首页 > 最新文献

International Journal of Biological Sciences最新文献

英文 中文
Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. 慢性压力诱导的羟色胺通过 AMPK-PGC-1α 轴损害肠上皮细胞线粒体生物生成
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.97275
Ding Yang, Yan Sun, Pei Wen, Yaoxing Chen, Jing Cao, Xuelin Sun, Yulan Dong

Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.

慢性压力与胃肠功能紊乱密切相关。然而,在慢性应激条件下,应激相关神经递质(如血清素(5-羟色胺,5-HT))对肠道的影响仍鲜为人知。本研究旨在阐明 5-HT 在慢性应激过程中影响线粒体生物生成和肠道屏障完整性的机制。利用慢性束缚应激(CRS)小鼠模型,我们观察到肠道 5-HT 水平升高、结肠粘膜结构改变和紧密连接破坏。5-羟色胺的增加与血清素合成酶上调和血清素再摄取转运体下调有关,表明慢性应激导致血清素平衡失调。此外,血清素还加剧了氧化应激,损害了紧密连接蛋白的表达,突出了它在促进肠屏障功能障碍方面的作用。体外细胞实验表明,5-羟色胺通过 5-HT7 受体和 cAMP-PKA 通路抑制 AMPK-PGC-1α 轴,从而损害线粒体生物生成。药物抑制血清素合成或 5-HT7 受体可减轻 5-HT 和慢性应激对肠道屏障的损伤,恢复线粒体的生物生成。这些发现提供了令人信服的证据,证明血清素通过抑制AMPK-PGC-1α轴加剧了慢性应激诱导的肠屏障破坏,为针对血清素对肠道的有害影响(尤其是在慢性应激条件下)的新型治疗干预铺平了道路。
{"title":"Chronic Stress-induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis.","authors":"Ding Yang, Yan Sun, Pei Wen, Yaoxing Chen, Jing Cao, Xuelin Sun, Yulan Dong","doi":"10.7150/ijbs.97275","DOIUrl":"10.7150/ijbs.97275","url":null,"abstract":"<p><p>Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells <i>in vitro</i> demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT<sub>7</sub> receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT<sub>7</sub> receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4476-4495"},"PeriodicalIF":8.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy. 多组学分析解密了脂肪肝患者在饮食限制和袖带状胃切除术后细胞和代谢情况的复杂变化。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.98362
Shuai Chen, Qinghe Zeng, Xiurong Cai, Jiaming Xue, Guo Yin, Peng Song, Liming Tang, Christophe Klein, Frank Tacke, Adrien Guillot, Hanyang Liu

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (Ppara, Cyp2e1 and Cyp7a1) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.

代谢功能障碍相关性脂肪性肝病(MASLD)是一种慢性进展性肝病,包括脂肪变性、脂肪性肝炎(或 MASH)和纤维化。有证据表明,饮食限制(DR)和袖状胃切除术(SG)可通过减轻体重来缓解肝脏脂肪变性和炎症,但目前还不清楚这些手术是否会诱导 MASLD 肝脏发生不同的代谢或免疫学变化。本研究旨在通过与接受 SG 手术的临床患者进行比较,阐明以高脂肪饮食喂养的大鼠作为肥胖相关 MASLD 模型,在接受 DR、SG 或假手术后肝脏发生的复杂变化。单细胞和单核转录组分析、空间代谢组学和免疫组化揭示了肝脏的结构,同时对血清样本中的循环生物标记物进行了测量。人工智能(AI)辅助图像分析描述了肝细胞、骨髓细胞和淋巴细胞的空间分布。在患者和实验性 MASLD 大鼠中,SG 可改善体重指数、循环肝损伤生物标志物和甘油三酯水平。DR和SG都能减轻大鼠肝脏脂肪变性和纤维化。DR和SG可上调肝细胞中的代谢相关基因(Ppara、Cyp2e1和Cyp7a1),而SG可广泛上调胆管细胞、单核细胞、巨噬细胞和中性粒细胞的脂质代谢。此外,SG 还能促进肝脏中恢复性髓系细胞的聚集,不仅能改善炎症,还能激活肝脏修复过程。髓系细胞强力浸润的区域在 SG 作用下代谢能力明显增强。此外,DR 会破坏肝脏周围肝细胞的功能。总之,这项研究表明,接受 SG 治疗的脂肪肝患者体内存在动态的细胞串联。值得注意的是,PPARα和肠肝轴相关过程以及代谢活跃的髓样细胞浸润表明了干预相关机制,支持将 SG 用于治疗 MASLD。
{"title":"Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy.","authors":"Shuai Chen, Qinghe Zeng, Xiurong Cai, Jiaming Xue, Guo Yin, Peng Song, Liming Tang, Christophe Klein, Frank Tacke, Adrien Guillot, Hanyang Liu","doi":"10.7150/ijbs.98362","DOIUrl":"10.7150/ijbs.98362","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (<i>Ppara</i>, <i>Cyp2e1</i> and <i>Cyp7a1</i>) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4438-4457"},"PeriodicalIF":8.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor ABCC4-mediated release of PGE2 induces CD8+ T cell dysfunction and impairs PD-1 blockade in prostate cancer. 肿瘤 ABCC4 介导的 PGE2 释放会诱导 CD8+ T 细胞功能障碍,并损害前列腺癌的 PD-1 阻断作用。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.99716
Le Li, Zheng Chao, Hao Peng, Zhiquan Hu, Zhihua Wang, Xing Zeng

