Pub Date : 2023-08-26DOI: 10.3390/inorganics11090351
Paraskevi Kontomaris, Gregory M. Darone, Laura C. Paredes-Quevedo, S. Bobev
Reported are the synthesis and structural characterization of a series of quaternary lithium-alkaline earth metal alumo-silicides and alumo-germanides with the base formula A2LiAlTt2 (A = Ca, Sr, Ba; Tt = Si, Ge). To synthesize each compound, a mixture of the elements with the desired stoichiometric ratio was loaded into a niobium tube, arc welded shut, enclosed in a silica tube under vacuum, and heated in a tube furnace. Each sample was analyzed by powder and single-crystal X-ray diffraction, and the crystal structure of each compound was confirmed and refined from single-crystal X-ray diffraction data. The structures, despite the identical chemical formulae, are different, largely dependent on the nature of the alkaline earth metal. The differing cation determines the structure type—the calcium compounds are part of the TiNiSi family with the Pnma space group, the strontium compounds are isostructural with Na2LiAlP2 with the Cmce space group, and the barium compounds crystallize with the PbFCl structure type in the P4/nmm space group. The anion (silicon or germanium) only impacts the size of the unit cell, with the silicides having smaller unit cell volumes than the germanides.
{"title":"The Synthesis and Crystal Structure of Six Quaternary Lithium-Alkaline Earth Metal Alumo-Silicides and Alumo-Germanides, A2LiAlTt2 (A = Mg, Ca, Sr, Ba; Tt = Si, Ge)","authors":"Paraskevi Kontomaris, Gregory M. Darone, Laura C. Paredes-Quevedo, S. Bobev","doi":"10.3390/inorganics11090351","DOIUrl":"https://doi.org/10.3390/inorganics11090351","url":null,"abstract":"Reported are the synthesis and structural characterization of a series of quaternary lithium-alkaline earth metal alumo-silicides and alumo-germanides with the base formula A2LiAlTt2 (A = Ca, Sr, Ba; Tt = Si, Ge). To synthesize each compound, a mixture of the elements with the desired stoichiometric ratio was loaded into a niobium tube, arc welded shut, enclosed in a silica tube under vacuum, and heated in a tube furnace. Each sample was analyzed by powder and single-crystal X-ray diffraction, and the crystal structure of each compound was confirmed and refined from single-crystal X-ray diffraction data. The structures, despite the identical chemical formulae, are different, largely dependent on the nature of the alkaline earth metal. The differing cation determines the structure type—the calcium compounds are part of the TiNiSi family with the Pnma space group, the strontium compounds are isostructural with Na2LiAlP2 with the Cmce space group, and the barium compounds crystallize with the PbFCl structure type in the P4/nmm space group. The anion (silicon or germanium) only impacts the size of the unit cell, with the silicides having smaller unit cell volumes than the germanides.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42114863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/inorganics11090349
Xinyi Zhou, Yang-Rong Yao, Yajing Hu, Le Yang, Shaoting Yang, Yilu Zhang, Qianyan Zhang, P. Peng, Peng Jin, Fang‐Fang Li
The reactivity of the open-shell Gd@C2v-C82 with different charge states towards benzyl bromide was investigated. [Gd@C2v-C82]3− exhibited enhanced activity relative to Gd@C2v-C82 and [Gd@C2v-C82]−. The structural characterizations, including MALDI-TOF MS, UV-vis-NIR, and single crystal X-ray diffraction, indicate the formation of isomeric benzyl monoadducts of Gd@C2v-C82. All three monoadducts contain 1:1 mirror-symmetric enantiomers. Additionally, the addition of the benzyl group and its specific position result in distinct electrochemical behavior of the products compared to the parent Gd@C2v-C82. Theoretical studies demonstrate that only [Gd@C2v-C82]3− has a HOMO energy level that matches well with the LUMO energy level of the PhCH2 radical, providing a rationalization for the observed significantly different reactivity.
