首页 > 最新文献

LAScarQS@MICCAI最新文献

英文 中文
Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net 利用边界聚焦nnU-Net自动分割大磁共振左心房和疤痕
Pub Date : 2023-04-27 DOI: 10.48550/arXiv.2304.14071
Yuchen Zhang, Y. Meng, Yalin Zheng
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model's superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98% and 64.08% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.
心房颤动(AF)是最常见的心律失常。准确分割左心房(LA)和LA疤痕可以为预测房颤的治疗结果提供有价值的信息。在本文中,我们提出使用晚期钆增强磁共振成像(lge - mri)自动分割左心房(LA)腔和量化LA疤痕。我们采用nnU-Net作为基线模型,利用LA边界特征的重要性,以TopK损失作为损失函数。具体而言,在训练过程中实现了对LA边界像素的关注,从而提供了更准确的边界预测。另一方面,将预测的LA边界的距离图变换作为LA疤痕预测的额外输入,为疤痕位置提供了边缘约束。我们进一步设计了一种新的不确定性感知模块(UAM),以产生更好的结果与高不确定性的预测。在LAScarQS 2022数据集上的实验证明了我们的模型在LA空腔和LA疤痕分割上的优越性能。具体来说,我们在LA腔和疤痕分割上分别获得了88.98%和64.08%的Dice系数。我们将在https://github.com/level6626/Boundary-focused-nnU-Net上公开我们的实现代码。
{"title":"Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-focused nnU-Net","authors":"Yuchen Zhang, Y. Meng, Yalin Zheng","doi":"10.48550/arXiv.2304.14071","DOIUrl":"https://doi.org/10.48550/arXiv.2304.14071","url":null,"abstract":"Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model's superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98% and 64.08% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115094108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UGformer for Robust Left Atrium and Scar Segmentation Across Scanners 鲁棒左心房和跨扫描仪疤痕分割的UGformer
Pub Date : 2022-10-11 DOI: 10.48550/arXiv.2210.05151
Tianyi Liu, Size Hou, Jiayu Zhu, Zilong Zhao, Haochuan Jiang
Thanks to the capacity for long-range dependencies and robustness to irregular shapes, vision transformers and deformable convolutions are emerging as powerful vision techniques of segmentation.Meanwhile, Graph Convolution Networks (GCN) optimize local features based on global topological relationship modeling. Particularly, they have been proved to be effective in addressing issues in medical imaging segmentation tasks including multi-domain generalization for low-quality images. In this paper, we present a novel, effective, and robust framework for medical image segmentation, namely, UGformer. It unifies novel transformer blocks, GCN bridges, and convolution decoders originating from U-Net to predict left atriums (LAs) and LA scars. We have identified two appealing findings of the proposed UGformer: 1). an enhanced transformer module with deformable convolutions to improve the blending of the transformer information with convolutional information and help predict irregular LAs and scar shapes. 2). Using a bridge incorporating GCN to further overcome the difficulty of capturing condition inconsistency across different Magnetic Resonance Images scanners with various inconsistent domain information. The proposed UGformer model exhibits outstanding ability to segment the left atrium and scar on the LAScarQS 2022 dataset, outperforming several recent state-of-the-arts.