Prostate cancer presents as an immunologically "cold" malignancy, characterized by a lack of response to immunotherapy in the majority of patients. The dysfunction of prostate tumor metabolism is recognized as a critical factor in immune evasion, resulting in reduced effectiveness of immunotherapeutic interventions. Despite this awareness, the precise molecular mechanisms underpinning metabolic dysregulation in prostate cancer and its intricate relationship with immune evasion remain incompletely elucidated. In this study, we introduce the multi-drug resistance protein ABCC4/MRP4 as a key player prominently expressed in prostate cancer, exerting a pivotal role in suppressing the activity of intratumoral CD8+ T cells. Depletion of ABCC4 in prostate cancer cells halts the release of prostaglandin E2 (PGE2), a molecule that diminishes the population of CD8+ T cells and curtails their cytotoxic capabilities. Conversely, constraining the activation of PGE2 signaling in CD8+ T cells effectively improved the efficacy of prostate cancer treatment with PD-1 blockade. During this process, downregulation of the JAK1-STAT3 pathway and depolarization of mitochondria emerge as crucial factors contributing to T cell anergy. Collectively, our research identifies the ABCC4-PGE2 axis as a promising target for reversing dysfunction within tumor-infiltrating lymphocytes (TILs) and augmenting the suboptimal responsiveness to immunotherapy in prostate cancer.

前列腺癌是一种免疫 "冷 "恶性肿瘤,大多数患者对免疫疗法缺乏反应。前列腺肿瘤代谢功能障碍被认为是免疫逃避的关键因素,导致免疫治疗干预效果降低。尽管认识到了这一点,但前列腺癌代谢失调的确切分子机制及其与免疫逃避的复杂关系仍未完全阐明。在这项研究中,我们介绍了多重耐药蛋白 ABCC4/MRP4,它是在前列腺癌中显著表达的一个关键因子,在抑制瘤内 CD8+ T 细胞活性方面发挥着关键作用。消耗前列腺癌细胞中的 ABCC4 可阻止前列腺素 E2(PGE2)的释放,而 PGE2 是一种可减少 CD8+ T 细胞数量并削弱其细胞毒性能力的分子。相反,限制 CD8+ T 细胞中 PGE2 信号的激活,能有效提高 PD-1 阻断治疗前列腺癌的疗效。在这一过程中,JAK1-STAT3通路的下调和线粒体的去极化成为导致T细胞过敏的关键因素。总之,我们的研究发现 ABCC4-PGE2 轴是扭转肿瘤浸润淋巴细胞(TILs)功能障碍和增强前列腺癌免疫疗法次优反应性的一个有希望的靶点。
{"title":"Tumor ABCC4-mediated release of PGE2 induces CD8<sup>+</sup> T cell dysfunction and impairs PD-1 blockade in prostate cancer.","authors":"Le Li, Zheng Chao, Hao Peng, Zhiquan Hu, Zhihua Wang, Xing Zeng","doi":"10.7150/ijbs.99716","DOIUrl":"10.7150/ijbs.99716","url":null,"abstract":"<p><p>Prostate cancer presents as an immunologically \"cold\" malignancy, characterized by a lack of response to immunotherapy in the majority of patients. The dysfunction of prostate tumor metabolism is recognized as a critical factor in immune evasion, resulting in reduced effectiveness of immunotherapeutic interventions. Despite this awareness, the precise molecular mechanisms underpinning metabolic dysregulation in prostate cancer and its intricate relationship with immune evasion remain incompletely elucidated. In this study, we introduce the multi-drug resistance protein ABCC4/MRP4 as a key player prominently expressed in prostate cancer, exerting a pivotal role in suppressing the activity of intratumoral CD8<sup>+</sup> T cells. Depletion of ABCC4 in prostate cancer cells halts the release of prostaglandin E2 (PGE2), a molecule that diminishes the population of CD8<sup>+</sup> T cells and curtails their cytotoxic capabilities. Conversely, constraining the activation of PGE2 signaling in CD8<sup>+</sup> T cells effectively improved the efficacy of prostate cancer treatment with PD-1 blockade. During this process, downregulation of the JAK1-STAT3 pathway and depolarization of mitochondria emerge as crucial factors contributing to T cell anergy. Collectively, our research identifies the ABCC4-PGE2 axis as a promising target for reversing dysfunction within tumor-infiltrating lymphocytes (TILs) and augmenting the suboptimal responsiveness to immunotherapy in prostate cancer.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4424-4437"},"PeriodicalIF":8.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXA1-dependent PUS1 regulates EIF3b stability in a non-enzymatic pathway mediating prostate cancer bone metastasis. 依赖于 FOXA1 的 PUS1 在介导前列腺癌骨转移的非酶途径中调节 EIF3b 的稳定性。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.100905
Yongxin Wu, Shengmeng Peng, Bisheng Cheng, Haitao Zhong, Meifeng Cen, Jianhan Fu, Tianlong Luo, Zhenghui Guo, Yiming Lai, Hai Huang

