The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B. arietans venom was able to activate the complement system, leading to a significant increase in the production of anaphylatoxins (C3a/C3a-desArg, C5a/C5a-desArg) and the soluble Terminal Complement Complex (sTCC). Inhibition of the C3 component by Cp40, a C3-C3b inhibitor, resulted in the reduction of C3a/C3a-desArg, C5a/C5a-desArg, and sTCC levels to baseline in venom-stimulated samples. Furthermore, treatment with Cp40 promoted a substantial decrease in the production of pro-inflammatory mediators, such as Prostaglandin E2 (PGE2), IL-8/CXCL8, MCP-1/CCL2, and MIG/CXCL9. To further elucidate the molecular mechanisms, we utilized the THP-1 cell line differentiated into M0 macrophages. Incubation of these macrophages with human plasma, from the human whole blood treated with B. arietans venom, resulted in the expression of the NLRP3 inflammasome and the production of IL-8 and IL-1β. Importantly, Cp40 was able to diminish the production of these cytokines, as well as the levels of ASC and caspase-1 proteins. In conclusion, our results indicate that the inhibition of the complement by Cp40 at C3/C3b level can modulate the inflammatory response and inflammasome activation induced by B. arietans venom. These findings suggest that complement inhibition may be a promising therapeutic approach for managing the inflammatory complications associated with this snake envenomation.
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Background: Cervical cancer is a prevalent form of cancer in women, and the inhibition of ferroptosis has been shown to promote the progression of cervical cancer tumours. This study aimed to investigate the role of PIN1 in regulating ferroptosis in cervical cancer, focusing on its ability to modulate the cGAS-STING pathway and the potential involvement of USP34 as an upstream regulator of PIN1.
Methods: PIN1-overexpressing and PIN1-knockdown cell lines were constructed. In addition to activating p-STING via PIN1 knockdown and inhibiting p-STING via PIN1 overexpression, cell activity was evaluated via CCK8, EdU, transwell and flow cytometry assays. The expression of USP34, PIN1, cGAS, p-STING, and STING was analysed through qRT-PCR and immunofluorescence. Western blot analysis was used to detect the regulatory effects of USP34, PIN1, cGAS, p-STING, and STING, as well as SUMOylation. Ferroptosis was detected by ROS immunofluorescence, the mitochondrial membrane potential, and mitochondrial electron microscopy. Furthermore, PIN1-knockdown cells were used to construct xenograft tumours in BALB/c male nude mice, and the relevant verification experiments were performed in vivo.
Results: PIN1 can increase the proliferation and invasion of cervical cancer cells by significantly inhibiting ferroptosis. The mechanism by which PIN1 promotes cancer is inhibition of the cGAS-STING pathway. Additionally, we found that USP34 could increase the expression of PIN1 via SUMOylation in cervical cancer cells.
Conclusion: This study confirmed that USP34 could upregulate PIN1 expression and SUMOylation, thereby inhibiting ferroptosis by suppressing the cGAS-STING pathway and in turn promoting the progression of cervical cancer.