首页 > 最新文献

International Journal of Computer Mathematics最新文献

英文 中文
Euler–Maruyama methods for Caputo tempered fractional stochastic differential equations 卡普托节制分式随机微分方程的欧拉-马鲁山方法
IF 1.8 4区 数学 Q2 Mathematics Pub Date : 2024-01-10 DOI: 10.1080/00207160.2024.2302088
Jianfei Huang, Linxin Shao, Jiahui Liu
{"title":"Euler–Maruyama methods for Caputo tempered fractional stochastic differential equations","authors":"Jianfei Huang, Linxin Shao, Jiahui Liu","doi":"10.1080/00207160.2024.2302088","DOIUrl":"https://doi.org/10.1080/00207160.2024.2302088","url":null,"abstract":"","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139534868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-parameter modified matrix splitting iteration method for Helmholtz equation 亥姆霍兹方程的双参数修正矩阵分裂迭代法
IF 1.8 4区 数学 Q2 Mathematics Pub Date : 2024-01-06 DOI: 10.1080/00207160.2023.2301570
Tian-Yi Li, Fang Chen, Zhi-Wei Fang, Hai-Wei Sun, Zhi Wang
{"title":"Two-parameter modified matrix splitting iteration method for Helmholtz equation","authors":"Tian-Yi Li, Fang Chen, Zhi-Wei Fang, Hai-Wei Sun, Zhi Wang","doi":"10.1080/00207160.2023.2301570","DOIUrl":"https://doi.org/10.1080/00207160.2023.2301570","url":null,"abstract":"","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptation and assessement of projected Nesterov accelerated gradient flow to compute stationary states of nonlinear Schrödinger equations 计算非线性薛定谔方程静止态的投射涅斯特罗夫加速梯度流的适应性和评估
IF 1.8 4区 数学 Q2 Mathematics Pub Date : 2023-12-12 DOI: 10.1080/00207160.2023.2294688
Xavier Antoine, Chorouq Bentayaa, Jérémie Gaidamour
The aim of the paper is to derive minimization algorithms based on the Nesterov accelerated gradient flow [Y. Nesterov, Gradient methods for minimizing composite objective function. Core discussion...
本文旨在推导基于涅斯捷罗夫加速梯度流的最小化算法 [Y. Nesterov, Gradient methods for minimizing composite objective function.涅斯捷罗夫, 梯度法最小化复合目标函数。核心讨论...
{"title":"Adaptation and assessement of projected Nesterov accelerated gradient flow to compute stationary states of nonlinear Schrödinger equations","authors":"Xavier Antoine, Chorouq Bentayaa, Jérémie Gaidamour","doi":"10.1080/00207160.2023.2294688","DOIUrl":"https://doi.org/10.1080/00207160.2023.2294688","url":null,"abstract":"The aim of the paper is to derive minimization algorithms based on the Nesterov accelerated gradient flow [Y. Nesterov, Gradient methods for minimizing composite objective function. Core discussion...","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two new classes of exponential Runge–Kutta integrators for efficiently solving stiff systems or highly oscillatory problems 两类新的指数 Runge-Kutta 积分器,用于高效解决僵硬系统或高度振荡问题
IF 1.8 4区 数学 Q2 Mathematics Pub Date : 2023-12-11 DOI: 10.1080/00207160.2023.2294432
Bin Wang, Xianfa Hu, Xinyuan Wu
We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes o...
我们注意到一个事实,即具有高度振荡解的刚性系统或微分方程无法用传统方法高效求解。在本文中,我们研究了两类新...