Bone metastasis is a significant contributor to the poor prognosis in prostate cancer. Recent evidence highlights the pivotal role of pseudouridine synthases in solid tumor progression, yet the specific enzyme driving prostate cancer metastasis remains unidentified. This study uncovers a novel regulatory mechanism of the FOXA1/PUS1/EIF3b signaling axis in prostate cancer bone metastasis. We identified elevated PUS1 expression in prostate cancer tissues, correlating with higher clinical grade and worse prognosis. Knockdown of PUS1 inhibited metastasis independently of its enzymatic activity, with EIF3b acting as a downstream effector, protected from ubiquitin-mediated degradation by PUS1. Overexpression of EIF3b countered the metastasis suppression due to PUS1 knockdown. Additionally, FOXA1 was shown to enhance PUS1 expression by binding to its promoter. Mogroside IV-E, a specific PUS1 inhibitor, demonstrated potent anti-metastatic effects by reducing PUS1 expression. Our findings highlight the FOXA1/PUS1/EIF3b axis as a critical mediator of prostate cancer bone metastasis and suggest that targeting this pathway could be a promising therapeutic strategy.

骨转移是导致前列腺癌预后不良的一个重要因素。最近的证据强调了假尿苷合成酶在实体瘤进展中的关键作用,但驱动前列腺癌转移的特定酶仍未确定。本研究发现了前列腺癌骨转移中 FOXA1/PUS1/EIF3b 信号轴的新型调控机制。我们发现前列腺癌组织中 PUS1 表达升高,与较高的临床分级和较差的预后相关。敲除 PUS1 可抑制转移,不受其酶活性的影响,而 EIF3b 则作为下游效应物,受到 PUS1 的保护,免受泛素介导的降解。EIF3b的过表达抵消了PUS1敲除对转移的抑制作用。此外,研究还发现 FOXA1 可通过与其启动子结合来增强 PUS1 的表达。Mogroside IV-E是一种特异性PUS1抑制剂,它通过降低PUS1的表达而显示出强大的抗转移作用。我们的研究结果突显了FOXA1/PUS1/EIF3b轴是前列腺癌骨转移的关键介质,并表明靶向这一通路可能是一种很有前景的治疗策略。
{"title":"FOXA1-dependent PUS1 regulates EIF3b stability in a non-enzymatic pathway mediating prostate cancer bone metastasis.","authors":"Yongxin Wu, Shengmeng Peng, Bisheng Cheng, Haitao Zhong, Meifeng Cen, Jianhan Fu, Tianlong Luo, Zhenghui Guo, Yiming Lai, Hai Huang","doi":"10.7150/ijbs.100905","DOIUrl":"10.7150/ijbs.100905","url":null,"abstract":"<p><p>Bone metastasis is a significant contributor to the poor prognosis in prostate cancer. Recent evidence highlights the pivotal role of pseudouridine synthases in solid tumor progression, yet the specific enzyme driving prostate cancer metastasis remains unidentified. This study uncovers a novel regulatory mechanism of the FOXA1/PUS1/EIF3b signaling axis in prostate cancer bone metastasis. We identified elevated PUS1 expression in prostate cancer tissues, correlating with higher clinical grade and worse prognosis. Knockdown of PUS1 inhibited metastasis independently of its enzymatic activity, with EIF3b acting as a downstream effector, protected from ubiquitin-mediated degradation by PUS1. Overexpression of EIF3b countered the metastasis suppression due to PUS1 knockdown. Additionally, FOXA1 was shown to enhance PUS1 expression by binding to its promoter. Mogroside IV-E, a specific PUS1 inhibitor, demonstrated potent anti-metastatic effects by reducing PUS1 expression. Our findings highlight the FOXA1/PUS1/EIF3b axis as a critical mediator of prostate cancer bone metastasis and suggest that targeting this pathway could be a promising therapeutic strategy.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4566-4584"},"PeriodicalIF":8.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olaparib combined with CDK12-IN-3 to promote genomic instability and cell death in ovarian cancer. 奥拉帕利(Olaparib)与 CDK12-IN-3 结合可促进卵巢癌的基因组不稳定性和细胞死亡。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.94568
Jianqiang Liang, Xuan Zhou, Lin Yuan, Tian Chen, Yicong Wan, Yi Jiang, Huangyang Meng, Mengting Xu, Lin Zhang, Wenjun Cheng

Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.