由于具有长期依赖关系和对不规则形状的鲁棒性,视觉变形和可变形卷积正在成为强大的视觉分割技术。同时,图卷积网络(GCN)基于全局拓扑关系建模优化局部特征。特别是,它们已被证明可以有效地解决医学成像分割任务中的问题,包括低质量图像的多域泛化。在本文中,我们提出了一种新的,有效的,鲁棒的医学图像分割框架,即UGformer。它结合了来自U-Net的新型变压器块、GCN桥和卷积解码器来预测左心房(LAs)和LA疤痕。我们已经确定了提出的UGformer的两个吸引人的发现:1)一个具有可变形卷积的增强变压器模块,以改善变压器信息与卷积信息的混合,并有助于预测不规则的LAs和疤痕形状。2).利用结合GCN的桥接进一步克服了不同磁共振图像扫描仪在不同域信息不一致的情况下捕获条件不一致的困难。提出的UGformer模型在LAScarQS 2022数据集上表现出出色的左心房和疤痕分割能力,优于最近的几个最先进的技术。
{"title":"UGformer for Robust Left Atrium and Scar Segmentation Across Scanners","authors":"Tianyi Liu, Size Hou, Jiayu Zhu, Zilong Zhao, Haochuan Jiang","doi":"10.48550/arXiv.2210.05151","DOIUrl":"https://doi.org/10.48550/arXiv.2210.05151","url":null,"abstract":"Thanks to the capacity for long-range dependencies and robustness to irregular shapes, vision transformers and deformable convolutions are emerging as powerful vision techniques of segmentation.Meanwhile, Graph Convolution Networks (GCN) optimize local features based on global topological relationship modeling. Particularly, they have been proved to be effective in addressing issues in medical imaging segmentation tasks including multi-domain generalization for low-quality images. In this paper, we present a novel, effective, and robust framework for medical image segmentation, namely, UGformer. It unifies novel transformer blocks, GCN bridges, and convolution decoders originating from U-Net to predict left atriums (LAs) and LA scars. We have identified two appealing findings of the proposed UGformer: 1). an enhanced transformer module with deformable convolutions to improve the blending of the transformer information with convolutional information and help predict irregular LAs and scar shapes. 2). Using a bridge incorporating GCN to further overcome the difficulty of capturing condition inconsistency across different Magnetic Resonance Images scanners with various inconsistent domain information. The proposed UGformer model exhibits outstanding ability to segment the left atrium and scar on the LAScarQS 2022 dataset, outperforming several recent state-of-the-arts.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"272 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133852040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network 多深度边界感知左心房疤痕分割网络
Pub Date : 2022-08-08 DOI: 10.48550/arXiv.2208.04940
Meng-Yun Wu, Wangbin Ding, Mingjing Yang, Liqin Huang
Automatic segmentation of left atrial (LA) scars from late gadolinium enhanced CMR images is a crucial step for atrial fibrillation (AF) recurrence analysis. However, delineating LA scars is tedious and error-prone due to the variation of scar shapes. In this work, we propose a boundary-aware LA scar segmentation network, which is composed of two branches to segment LA and LA scars, respectively. We explore the inherent spatial relationship between LA and LA scars. By introducing a Sobel fusion module between the two segmentation branches, the spatial information of LA boundaries can be propagated from the LA branch to the scar branch. Thus, LA scar segmentation can be performed condition on the LA boundaries regions. In our experiments, 40 labeled images were used to train the proposed network, and the remaining 20 labeled images were used for evaluation. The network achieved an average Dice score of 0.608 for LA scar segmentation.
从晚期钆增强CMR图像中自动分割左心房(LA)疤痕是心房颤动(AF)复发分析的关键步骤。然而,由于疤痕形状的变化,描绘LA疤痕是乏味和容易出错的。在这项工作中,我们提出了一个边界感知的LA疤痕分割网络,该网络由两个分支组成,分别对LA和LA疤痕进行分割。我们探索了LA与LA伤痕之间的内在空间关系。通过在两个分割分支之间引入Sobel融合模块,将LA边界的空间信息从LA分支传播到疤痕分支。因此,可以在LA边界区域上进行LA疤痕分割。在我们的实验中,使用40张标记图像来训练所提出的网络,剩余的20张标记图像用于评估。该网络对LA疤痕分割的平均Dice得分为0.608。
{"title":"Multi-Depth Boundary-Aware Left Atrial Scar Segmentation Network","authors":"Meng-Yun Wu, Wangbin Ding, Mingjing Yang, Liqin Huang","doi":"10.48550/arXiv.2208.04940","DOIUrl":"https://doi.org/10.48550/arXiv.2208.04940","url":null,"abstract":"Automatic segmentation of left atrial (LA) scars from late gadolinium enhanced CMR images is a crucial step for atrial fibrillation (AF) recurrence analysis. However, delineating LA scars is tedious and error-prone due to the variation of scar shapes. In this work, we propose a boundary-aware LA scar segmentation network, which is composed of two branches to segment LA and LA scars, respectively. We explore the inherent spatial relationship between LA and LA scars. By introducing a Sobel fusion module between the two segmentation branches, the spatial information of