{"title":"Two new classes of exponential Runge–Kutta integrators for efficiently solving stiff systems or highly oscillatory problems","authors":"Bin Wang, Xianfa Hu, Xinyuan Wu","doi":"10.1080/00207160.2023.2294432","DOIUrl":"https://doi.org/10.1080/00207160.2023.2294432","url":null,"abstract":"We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes o...","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138572567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast third order algorithm for two dimensional inhomogeneous fractional parabolic partial differential equations 二维非齐次分数抛物型偏微分方程的快速三阶算法
4区 数学 Q2 Mathematics Pub Date : 2023-11-10 DOI: 10.1080/00207160.2023.2279511
M. Yousuf, Shahzad Sarwar
AbstractA computationally fast third order numerical algorithm is developed for inhomogeneous parabolic partial differential equations. The algorithm is based on a third order method developed by using a rational approximation with single Gaussian quadrature pole to avoid complex arithmetic and to achieve high efficiency and accuracy. Difficulties with computational efficiency and accuracy are addressed using partial fraction decomposition technique. Third order accuracy and convergence of the method is proved analytically and verified numerically. Several classical as well as more challenging fractional and distributed order inhomogeneous problems are considered to perform numerical experiments. Computational efficiency of the method is demonstrated through central processing unit (CPU) time and is given in the convergence tables.Keywords: Inhomogeneous parabolic PDEsReal pole rational approximationComputationally fastfractional distributed order PDEsRiesz derivativeDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
提出了求解非齐次抛物型偏微分方程的快速三阶数值算法。该算法基于一种三阶方法,利用单高斯正交极点的有理逼近,避免了复杂的算法,达到了较高的效率和精度。利用部分分式分解技术解决了计算效率和精度方面的困难。通过分析和数值验证了该方法的三阶精度和收敛性。考虑了几个经典的以及更具挑战性的分数阶和分布阶非齐次问题进行了数值实验。通过中央处理器(CPU)时间证明了该方法的计算效率,并在收敛表中给出了计算效率。关键词:非齐次抛物型PDEsReal极点有理近似计算快速分数阶分布阶PDEsRiesz导数免责声明作为对作者和研究人员的服务,我们提供此版本的接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"A fast third order algorithm for two dimensional inhomogeneous fractional parabolic partial differential equations","authors":"M. Yousuf, Shahzad Sarwar","doi":"10.1080/00207160.2023.2279511","DOIUrl":"https://doi.org/10.1080/00207160.2023.2279511","url":null,"abstract":"AbstractA computationally fast third order numerical algorithm is developed for inhomogeneous parabolic partial differential equations. The algorithm is based on a third order method developed by using a rational approximation with single Gaussian quadrature pole to avoid complex arithmetic and to achieve high efficiency and accuracy. Difficulties with computational efficiency and accuracy are addressed using partial fraction decomposition technique. Third order accuracy and convergence of the method is proved analytically and verified numerically. Several classical as well as more challenging fractional and distributed order inhomogeneous problems are considered to perform numerical experiments. Computational efficiency of the method is demonstrated through central processing unit (CPU) time and is given in the convergence tables.Keywords: Inhomogeneous parabolic PDEsReal pole rational approximationComputationally fastfractional distributed order PDEsRiesz derivativeDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sixth-order Finite Difference Schemes for Nonlinear Wave Equations with Variable Coefficients in Three Dimensions 三维变系数非线性波动方程的六阶有限差分格式
4区 数学 Q2 Mathematics Pub Date : 2023-11-01 DOI: 10.1080/00207160.2023.2279006
Shuaikang Wang, Yongbin Ge, Tingfu Ma
AbstractFirst, a nonlinear difference scheme is proposed to solve the three-dimensional (3D) nonlinear wave equation by combining the correction technique of truncation error remainder in time and a sixth-order finite difference operator in space, resulting in fourth-order accuracy in time and sixth-order accuracy in space. Then, the Richardson extrapolation method is applied to improve the temporal accuracy from the fourth-order to the sixth-order. To enhance computational efficiency, a linearized difference scheme is obtained by linear interpolation based on the nonlinear scheme. In addition, the stability of the linearized scheme is proved. Finally, the accuracy, stability and efficiency of the two proposed schemes are tested numerically.Keywords: Three-dimensional nonlinear wave equationNonlinear difference schemeSixth-order accuracyLinearized difference schemeRichardson extrapolationDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThis work is partially supported by National Natural Science Foundation of China (12161067), Natural Science Foundation of Ningxia (2022AAC02023, 2022AAC03313), the Key Research and Development Program of Ningxia (2021YCZX0036, 2021BEB04053), the Scientific Research Program in Higher Institution of Ningxia (NGY2020110), National Youth Top-notch Talent Support Program of Ningxia.Data AvailabilityThe data used to support the findings of this study are available from the corresponding author upon request. Conflicts of InterestThe authors declare no conflict of interest.