奥拉帕利(Olaparib)的大规模III期临床试验显示,BRCA基因突变或同源重组缺陷(HRD)的卵巢癌患者可从中获益。然而,只有不到50%的卵巢癌患者同时存在BRCA基因突变和同源重组缺陷。因此,提高奥拉帕利在HR缺陷患者中的疗效具有重要的临床价值。在此研究中,奥拉帕利和CDK12-IN-3的组合策略有效抑制了HR缺陷卵巢癌在细胞系、患者衍生类器官(PDO)和小鼠异种移植模型中的生长。此外,联合策略还诱导了严重的DNA双链断裂(DSB)形成,提高了G2期的NHEJ活性,降低了癌细胞的HR活性。从机理上讲,联合疗法损害了Ku80的聚(ADP-核糖基)化(PAR)和磷酸化,导致PARP1-Ku80复合物解离。解离后,Ku80在DSB上的占有率和由此产生的Ku80-primed NHEJ活性都增加了。由于 Ku80 介导的 DNA 末端保护,MRE11 和 Rad51 病灶的形成在联合处理后受到抑制,这表明该处理抑制了 HR 活性。耐人寻味的是,联合策略加快了 cGAS 核再定位,进一步抑制了 HR,相反,增加了基因组的不稳定性。此外,对细胞存活的抑制作用在停药后依然存在。这些发现为CDK12-IN-3与奥拉帕利联合应用于临床提供了理论依据。
{"title":"Olaparib combined with CDK12-IN-3 to promote genomic instability and cell death in ovarian cancer.","authors":"Jianqiang Liang, Xuan Zhou, Lin Yuan, Tian Chen, Yicong Wan, Yi Jiang, Huangyang Meng, Mengting Xu, Lin Zhang, Wenjun Cheng","doi":"10.7150/ijbs.94568","DOIUrl":"10.7150/ijbs.94568","url":null,"abstract":"<p><p>Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4513-4531"},"PeriodicalIF":8.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of α4β1 Integrin Activity by Small Tellurium Compounds Regulates PD-L1 Expression and Enhances Antitumor Effects. 碲小化合物抑制α4β1整合素活性可调节PD-L1表达并增强抗肿瘤效果
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.95350
Abigael Chaouat, Yona Kalechman, Ophir Hay, Julia E Manoim, Tal Lantner, Eitan Niderberg, Hagit Hauschner, Dvora Kenigsbuch Sredni, Tal Cohen, Agata Schlesinger, Ronia Nadler, Mira Barda-Saad, Elad Noy, Michael Albeck, Dan L Longo, Benjamin Sredni

Various cancer treatment approaches that inhibit the activity of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) axis, a key player in tumor immune evasion, have been developed. We show that the immunomodulatory small tellurium complexes AS101 (ammonium trichloro(dioxoethylene-o,o')tellurate) and SAS (octa-O-bis(R,R)-tartarate ditellurane) suppress PD-L1 expression in a variety of human and mouse malignant cells via the modulation of α4β1 very late antigen-4 (VLA-4) integrin activity. Consequently, the expression of pAkt and its downstream effector pNFκB are inhibited. Additionally, SAS promotes the death of mouse malignant cells by activated syngeneic splenocytes or CD8+ T cells, preventing the development of chemoresistance in malignant cells. Moreover, AS101 and SAS may increase, at least in part, chemosensitivity through inhibition of the VLA-4/IL-10/PD-L1 pathway. Additionally, AS101 or SAS treatment of B16/F10 melanoma-bearing mice decreased tumor cell PD-L1 expression, leading to increased CD8+ T-cell infiltration into the tumors and tumor shrinkage. Combination treatment with an αPD-1 antibody and either tellurium compound significantly increased the antitumor efficacy of immunotherapy. Overall, VLA-4 integrin signaling is critical for tumor immune evasion and is a potential target for cancer treatment. Finally, AS101 or SAS, biologically active tellurium compounds, can effectively enhance the therapeutic efficacy of αPD-1-based cancer immunotherapy.