{"title":"Reactivity of Open-Shell Metallofullerene Anions: Synthesis, Crystal Structures, and Electrochemical Properties of Benzylated Gd@C2v-C82","authors":"Xinyi Zhou, Yang-Rong Yao, Yajing Hu, Le Yang, Shaoting Yang, Yilu Zhang, Qianyan Zhang, P. Peng, Peng Jin, Fang‐Fang Li","doi":"10.3390/inorganics11090349","DOIUrl":"https://doi.org/10.3390/inorganics11090349","url":null,"abstract":"The reactivity of the open-shell Gd@C2v-C82 with different charge states towards benzyl bromide was investigated. [Gd@C2v-C82]3− exhibited enhanced activity relative to Gd@C2v-C82 and [Gd@C2v-C82]−. The structural characterizations, including MALDI-TOF MS, UV-vis-NIR, and single crystal X-ray diffraction, indicate the formation of isomeric benzyl monoadducts of Gd@C2v-C82. All three monoadducts contain 1:1 mirror-symmetric enantiomers. Additionally, the addition of the benzyl group and its specific position result in distinct electrochemical behavior of the products compared to the parent Gd@C2v-C82. Theoretical studies demonstrate that only [Gd@C2v-C82]3− has a HOMO energy level that matches well with the LUMO energy level of the PhCH2 radical, providing a rationalization for the observed significantly different reactivity.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48759937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/inorganics11090350
M. El-Naggar, M. Abu-Youssef, M. Haukka, A. Barakat, M. Sharaf, S. Soliman
The [Ag(3ADMT)(NO3)]n complex was synthesized by the self-assembly of 3-amino-5,6-dimethyl-1,2,4-triazine (3ADMT) and AgNO3. Its molecular structure was analyzed utilizing FTIR spectra, elemental analysis, and single crystal X-ray diffraction (SC-XRD). There is one crystallographically independent Ag atom, which is tetra-coordinated by two nitrogen atoms from two 3ADMT and two oxygen atoms from two nitrate anions where all ligand groups are acting as connectors between the Ag1 sites. The geometry around the Ag(I) center is a distorted tetrahedron with a AgN2O2 coordination sphere augmented by strong argentophilic interactions between Ag atoms, which assist the aggregation of the complex units in a wavy-like and coplanar pattern to form a one-dimensional polymeric chain. The O...H (37.2%) and N...H (18.8%) intermolecular interactions contributed significantly to the molecular packing based on Hirshfeld surface analysis. The [Ag(3ADMT)(NO3)]n complex demonstrates promising cytotoxicity against lung (IC50 = 2.96 ± 0.31 μg/mL) and breast (IC50 = 1.97 ± 0.18 μg/mL) carcinoma. This remarkable cytotoxicity exceeds those of 3ADMT, AgNO3, and the anticancer medication cis-platin towards the tested cancer cell lines. In addition, the complex has a wide-spectrum antimicrobial action where the high antibacterial potency of the [Ag(3ADMT)(NO3)]n complex against P. vulgaris (MIC = 6.1 µg/mL) and B. subtilis (MIC = 17.2 µg/mL) could be comparable to the commonly used drug Gentamycin (MIC = 4.8 µg/mL). These results confirm that the components of the [Ag(3ADMT)(NO3)]n complex work together synergistically, forming a powerful multifunctional agent that could be exploited as an effective antimicrobial and anticancer agent.
{"title":"Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent","authors":"M. El-Naggar, M. Abu-Youssef, M. Haukka, A. Barakat, M. Sharaf, S. Soliman","doi":"10.3390/inorganics11090350","DOIUrl":"https://doi.org/10.3390/inorganics11090350","url":null,"abstract":"The [Ag(3ADMT)(NO3)]n complex was synthesized by the self-assembly of 3-amino-5,6-dimethyl-1,2,4-triazine (3ADMT) and AgNO3. Its molecular structure was analyzed utilizing FTIR spectra, elemental analysis, and single crystal X-ray diffraction (SC-XRD). There is one crystallographically independent Ag atom, which is tetra-coordinated by two nitrogen atoms from two 3ADMT and two oxygen atoms from two nitrate anions where all ligand groups are acting as connectors between the Ag1 sites. The geometry around the Ag(I) center is a distorted tetrahedron with a AgN2O2 coordination sphere augmented by strong argentophilic interactions between Ag atoms, which assist the aggregation of the complex units in a wavy-like and coplanar pattern to form a one-dimensional polymeric chain. The O...H (37.2%) and N...H (18.8%) intermolecular interactions contributed significantly to the molecular packing based on Hirshfeld surface analysis. The [Ag(3ADMT)(NO3)]n complex demonstrates promising cytotoxicity against lung (IC50 = 2.96 ± 0.31 μg/mL) and breast (IC50 = 1.97 ± 0.18 μg/mL) carcinoma. This remarkable cytotoxicity exceeds those of 3ADMT, AgNO3, and the anticancer medication cis-platin towards the tested cancer cell lines. In addition, the complex has a wide-spectrum antimicrobial action where the high antibacterial potency of the [Ag(3ADMT)(NO3)]n complex against P. vulgaris (MIC = 6.1 µg/mL) and B. subtilis (MIC = 17.2 µg/mL) could be comparable to the commonly used drug Gentamycin (MIC = 4.8 µg/mL). These results confirm that the components of the [Ag(3ADMT)(NO3)]n complex work together synergistically, forming a powerful multifunctional agent that could be exploited as an effective antimicrobial and anticancer agent.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48029979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.3390/inorganics11090348
