated with the cells for 3 days and when we pulsed the cells with the drug for 1-5 min. When KSHV infected cells exposed to the drug were examined using ultrastructural methods there was an absence of mature capsids in the nucleus indicating a defect in capsid assembly. Because nelfinavir influences the integrated stress response (ISR), we examined the expression of viral proteins in the presence of the drug. We observed that the expression of many were significantly changed in the presence of drug. The accumulation of the capsid triplex protein, ORF26, was markedly reduced. This is an essential protein required for herpesvirus capsid assembly.
Conclusions: Our studies confirm that nelfinavir inhibits KSHV virion production by disrupting virus assembly and maturation. This is likely because of the effect of nelfinavir on the ISR and thus protein synthesis and accumulation of the essential triplex capsid protein, ORF26. Of interest is that inhibition requires only a short exposure to drug. The source of infectious virus in saliva has not been defined in detail but may well be lymphocytes or other cells in the oral mucosa. Thus, it might be that a "swish and spit" exposure rather than systemic administration would prevent virion production.
Objectives: Our aim was to assess the trend in gynaecologic cancer (GC) mortality in the period from 2010 to 2022 in the United States, with focus on the impact of the pandemic on increased deaths.
Methods: GC mortality data were extracted from the Center for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) platform. We analysed mortality trends and evaluated observed vs. predicted mortality for the period from 2020 to 2022 with joinpoint regression and prediction modelling analyses.
Results: A total of 334,382 deaths among adults aged 25 years and older with gynaecologic cancer were documented from 2010 to 2022. The overall age-standardised mortality rate (ASMR, per 100,000 persons) for ovarian cancer-related death decreased gradually from 7.189 in 2010 to 5.517 in 2019, yielding an APC (annual percentage change) of -2.8%. However, the decrease in ovarian cancer-related mortality slowed down by more than 4-fold during the pandemic. Cervical cancer -related mortality decreased slightly prior to the pandemic and increased during the pandemic with an APC of 0.6%, resulting in excess mortality of 4.92%, 9.73% and 2.03% in 2020, 2021 and 2022, respectively. For uterine corpus cancer, the ASMR increased from 1.905 in 2010 to 2.787 in 2019, and increased sharply to 3.079 in 2021 and 3.211 in 2022. The ASMR rose steadily between 2013 and 2022, yielding an APC of 6.9%.
Conclusions: Overall, we found that GC-related mortality increased during the COVID-19 pandemic, and this increase was not specific to age, race, or ethnicity.