抑制程序性死亡-1/程序性死亡配体 1(PD-1/PD-L1)轴活性的各种癌症治疗方法已经开发出来,PD-1/PD-L1 轴是肿瘤免疫逃避的关键角色。我们的研究表明,免疫调节小碲复合物 AS101(三氯(二氧代乙烯-o,o')碲酸铵)和 SAS(八-O-双(R,R)-酒石酸二碲酸铵)通过调节 α4β1 很晚抗原-4(VLA-4)整合素的活性,抑制了 PD-L1 在多种人类和小鼠恶性细胞中的表达。因此,pAkt 及其下游效应物 pNFκB 的表达受到抑制。此外,SAS 还能促进活化的合成脾细胞或 CD8+ T 细胞杀死小鼠恶性细胞,防止恶性细胞产生化疗抵抗。此外,AS101 和 SAS 还可通过抑制 VLA-4/IL-10/PD-L1 通路至少部分提高化疗敏感性。此外,AS101或SAS治疗B16/F10黑色素瘤小鼠可降低肿瘤细胞PD-L1的表达,从而增加CD8+ T细胞对肿瘤的浸润并缩小肿瘤。αPD-1抗体和任一种碲化合物的联合治疗可显著提高免疫疗法的抗肿瘤疗效。总之,VLA-4整合素信号对肿瘤免疫逃避至关重要,是癌症治疗的潜在靶点。最后,具有生物活性的碲化合物 AS101 或 SAS 可以有效提高基于 αPD-1 的癌症免疫疗法的疗效。
{"title":"Inhibition of α4β1 Integrin Activity by Small Tellurium Compounds Regulates PD-L1 Expression and Enhances Antitumor Effects.","authors":"Abigael Chaouat, Yona Kalechman, Ophir Hay, Julia E Manoim, Tal Lantner, Eitan Niderberg, Hagit Hauschner, Dvora Kenigsbuch Sredni, Tal Cohen, Agata Schlesinger, Ronia Nadler, Mira Barda-Saad, Elad Noy, Michael Albeck, Dan L Longo, Benjamin Sredni","doi":"10.7150/ijbs.95350","DOIUrl":"10.7150/ijbs.95350","url":null,"abstract":"<p><p>Various cancer treatment approaches that inhibit the activity of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) axis, a key player in tumor immune evasion, have been developed. We show that the immunomodulatory small tellurium complexes AS101 (ammonium trichloro(dioxoethylene-o,o')tellurate) and SAS (octa-O-bis(R,R)-tartarate ditellurane) suppress PD-L1 expression in a variety of human and mouse malignant cells via the modulation of α4β1 very late antigen-<i>4</i> (VLA-4) integrin activity. Consequently, the expression of pAkt and its downstream effector pNFκB are inhibited. Additionally, SAS promotes the death of mouse malignant cells by activated syngeneic splenocytes or CD8<sup>+</sup> T cells, preventing the development of chemoresistance in malignant cells. Moreover, AS101 and SAS may increase, at least in part, chemosensitivity through inhibition of the VLA-4/IL-10/PD-L1 pathway. Additionally, AS101 or SAS treatment of B16/F10 melanoma-bearing mice decreased tumor cell PD-L1 expression, leading to increased CD8<sup>+</sup> T-cell infiltration into the tumors and tumor shrinkage. Combination treatment with an αPD-1 antibody and either tellurium compound significantly increased the antitumor efficacy of immunotherapy. Overall, VLA-4 integrin signaling is critical for tumor immune evasion and is a potential target for cancer treatment. Finally, AS101 or SAS, biologically active tellurium compounds, can effectively enhance the therapeutic efficacy of αPD-1-based cancer immunotherapy.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4407-4423"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomal SLC16A1-AS1-induced M2 macrophages polarization facilitates hepatocellular carcinoma progression. 外泌体 SLC16A1-AS1 诱导的 M2 巨噬细胞极化促进了肝细胞癌的进展。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.94440
Yuhang Hu, Yang Li, Hewei Xiong, Ya Zhang, Fan Wang, Wenfeng Zhuo, Zhu Zeng, Yong Zhao, Hongda Wang, Ping Hu, Shengbo Han, Yan Huang, Guozheng Lv, Gang Zhao

Macrophages are the most abundant alternative immune cells in the tumor microenvironment (TME). The cross-talk between macrophages and tumor cells provides an important shelter for the occurrence and development of tumors. As an important information transfer medium, exosomes play an important role in intercellular communication. Nonetheless, how exosomal lncRNAs coordinate the communication between tumor cells and immune cells in hepatocellular carcinoma (HCC) is incompletely understood. We found that HCC exosomes-derived antisense RNA of SLC16A1(SLC16A1-AS1) promoted the malignant progression of HCC by regulating macrophage M2-type polarization. Mechanistically, the HCC exosomal SLC16A1-AS1 enhanced mRNA stabilization of SLC16A1 in macrophage by promoting the interaction between 3' untranslated regions (3'UTR) of SLC16A1 mRNA and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). As a lactate transporter, SLC16A1 accelerated lactate influx and then activated c-Raf/ERK signaling to induce M2 polarization of macrophages. Reciprocally, M2 macrophages secreted IL-6 to activate STAT3 and then induce METTL3 transcription in HCC cells, which increasing m6A methylation and stabilization of SLC16A1-AS1. In turn, the reciprocal SLC16A1-AS1/IL-6 signaling between HCC cells and M2 macrophages promoted the proliferation, invasion and glycolysis of HCC cells. Our study highlights that exosomal SLC16A1-AS1 acts as a signaling message that induces lactate-mediated M2 polarization of macrophages, and implies that SLC16A1-AS1 might be an applicable target for therapeutic treatment of HCC.