Sam H Brooks, C. Richards, P. Carroll, Michael R. Gau, N. Tomson
Multicopper active sites for small molecule activation in materials and enzymatic systems rely on controlled but adaptable coordination spheres about copper clusters for enabling challenging chemical transformations. To translate this constrained flexibility into molecular multicopper complexes, developments are needed in both ligand design for clusters and synthetic strategies for modifying the cluster cores. The present study investigates the chemistry of a class of pyridyldiimine-derived macrocycles with geometrically flexible aliphatic linkers of varying lengths (nPDI2, n = 2, 3). A series of dicopper complexes bound by the nPDI2 ligands are described and found to exhibit improved solubility over their parent analogs due to the incorporation of 4-tBu groups on the pyridyl units and the use of triflate counterions. The ensuing synthetic study investigated methods for introducing various bridging ligands (µ-X; X = F, Cl, Br, N3, NO2, OSiMe3, OH, OTf) between the two copper centers within the macrocycle-supported complexes. Traditional anion metathesis routes were unsuccessful, but the abstraction of bridging halides resulted in “open-core” complexes suitable for capturing various anions. The geometric flexibility of the nPDI2 macrocycles was reflected in the various solid-state geometries, Cu–Cu distances, and relative Cu coordination spheres on variation in the identity of the captured anion.
{"title":"Anion Capture at the Open Core of a Geometrically Flexible Dicopper(II,II) Macrocycle Complex","authors":"Sam H Brooks, C. Richards, P. Carroll, Michael R. Gau, N. Tomson","doi":"10.3390/inorganics11090348","DOIUrl":"https://doi.org/10.3390/inorganics11090348","url":null,"abstract":"Multicopper active sites for small molecule activation in materials and enzymatic systems rely on controlled but adaptable coordination spheres about copper clusters for enabling challenging chemical transformations. To translate this constrained flexibility into molecular multicopper complexes, developments are needed in both ligand design for clusters and synthetic strategies for modifying the cluster cores. The present study investigates the chemistry of a class of pyridyldiimine-derived macrocycles with geometrically flexible aliphatic linkers of varying lengths (nPDI2, n = 2, 3). A series of dicopper complexes bound by the nPDI2 ligands are described and found to exhibit improved solubility over their parent analogs due to the incorporation of 4-tBu groups on the pyridyl units and the use of triflate counterions. The ensuing synthetic study investigated methods for introducing various bridging ligands (µ-X; X = F, Cl, Br, N3, NO2, OSiMe3, OH, OTf) between the two copper centers within the macrocycle-supported complexes. Traditional anion metathesis routes were unsuccessful, but the abstraction of bridging halides resulted in “open-core” complexes suitable for capturing various anions. The geometric flexibility of the nPDI2 macrocycles was reflected in the various solid-state geometries, Cu–Cu distances, and relative Cu coordination spheres on variation in the identity of the captured anion.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48533494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.3390/inorganics11090347
A. F. Dresvyannikov, L. E. Kalugin, Ekaterina V. Petrova
This article focuses on the galvanic replacement synthesis of Ti-Ni and Zr-Ni metal systems with a “core-shell” structure, which are potential precursors for intermetallics. The authors defined effective synthesis parameters and formation features of polymetallic systems characterized by granulometric, phase, and elemental composition. X-ray fluorescence and X-ray phase analysis methods showed that the deposition of nickel on dispersed titanium and zirconium leads to the production of test samples with phase composition representing a mechanical mixture of Ni and Ti, and Ni and Zr. The method of X-ray fluorescence analysis showed that the presence of hydrofluoric acid with a 0.5-1.5 M concentration results in the formation of fixed quantitative ratios of elements in the precipitate, which allows the quantitative composition of dispersed systems “titanium-nickel” and “zirconium-nickel” to be regulated within a relatively wide range. Scanning electron microscopy proved that all synthesized systems are characterized by a highly porous structure that follows the titanium and zirconium particle surface contour and the presence of spherical nanoscale subunits on the formed particle surface.