摘要首先,将截断误差余数在时间上的校正技术与空间上的六阶有限差分算子相结合,提出了求解三维非线性波动方程的非线性差分格式,得到了时间上的四阶精度和空间上的六阶精度。然后,采用Richardson外推法将时间精度从四阶提高到六阶。为了提高计算效率,在非线性格式的基础上,通过线性插值得到线性化差分格式。此外,还证明了线性化方案的稳定性。最后,对两种方案的精度、稳定性和效率进行了数值验证。关键词:三维非线性波动方程非线性差分格式六阶精度线性化差分格式richardson外推免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。国家自然科学基金项目(12161067)、宁夏自然科学基金项目(2022AAC02023、2022AAC03313)、宁夏重点研发计划项目(2021YCZX0036、2021BEB04053)、宁夏高校科研计划项目(NGY2020110)、宁夏国家青年拔尖人才支持计划项目资助。数据可获得性用于支持本研究结果的数据可应要求从通讯作者处获得。利益冲突作者声明无利益冲突。
{"title":"Sixth-order Finite Difference Schemes for Nonlinear Wave Equations with Variable Coefficients in Three Dimensions","authors":"Shuaikang Wang, Yongbin Ge, Tingfu Ma","doi":"10.1080/00207160.2023.2279006","DOIUrl":"https://doi.org/10.1080/00207160.2023.2279006","url":null,"abstract":"AbstractFirst, a nonlinear difference scheme is proposed to solve the three-dimensional (3D) nonlinear wave equation by combining the correction technique of truncation error remainder in time and a sixth-order finite difference operator in space, resulting in fourth-order accuracy in time and sixth-order accuracy in space. Then, the Richardson extrapolation method is applied to improve the temporal accuracy from the fourth-order to the sixth-order. To enhance computational efficiency, a linearized difference scheme is obtained by linear interpolation based on the nonlinear scheme. In addition, the stability of the linearized scheme is proved. Finally, the accuracy, stability and efficiency of the two proposed schemes are tested numerically.Keywords: Three-dimensional nonlinear wave equationNonlinear difference schemeSixth-order accuracyLinearized difference schemeRichardson extrapolationDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThis work is partially supported by National Natural Science Foundation of China (12161067), Natural Science Foundation of Ningxia (2022AAC02023, 2022AAC03313), the Key Research and Development Program of Ningxia (2021YCZX0036, 2021BEB04053), the Scientific Research Program in Higher Institution of Ningxia (NGY2020110), National Youth Top-notch Talent Support Program of Ningxia.Data AvailabilityThe data used to support the findings of this study are available from the corresponding author upon request. Conflicts of InterestThe authors declare no conflict of interest.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence and stability of modified partially truncated Euler-Maruyama method for stochastic differential equations with piecewise continuous arguments 分段连续参数随机微分方程修正部分截断Euler-Maruyama方法的收敛性和稳定性
4区 数学 Q2 Mathematics Pub Date : 2023-10-23 DOI: 10.1080/00207160.2023.2274278
Hongling Shi, Minghui Song, Mingzhu Liu
AbstractThis paper constructs a modified partially truncated Euler-Maruyama (EM) method for stochastic differential equations with piecewise continuous arguments (SDEPCAs), where the drift and diffusion coefficients grow superlinearly. We divide the coefficients of SDEPCAs into global Lipschitz continuous and superlinearly growing parts. Our method only truncates the superlinear terms of the coefficients to overcome the potential explosions caused by the nonlinearities of the coefficients. The strong convergence theory of this method is established and the 1/2 convergence rate is presented. Furthermore, an explicit scheme is developed to preserve the mean square exponential stability of underlying SDEPCAs. Several numerical experiments are offered to illustrate the theoretical results.Keywords: Modified partially truncated EM methodstochastic differential equations with piecewise continuous argumentsstrong convergenceconvergence ratemean square exponential stabilityDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThis work is supported by the NSF of PR China (No. 12071101 and No. 11671113).