巨噬细胞是肿瘤微环境(TME)中最丰富的替代免疫细胞。巨噬细胞与肿瘤细胞之间的交叉对话为肿瘤的发生和发展提供了重要的庇护。作为一种重要的信息传递介质,外泌体在细胞间通信中发挥着重要作用。然而,外泌体lncRNA如何协调肝细胞癌(HCC)中肿瘤细胞与免疫细胞之间的交流尚不完全清楚。我们发现,HCC外泌体衍生的SLC16A1(SLC16A1-AS1)反义RNA通过调节巨噬细胞M2型极化促进了HCC的恶性进展。从机理上讲,HCC外泌体SLC16A1-AS1通过促进SLC16A1 mRNA的3'非翻译区(3'UTR)与异质核糖核蛋白A1(HNRNPA1)之间的相互作用,增强了巨噬细胞中SLC16A1的mRNA稳定性。作为乳酸转运体,SLC16A1 可加速乳酸流入,然后激活 c-Raf/ERK 信号,诱导巨噬细胞 M2 极化。反过来,M2 巨噬细胞分泌 IL-6 激活 STAT3,然后诱导 HCC 细胞中的 METTL3 转录,从而增加 m6A 甲基化和 SLC16A1-AS1 的稳定。反过来,HCC细胞与M2巨噬细胞之间的SLC16A1-AS1/IL-6互作信号转导促进了HCC细胞的增殖、侵袭和糖酵解。我们的研究强调,外泌体SLC16A1-AS1是诱导巨噬细胞乳酸介导的M2极化的信号信息,这意味着SLC16A1-AS1可能是治疗HCC的一个适用靶点。
{"title":"Exosomal SLC16A1-AS1-induced M2 macrophages polarization facilitates hepatocellular carcinoma progression.","authors":"Yuhang Hu, Yang Li, Hewei Xiong, Ya Zhang, Fan Wang, Wenfeng Zhuo, Zhu Zeng, Yong Zhao, Hongda Wang, Ping Hu, Shengbo Han, Yan Huang, Guozheng Lv, Gang Zhao","doi":"10.7150/ijbs.94440","DOIUrl":"10.7150/ijbs.94440","url":null,"abstract":"<p><p>Macrophages are the most abundant alternative immune cells in the tumor microenvironment (TME). The cross-talk between macrophages and tumor cells provides an important shelter for the occurrence and development of tumors. As an important information transfer medium, exosomes play an important role in intercellular communication. Nonetheless, how exosomal lncRNAs coordinate the communication between tumor cells and immune cells in hepatocellular carcinoma (HCC) is incompletely understood. We found that HCC exosomes-derived antisense RNA of SLC16A1(SLC16A1-AS1) promoted the malignant progression of HCC by regulating macrophage M2-type polarization. Mechanistically, the HCC exosomal SLC16A1-AS1 enhanced mRNA stabilization of SLC16A1 in macrophage by promoting the interaction between 3' untranslated regions (3'UTR) of SLC16A1 mRNA and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). As a lactate transporter, SLC16A1 accelerated lactate influx and then activated c-Raf/ERK signaling to induce M2 polarization of macrophages. Reciprocally, M2 macrophages secreted IL-6 to activate STAT3 and then induce METTL3 transcription in HCC cells, which increasing m6A methylation and stabilization of SLC16A1-AS1. In turn, the reciprocal SLC16A1-AS1/IL-6 signaling between HCC cells and M2 macrophages promoted the proliferation, invasion and glycolysis of HCC cells. Our study highlights that exosomal SLC16A1-AS1 acts as a signaling message that induces lactate-mediated M2 polarization of macrophages, and implies that SLC16A1-AS1 might be an applicable target for therapeutic treatment of HCC.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4341-4363"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RUNX1-PDIA5 Axis Promotes Malignant Progression of Glioblastoma by Regulating CCAR1 Protein Expression. RUNX1-PDIA5轴通过调控CCAR1蛋白表达促进胶质母细胞瘤恶性进展
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.92595
Qiankun Ji, Zewei Tu, Junzhe Liu, Zhihong Zhou, Fengze Li, Xingen Zhu, Kai Huang

PDIA5 is responsible for modification of disulfide bonds of proteins. However, its impact on the malignant progression of glioblastoma multiforme (GBM) remains unknown. We analyzed the expression and prognostic significance of PDIA5 in cohorts of GBM and clinical samples. The PDIA5 protein was significantly overexpressed in GBM tissues, and higher expression of PDIA5 was statistically associated with a worse prognosis in patients with GBM. Transcriptional data from PDIA5 knockdown GBM cells revealed that downstream regulatory genes of PDIA5 were enriched in malignant regulatory pathways and PDIA5 enhanced the proliferative and invasive abilities of GBM cells. By constructing a PDIA5 CXXC motif mutant plasmid, we found CCAR1 was the vital downstream factor of PDIA5 in regulating GBM malignancy in vitro and in vivo. Additionally, RUNX1 bound to the promoter region of PDIA5 and regulated gene transcription, leading to activation of the PDIA5/CCAR1 regulatory axis in GBM. The RUNX1/PDIA5/CCAR1 axis significantly influenced the malignant behavior of GBM cells. In conclusion, this study comprehensively elucidates the crucial role of PDIA5 in the malignant progression of GBM. Downregulating PDIA5 can mitigate the malignant biological behavior of GBM both in vitro and in vivo, potentially improving the efficacy of treatment for clinical patients with GBM.