{"title":"Synthesis of Ti-Ni and Zr-Ni Core–Shell Particles Using Galvanic Replacement","authors":"A. F. Dresvyannikov, L. E. Kalugin, Ekaterina V. Petrova","doi":"10.3390/inorganics11090347","DOIUrl":"https://doi.org/10.3390/inorganics11090347","url":null,"abstract":"This article focuses on the galvanic replacement synthesis of Ti-Ni and Zr-Ni metal systems with a “core-shell” structure, which are potential precursors for intermetallics. The authors defined effective synthesis parameters and formation features of polymetallic systems characterized by granulometric, phase, and elemental composition. X-ray fluorescence and X-ray phase analysis methods showed that the deposition of nickel on dispersed titanium and zirconium leads to the production of test samples with phase composition representing a mechanical mixture of Ni and Ti, and Ni and Zr. The method of X-ray fluorescence analysis showed that the presence of hydrofluoric acid with a 0.5-1.5 M concentration results in the formation of fixed quantitative ratios of elements in the precipitate, which allows the quantitative composition of dispersed systems “titanium-nickel” and “zirconium-nickel” to be regulated within a relatively wide range. Scanning electron microscopy proved that all synthesized systems are characterized by a highly porous structure that follows the titanium and zirconium particle surface contour and the presence of spherical nanoscale subunits on the formed particle surface.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42847501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/inorganics11080345
E. Malinina, I.I. Myshletsov, G. A. Buzanov, I. Kozerozhets, N. Simonenko, T. Simonenko, S. Nikiforova, V. Avdeeva, K. Zhizhin, N. Kuznetsov
The thermal reduction of the copper(II) complexes [CuII(N2H4)3][B10H10]·nH2O (I·nH2O) and [CuII(NH3)4][B10H10]·nH2O (II·nH2O) has been studied in an argon atmosphere at 900 °C. It has been found that the annealing of both compounds results in a Cu@BN boron-containing copper composite. It has been shown that this process leads to the formation of a boron nitride matrix doped with cubic copper(0) nanoparticles due to the copper(II)→copper(I)→copper(0) thermal reduction. The phase composition of annealing products I900 and II900 has been determined based on powder X-ray diffraction, IR spectroscopy and thermal analysis data. The morphology, average particle size and composition of the composite have been determined by TEM and high-resolution TEM + EDS. The average particle size has been found to be about 81 nm and 52 nm for samples I900 and II900, respectively. Comparison of the results obtained using physicochemical studies has shown the identity of the composition of the products of annealing I900 and II900. The electrical properties of a coating based on an I900 sample modified with Cu0→Cu2O in situ during deposition on a chip at 300 °C in air have been studied. As a result, with increasing temperature, an increase in the electrical conductivity characteristic of semiconductors has been observed.