摘要针对漂移系数和扩散系数超线性增长的分段连续参数随机微分方程,构造了一种改进的部分截断Euler-Maruyama (EM)方法。我们将spdepca的系数分为全局Lipschitz连续和超线性增长两个部分。我们的方法只是截断系数的超线性项,以克服由系数的非线性引起的潜在爆炸。建立了该方法的强收敛性理论,并给出了1/2的收敛率。此外,还提出了一种显式格式来保持底层spdeca的均方指数稳定性。通过数值实验对理论结果进行了验证。关键词:修正部分截断EM方法分段连续参数随机微分方程强收敛收敛率均方指数稳定性免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。本工作得到中国国家科学基金(No. 12071101和No. 11671113)的支持。
{"title":"Convergence and stability of modified partially truncated Euler-Maruyama method for stochastic differential equations with piecewise continuous arguments","authors":"Hongling Shi, Minghui Song, Mingzhu Liu","doi":"10.1080/00207160.2023.2274278","DOIUrl":"https://doi.org/10.1080/00207160.2023.2274278","url":null,"abstract":"AbstractThis paper constructs a modified partially truncated Euler-Maruyama (EM) method for stochastic differential equations with piecewise continuous arguments (SDEPCAs), where the drift and diffusion coefficients grow superlinearly. We divide the coefficients of SDEPCAs into global Lipschitz continuous and superlinearly growing parts. Our method only truncates the superlinear terms of the coefficients to overcome the potential explosions caused by the nonlinearities of the coefficients. The strong convergence theory of this method is established and the 1/2 convergence rate is presented. Furthermore, an explicit scheme is developed to preserve the mean square exponential stability of underlying SDEPCAs. Several numerical experiments are offered to illustrate the theoretical results.Keywords: Modified partially truncated EM methodstochastic differential equations with piecewise continuous argumentsstrong convergenceconvergence ratemean square exponential stabilityDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThis work is supported by the NSF of PR China (No. 12071101 and No. 11671113).","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135368481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical oscillation and non-oscillation analysis of the mixed type impulsive differential equation with piecewise constant arguments 带分段常数参数的混合型脉冲微分方程的数值振动与非振动分析
4区 数学 Q2 Mathematics Pub Date : 2023-10-22 DOI: 10.1080/00207160.2023.2274277
Zhaolin Yan, Jianfang Gao
AbstractThe purpose of this paper is to study oscillation and non-oscillation of Runge-Kutta methods for linear mixed type impulsive differential equations with piecewise constant arguments. The conditions for oscillation and non-oscillation of numerical solutions are obtained. Also conditions under which Runge-Kutta methods can preserve the oscillation and non-oscillation of linear mixed type impulsive differential equations with piecewise constant arguments are obtained. Moreover, the interpolation function of numerical solutions is introduced and the properties of the interpolation function is discussed. It turns out that the zeros of the interpolation function converge to ones of the analytic solution with the same order of accuracy as that of the corresponding Runge-Kutta method. To confirm the theoretical results, the numerical examples are given.Keywords: oscillationnumerical solutionRunge-Kutta methodsimpulsive delay differential equationspiecewise constant argumentsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
摘要本文研究了具有分段常数参数的线性混合型脉冲微分方程的Runge-Kutta方法的振动性和非振动性。得到了数值解振荡和非振荡的条件。给出了龙格-库塔方法保持分段常参数线性混合型脉冲微分方程的振动性和非振动性的条件。引入了数值解的插值函数,并讨论了插值函数的性质。结果表明,插值函数的零点收敛于解析解的零点,其精度与相应的龙格-库塔方法的精度相同。为了验证理论结果,给出了数值算例。关键词:振荡,数值解,龙格-库塔方法,脉冲延迟微分方程,常数参数,免责声明作为对作者和研究人员的服务,我们提供了这个版本的接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"Numerical oscillation and non-oscillation analysis of the mixed type impulsive differential equation with piecewise constant arguments","authors":"Zhaolin Yan, Jianfang Gao","doi":"10.1080/00207160.2023.2274277","DOIUrl":"https://doi.org/10.1080/00207160.2023.2274277","url":null,"abstract":"AbstractThe purpose of this paper is to study oscillation and non-oscillation of Runge-Kutta methods for linear mixed type impulsive differential equations with piecewise constant arguments. The conditions for oscillation and non-oscillation of numerical solutions are obtained. Also conditions under which Runge-Kutta methods can preserve the oscillation and non-oscillation of linear mixed type impulsive differential equations with piecewise constant arguments are obtained. Moreover, the interpolation function of numerical solutions is introduced and the properties of the interpolation function is discussed. It turns out that the zeros of the interpolation function converge to ones of the analytic solution with the same order of accuracy as that of the corresponding Runge-Kutta method. To confirm the theoretical results, the numerical examples are given.Keywords: oscillationnumerical solutionRunge-Kutta methodsimpulsive delay differential equationspiecewise constant argumentsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135461885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new block preconditioner for weighted Toeplitz regularized least-squares problems 加权Toeplitz正则最小二乘问题的一种新的块预条件
4区 数学 Q2 Mathematics Pub Date : 2023-10-18 DOI: 10.1080/00207160.2023.2272589
Fariba Bakrani Balani, Masoud Hajarian
AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.