PDIA5 负责修饰蛋白质的二硫键。然而,它对多形性胶质母细胞瘤(GBM)恶性进展的影响仍然未知。我们分析了 PDIA5 在成组 GBM 和临床样本中的表达和预后意义。PDIA5蛋白在GBM组织中明显过表达,而且据统计,PDIA5的高表达与GBM患者较差的预后有关。PDIA5敲除GBM细胞的转录数据显示,PDIA5的下游调控基因富集在恶性调控通路中,PDIA5增强了GBM细胞的增殖和侵袭能力。通过构建 PDIA5 CXXC 突变质粒,我们发现 CCAR1 是 PDIA5 在体外和体内调控 GBM 恶性的重要下游因子。此外,RUNX1与PDIA5的启动子区域结合并调控基因转录,导致PDIA5/CCAR1调控轴在GBM中被激活。RUNX1/PDIA5/CCAR1 轴显著影响了 GBM 细胞的恶性行为。总之,本研究全面阐明了 PDIA5 在 GBM 恶性进展中的关键作用。下调 PDIA5 可以减轻 GBM 在体外和体内的恶性生物学行为,从而提高临床 GBM 患者的治疗效果。
{"title":"RUNX1-PDIA5 Axis Promotes Malignant Progression of Glioblastoma by Regulating CCAR1 Protein Expression.","authors":"Qiankun Ji, Zewei Tu, Junzhe Liu, Zhihong Zhou, Fengze Li, Xingen Zhu, Kai Huang","doi":"10.7150/ijbs.92595","DOIUrl":"10.7150/ijbs.92595","url":null,"abstract":"<p><p>PDIA5 is responsible for modification of disulfide bonds of proteins. However, its impact on the malignant progression of glioblastoma multiforme (GBM) remains unknown. We analyzed the expression and prognostic significance of PDIA5 in cohorts of GBM and clinical samples. The PDIA5 protein was significantly overexpressed in GBM tissues, and higher expression of PDIA5 was statistically associated with a worse prognosis in patients with GBM. Transcriptional data from PDIA5 knockdown GBM cells revealed that downstream regulatory genes of PDIA5 were enriched in malignant regulatory pathways and PDIA5 enhanced the proliferative and invasive abilities of GBM cells. By constructing a PDIA5 CXXC motif mutant plasmid, we found CCAR1 was the vital downstream factor of PDIA5 in regulating GBM malignancy <i>in vitro</i> and <i>in vivo</i>. Additionally, RUNX1 bound to the promoter region of PDIA5 and regulated gene transcription, leading to activation of the PDIA5/CCAR1 regulatory axis in GBM. The RUNX1/PDIA5/CCAR1 axis significantly influenced the malignant behavior of GBM cells. In conclusion, this study comprehensively elucidates the crucial role of PDIA5 in the malignant progression of GBM. Downregulating PDIA5 can mitigate the malignant biological behavior of GBM both <i>in vitro</i> and <i>in vivo</i>, potentially improving the efficacy of treatment for clinical patients with GBM.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4364-4381"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway. 基于Ruxolitinib的衰老疗法通过抑制JAK2/STAT3信号通路减轻脓毒症心肌病中心肌细胞的衰老。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.96489
Boshen Yang, Taixi Li, Zhixiang Wang, Yuankang Zhu, Kaifan Niu, Sien Hu, Zhiqi Lin, Xinjie Zheng, Xian Jin, Chengxing Shen

Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.

背景:细胞衰老已成为心血管研究的一个关键焦点。本研究调查了细胞衰老在脓毒性心肌病(SCM)中之前未被发现的作用,并评估了使用芦可利替尼(Ruxolitinib,Rux)作为潜在治疗方案的衰老疗法。研究方法我们采用脂多糖(LPS)诱导的新生大鼠心肌细胞(NRCMs)和两种小鼠模型--LPS诱导和盲肠结扎穿刺(CLP)诱导的SCM模型--来评估Rux的作用。利用 RNA 测序、Western 印迹(WB)、定量聚合酶链反应(qPCR)、免疫荧光、免疫组织化学、衰老相关 β-半乳糖苷酶(SA-β-gal)检测等技术研究其潜在机制。结果衰老相关分泌表型(SASP)和细胞衰老标记物在 LPS 诱导的 NRCMs 和 SCM 动物模型中明显升高,SA-β-gal 试验证实了这一点。Rux 治疗可减轻体外和体内的 SASP,同时下调衰老标记物。此外,基于 Rux 的衰老疗法减轻了线粒体介导的细胞凋亡,改善了 SCM 小鼠的心脏功能,恢复了抗氧化系统的平衡,降低了活性氧(ROS)水平。Rux 治疗可恢复线粒体膜电位,减轻线粒体形态损伤,上调线粒体复合物相关基因的表达,从而增强线粒体功能。此外,Rux 还能改善单片机诱导的线粒体动态功能障碍和内质网应激。从机制上讲,Rux 在体外和体内都抑制了 JAK2-STAT3 信号的激活。值得注意的是,低剂量 Rux 和 ABT263 在缓解单核细胞增多症方面的疗效相当。结论本研究强调了细胞衰老在单核细胞增多症发病机制中的潜在意义,并建议将基于 Rux 的衰老疗法作为一种治疗单核细胞增多症的有效方法。
{"title":"Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway.","authors":"Boshen Yang, Taixi Li, Zhixiang Wang, Yuankang Zhu, Kaifan Niu, Sien Hu, Zhiqi Lin, Xinjie Zheng, Xian Jin, Chengxing Shen","doi":"10.7150/ijbs.96489","DOIUrl":"10.7150/ijbs.96489","url":null,"abstract":"<p><p><b>Background:</b> Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. <b>Methods:</b> We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms. <b>Results:</b> Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP <i>in vitro</i> and <i>in vivo</i>, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both <i>in vitro</i> and <i>in vivo</i>. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. <b>Conclusions:</b> This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4314-4340"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing mitophagy by ligustilide through BNIP3-LC3 interaction attenuates oxidative stress-induced neuronal apoptosis in spinal cord injury. 利格列奈通过 BNIP3-LC3 相互作用增强有丝分裂,可减轻氧化应激诱导的脊髓损伤神经细胞凋亡。
IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.7150/ijbs.98051
Hui Yao, Chaoyang Cai, Weijun Huang, Caizhen Zhong, Tianlun Zhao, Jiawei Di, Juliang Tang, Depeng Wu, Mao Pang, Lei He, Limin Rong, Bin Liu