LA boundaries can be propagated from the LA branch to the scar branch. Thus, LA scar segmentation can be performed condition on the LA boundaries regions. In our experiments, 40 labeled images were used to train the proposed network, and the remaining 20 labeled images were used for evaluation. The network achieved an average Dice score of 0.608 for LA scar segmentation.","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"350 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126951274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Automatic Semi-supervised Left Atrial Segmentation Using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge LAScarQS 2022挑战赛中基于深度监督3DResUnet和伪标记方法的自动半监督左心房分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_15
Moona Mazher, Abdul Qayyum, M. Abdel-Nasser, D. Puig
{"title":"Automatic Semi-supervised Left Atrial Segmentation Using Deep-Supervision 3DResUnet with Pseudo Labeling Approach for LAScarQS 2022 Challenge","authors":"Moona Mazher, Abdul Qayyum, M. Abdel-Nasser, D. Puig","doi":"10.1007/978-3-031-31778-1_15","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_15","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114977137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium TESSLA:左心房两阶段整体疤痕分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_10
S. Ogbomo-Harmitt, Jakub Grzelak, A. Qureshi, A. King, O. Aslanidi
{"title":"TESSLA: Two-Stage Ensemble Scar Segmentation for the Left Atrium","authors":"S. Ogbomo-Harmitt, Jakub Grzelak, A. Qureshi, A. King, O. Aslanidi","doi":"10.1007/978-3-031-31778-1_10","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_10","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114155623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion 基于多尺度决策级融合的左心房跨域分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_12
Feiyan Li, Weisheng Li
{"title":"Cross-Domain Segmentation of Left Atrium Based on Multi-scale Decision Level Fusion","authors":"Feiyan Li, Weisheng Li","doi":"10.1007/978-3-031-31778-1_12","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_12","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131870488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation 基于多项式损失和不确定性信息的稳健左心房和疤痕量化分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_13
T. Arega, S. Bricq, F. Mériaudeau
{"title":"Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation","authors":"T. Arega, S. Bricq, F. Mériaudeau","doi":"10.1007/978-3-031-31778-1_13","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_13","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123350071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Automated Segmentation of the Left Atrium and Scar Using Deep Convolutional Neural Networks 基于深度卷积神经网络的左心房和疤痕自动分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_14
K. Punithakumar, M. Noga
{"title":"Automated Segmentation of the Left Atrium and Scar Using Deep Convolutional Neural Networks","authors":"K. Punithakumar, M. Noga","doi":"10.1007/978-3-031-31778-1_14","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_14","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131246644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images 边缘增强特征引导下LGE MRI左心房和瘢痕的关节分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_9
Siping Zhou, Kaini Wang, Guangquan Zhou
{"title":"Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images","authors":"Siping Zhou, Kaini Wang, Guangquan Zhou","doi":"10.1007/978-3-031-31778-1_9","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_9","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127896003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep U-Net Architecture with Curriculum Learning for Left Atrial Segmentation 基于课程学习的深度U-Net结构左心房分割
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-31778-1_11
Lei Jiang, Yan Li, Y. Wang, Hengfei Cui, Yong Xia, Yanning Zhang
{"title":"Deep U-Net Architecture with Curriculum Learning for Left Atrial Segmentation","authors":"Lei Jiang, Yan Li, Y. Wang, Hengfei Cui, Yong Xia, Yanning Zhang","doi":"10.1007/978-3-031-31778-1_11","DOIUrl":"https://doi.org/10.1007/978-3-031-31778-1_11","url":null,"abstract":"","PeriodicalId":138957,"journal":{"name":"LAScarQS@MICCAI","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127187330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
LAScarQS@MICCAI
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1