{"title":"Physicochemical Fundamentals of the Synthesis of a Cu@BN Composite Consisting of Nanosized Copper Enclosed in a Boron Nitride Matrix","authors":"E. Malinina, I.I. Myshletsov, G. A. Buzanov, I. Kozerozhets, N. Simonenko, T. Simonenko, S. Nikiforova, V. Avdeeva, K. Zhizhin, N. Kuznetsov","doi":"10.3390/inorganics11080345","DOIUrl":"https://doi.org/10.3390/inorganics11080345","url":null,"abstract":"The thermal reduction of the copper(II) complexes [CuII(N2H4)3][B10H10]·nH2O (I·nH2O) and [CuII(NH3)4][B10H10]·nH2O (II·nH2O) has been studied in an argon atmosphere at 900 °C. It has been found that the annealing of both compounds results in a Cu@BN boron-containing copper composite. It has been shown that this process leads to the formation of a boron nitride matrix doped with cubic copper(0) nanoparticles due to the copper(II)→copper(I)→copper(0) thermal reduction. The phase composition of annealing products I900 and II900 has been determined based on powder X-ray diffraction, IR spectroscopy and thermal analysis data. The morphology, average particle size and composition of the composite have been determined by TEM and high-resolution TEM + EDS. The average particle size has been found to be about 81 nm and 52 nm for samples I900 and II900, respectively. Comparison of the results obtained using physicochemical studies has shown the identity of the composition of the products of annealing I900 and II900. The electrical properties of a coating based on an I900 sample modified with Cu0→Cu2O in situ during deposition on a chip at 300 °C in air have been studied. As a result, with increasing temperature, an increase in the electrical conductivity characteristic of semiconductors has been observed.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48819757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/inorganics11080346
Song Wang, Xianming Zhang, Xi Tan, Hongzhen Li, Songxin Dai, B. Yao, Xingyan Liu, Youzhou He, Fei Jin
Functionalization of endohedral metallofullerenes (EMFs) plays an important role in exploring the reactivity of EMFs and stabilizing missing EMFs, thus conferring tunable properties and turning EMFs into applicable materials. In this review, we present exhaustive progress on the functionalization of EMFs since 2019. Classic functionalization reactions include Prato reactions, Bingel–Hirsch reactions, radical addition reactions, carbene addition reactions, and so on are summarized. And new complicated multi-component reactions and other creative reactions are presented as well. We also discuss the structural features of derivatives of EMFs and the corresponding reaction mechanisms to understand the reactivity and regioselectivity of EMFs. In the end, we make conclusions and put forward an outlook on the prospect of the functionalization of EMFs.
{"title":"Recent Progress on the Functionalization of Endohedral Metallofullerenes","authors":"Song Wang, Xianming Zhang, Xi Tan, Hongzhen Li, Songxin Dai, B. Yao, Xingyan Liu, Youzhou He, Fei Jin","doi":"10.3390/inorganics11080346","DOIUrl":"https://doi.org/10.3390/inorganics11080346","url":null,"abstract":"Functionalization of endohedral metallofullerenes (EMFs) plays an important role in exploring the reactivity of EMFs and stabilizing missing EMFs, thus conferring tunable properties and turning EMFs into applicable materials. In this review, we present exhaustive progress on the functionalization of EMFs since 2019. Classic functionalization reactions include Prato reactions, Bingel–Hirsch reactions, radical addition reactions, carbene addition reactions, and so on are summarized. And new complicated multi-component reactions and other creative reactions are presented as well. We also discuss the structural features of derivatives of EMFs and the corresponding reaction mechanisms to understand the reactivity and regioselectivity of EMFs. In the end, we make conclusions and put forward an outlook on the prospect of the functionalization of EMFs.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41736231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/inorganics11080344
A. Toropova, A. Toropov, N. Fjodorova
Background: The system of self-consistent models is an attempt to develop a tool to assess the predictive potential of various approaches by considering a group of random distributions of available data into training and validation sets. Considering many different splits is more informative than considering a single model. Methods: Models studied here build up for solubility of fullerenes C60 and C70 in different organic solvents using so-called quasi-SMILES, which contain traditional simplified molecular input-line entry systems (SMILES) incorporated with codes that reflect the presence of C60 and C70. In addition, the fragments of local symmetry (FLS) in quasi-SMILES are applied to improve the solubility’s predictive potential (expressed via mole fraction at 298’K) models. Results: Several versions of the Monte Carlo procedure are studied. The use of the fragments of local symmetry along with a special vector of the ideality of correlation improves the predictive potential of the models. The average value of the determination coefficient on the validation sets is equal to 0.9255 ± 0.0163. Conclusions: The comparison of different manners of the Monte Carlo optimization of the correlation weights has shown that the best predictive potential was observed for models where both fragments of local symmetry and the vector of the ideality of correlation were applied.