Mitophagy selectively eliminates damaged or dysfunctional mitochondria, playing a crucial role in maintaining mitochondrial quality control. However, it remains unclear whether mitophagy can be fully activated and how it evolves after SCI. Our RNA-seq analysis of animal samples from sham and 1, 3, 5, and 7 days post-SCI indicated that mitophagy was indeed inhibited during the acute and subacute early stages. In vitro experiments showed that this inhibition was closely related to excessive production of reactive oxygen species (ROS) and the downregulation of BNIP3. Excessive ROS led to the blockage of mitophagy flux, accompanied by further mitochondrial dysfunction and increased neuronal apoptosis. Fortunately, ligustilide (LIG) was found to have the ability to reverse the oxidative stress-induced downregulation of BNIP3 and enhance mitophagy through BNIP3-LC3 interaction, alleviating mitochondrial dysfunction and ultimately reducing neuronal apoptosis. Further animal experiments demonstrated that LIG alleviated oxidative stress and mitophagy inhibition, rescued neuronal apoptosis, and promoted tissue repair, ultimately leading to improved motor function. In summary, this study elucidated the state of mitophagy inhibition following SCI and its potential mechanisms, and confirmed the effects of LIG-enhanced mitophagy through BNIP3-LC3, providing new therapeutic targets and strategies for repairing SCI.

有丝分裂可选择性地消除受损或功能障碍的线粒体,在维持线粒体质量控制方面发挥着至关重要的作用。然而,目前仍不清楚有丝分裂是否能被完全激活以及它在 SCI 后是如何演变的。我们对假性 SCI 和 SCI 后 1、3、5 和 7 天的动物样本进行的 RNA-seq 分析表明,在急性和亚急性早期阶段,有丝分裂确实受到了抑制。体外实验表明,这种抑制与活性氧(ROS)的过度产生和 BNIP3 的下调密切相关。过量的 ROS 导致有丝分裂通量受阻,并进一步导致线粒体功能障碍和神经元凋亡增加。幸运的是,研究发现藁本内酯(LIG)能够逆转氧化应激诱导的 BNIP3 下调,并通过 BNIP3-LC3 相互作用增强有丝分裂,缓解线粒体功能障碍,最终减少神经元凋亡。进一步的动物实验表明,LIG 可缓解氧化应激和有丝分裂抑制,挽救神经元凋亡,促进组织修复,最终改善运动功能。总之,本研究阐明了 SCI 后有丝分裂抑制的状态及其潜在机制,并证实了 LIG 通过 BNIP3-LC3 增强有丝分裂的作用,为修复 SCI 提供了新的治疗靶点和策略。
{"title":"Enhancing mitophagy by ligustilide through BNIP3-LC3 interaction attenuates oxidative stress-induced neuronal apoptosis in spinal cord injury.","authors":"Hui Yao, Chaoyang Cai, Weijun Huang, Caizhen Zhong, Tianlun Zhao, Jiawei Di, Juliang Tang, Depeng Wu, Mao Pang, Lei He, Limin Rong, Bin Liu","doi":"10.7150/ijbs.98051","DOIUrl":"10.7150/ijbs.98051","url":null,"abstract":"<p><p>Mitophagy selectively eliminates damaged or dysfunctional mitochondria, playing a crucial role in maintaining mitochondrial quality control. However, it remains unclear whether mitophagy can be fully activated and how it evolves after SCI. Our RNA-seq analysis of animal samples from sham and 1, 3, 5, and 7 days post-SCI indicated that mitophagy was indeed inhibited during the acute and subacute early stages. <i>In vitro</i> experiments showed that this inhibition was closely related to excessive production of reactive oxygen species (ROS) and the downregulation of BNIP3. Excessive ROS led to the blockage of mitophagy flux, accompanied by further mitochondrial dysfunction and increased neuronal apoptosis. Fortunately, ligustilide (LIG) was found to have the ability to reverse the oxidative stress-induced downregulation of BNIP3 and enhance mitophagy through BNIP3-LC3 interaction, alleviating mitochondrial dysfunction and ultimately reducing neuronal apoptosis. Further animal experiments demonstrated that LIG alleviated oxidative stress and mitophagy inhibition, rescued neuronal apoptosis, and promoted tissue repair, ultimately leading to improved motor function. In summary, this study elucidated the state of mitophagy inhibition following SCI and its potential mechanisms, and confirmed the effects of LIG-enhanced mitophagy through BNIP3-LC3, providing new therapeutic targets and strategies for repairing SCI.</p>","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"20 11","pages":"4382-4406"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Biological Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1