{"title":"QSPR and Nano-QSPR: Which One Is Common? The Case of Fullerenes Solubility","authors":"A. Toropova, A. Toropov, N. Fjodorova","doi":"10.3390/inorganics11080344","DOIUrl":"https://doi.org/10.3390/inorganics11080344","url":null,"abstract":"Background: The system of self-consistent models is an attempt to develop a tool to assess the predictive potential of various approaches by considering a group of random distributions of available data into training and validation sets. Considering many different splits is more informative than considering a single model. Methods: Models studied here build up for solubility of fullerenes C60 and C70 in different organic solvents using so-called quasi-SMILES, which contain traditional simplified molecular input-line entry systems (SMILES) incorporated with codes that reflect the presence of C60 and C70. In addition, the fragments of local symmetry (FLS) in quasi-SMILES are applied to improve the solubility’s predictive potential (expressed via mole fraction at 298’K) models. Results: Several versions of the Monte Carlo procedure are studied. The use of the fragments of local symmetry along with a special vector of the ideality of correlation improves the predictive potential of the models. The average value of the determination coefficient on the validation sets is equal to 0.9255 ± 0.0163. Conclusions: The comparison of different manners of the Monte Carlo optimization of the correlation weights has shown that the best predictive potential was observed for models where both fragments of local symmetry and the vector of the ideality of correlation were applied.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42554069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/inorganics11080343
N. Toyama, Tatsuya Takahashi, Norifumi Terui, S. Furukawa
In this study, we investigated the preparation conditions of polystyrene (PS)@TiO2 core–shell particles and their photocatalytic activity during the decomposition of methylene blue (MB). TiO2 shells were formed on the surfaces of PS particles using the sol–gel method. Homogeneous PS@TiO2 core–shell particles were obtained using an aqueous NH3 solution as the promoter of the sol–gel reaction and stirred at room temperature. This investigation revealed that the temperature and amount of the sol–gel reaction promoter influenced the morphology of the PS@TiO2 core–shell particles. The TiO2 shell thickness of the PS@TiO2 core–shell particles was approximately 5 nm, as observed using transmission electron microscopy. Additionally, Ti elements were detected on the surfaces of the PS@TiO2 core–shell particles using energy-dispersive X-ray spectroscopy analysis. The PS@TiO2 core–shell particles were used in MB decomposition to evaluate their photocatalytic activities. For comparison, we utilized commercial P25 and TiO2 particles prepared using the sol–gel method. The results showed that the PS@TiO2 core–shell particles exhibited higher activity than that of the compared samples.
{"title":"Synthesis of Polystyrene@TiO2 Core–Shell Particles and Their Photocatalytic Activity for the Decomposition of Methylene Blue","authors":"N. Toyama, Tatsuya Takahashi, Norifumi Terui, S. Furukawa","doi":"10.3390/inorganics11080343","DOIUrl":"https://doi.org/10.3390/inorganics11080343","url":null,"abstract":"In this study, we investigated the preparation conditions of polystyrene (PS)@TiO2 core–shell particles and their photocatalytic activity during the decomposition of methylene blue (MB). TiO2 shells were formed on the surfaces of PS particles using the sol–gel method. Homogeneous PS@TiO2 core–shell particles were obtained using an aqueous NH3 solution as the promoter of the sol–gel reaction and stirred at room temperature. This investigation revealed that the temperature and amount of the sol–gel reaction promoter influenced the morphology of the PS@TiO2 core–shell particles. The TiO2 shell thickness of the PS@TiO2 core–shell particles was approximately 5 nm, as observed using transmission electron microscopy. Additionally, Ti elements were detected on the surfaces of the PS@TiO2 core–shell particles using energy-dispersive X-ray spectroscopy analysis. The PS@TiO2 core–shell particles were used in MB decomposition to evaluate their photocatalytic activities. For comparison, we utilized commercial P25 and TiO2 particles prepared using the sol–gel method. The results showed that the PS@TiO2 core–shell particles exhibited higher activity than that of the compared samples.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47514633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/inorganics11080340
Xinhua Tian, Hao Chang, Hongxing Dong, Chi Zhang, Long Zhang
Error in Figure [...]
图[…]中出现错误
{"title":"Correction: Tian et al. Fluorescence Resonance Energy Transfer Properties and Auger Recombination Suppression in Supraparticles Self-Assembled from Colloidal Quantum Dots. Inorganics 2023, 11, 218","authors":"Xinhua Tian, Hao Chang, Hongxing Dong, Chi Zhang, Long Zhang","doi":"10.3390/inorganics11080340","DOIUrl":"https://doi.org/10.3390/inorganics11080340","url":null,"abstract":"Error in Figure [...]","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45353001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}