摘要针对增广系统形式的加权Toeplitz正则化最小二乘问题,提出了一种新的块预条件。提出了一种基于系数矩阵新分裂的预条件,得到了一种无条件收敛的平稳迭代方法。研究了预条件矩阵的谱分析。特别地,我们证明了预条件矩阵具有非常好的特征值分布,这可以导致预条件Krylov子空间方法(如GMRES)的快速收敛。通过数值实验验证了(柔性)GMRES方法在求解加权Toeplitz正则化最小二乘问题增广系统形式时的预条件的性能。关键词:预条件分裂最小二乘问题加权Toeplitz矩阵ams分类2010::65f1065f50免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。作者对审稿人提出的意见和建设性建议表示感谢,这些意见和建议对提高论文质量具有重要意义。
{"title":"A new block preconditioner for weighted Toeplitz regularized least-squares problems","authors":"Fariba Bakrani Balani, Masoud Hajarian","doi":"10.1080/00207160.2023.2272589","DOIUrl":"https://doi.org/10.1080/00207160.2023.2272589","url":null,"abstract":"AbstractWe introduce a new block preconditioner for the solution of weighted Toeplitz regularized least-squares problems written in augmented system form. The proposed preconditioner is obtained based on the new splitting of coefficient matrix which results in an unconditionally convergent stationary iterative method. Spectral analysis of the preconditioned matrix is investigated. In particular, we show that the preconditioned matrix has a very nice eigenvalue distribution which can lead to fast convergence of the preconditioned Krylov subspace methods such as GMRES. Numerical experiments are reported to demonstrate the performance of preconditioner used with (flexible) GMRES method in the solution of augmented system form of weighted Toeplitz regularized least-squares problems.Keywords: PreconditioningSplittingLeast-squares problemsWeighted Toeplitz matricesAMS classification 2010:: 65F1065F50DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single timescale stochastic quasi-Newton method for stochastic optimization 随机优化的单时间尺度随机拟牛顿方法
4区 数学 Q2 Mathematics Pub Date : 2023-10-10 DOI: 10.1080/00207160.2023.2269430
Peng Wang, Detong Zhu
AbstractIn this paper, we propose a single timescale stochastic quasi-Newton method for solving the stochastic optimization problems. The objective function of the problem is a composition of two smooth functions and their derivatives are not available. The algorithm sets to approximate sequences to estimate the gradient of the composite objective function and the inner function. The matrix correction parameters are given in BFGS update form for avoiding the assumption that Hessian matrix of objective is positive definite. We show the global convergence of the algorithm. The algorithm achieves the complexity O(ϵ−1) to find an ϵ−approximate stationary point and ensure that the expectation of the squared norm of the gradient is smaller than the given accuracy tolerance ϵ. The numerical results of nonconvex binary classification problem using the support vector machine and a multicall classification problem using neural networks are reported to show the effectiveness of the algorithm.Keywords: stochastic optimizationquasi-Newton methodBFGS update techniquemachine learning2010: 49M3765K0590C3090C56DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe author thanks the support of National Natural Science Foundation (11371253) and Hainan Natural Science Foundation (120MS029).
摘要本文提出了求解随机优化问题的单时间尺度随机拟牛顿方法。该问题的目标函数是两个光滑函数的组合,它们的导数是不可用的。该算法设置近似序列来估计复合目标函数和内函数的梯度。为避免物镜的黑森矩阵是正定的假设,矩阵修正参数以BFGS更新形式给出。我们证明了该算法的全局收敛性。该算法实现了复杂度O(λ−1),以找到一个近似的平衡点,并确保梯度的平方范数的期望小于给定的精度容差λ。用支持向量机和神经网络分别对非凸二值分类问题和多值分类问题进行了数值分析,结果表明了该算法的有效性。关键词:随机优化准牛顿方法dbfgs更新技术机器学习2010:49m3765k0590c3090c56免责声明作为对作者和研究人员的服务,我们提供此版本的接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。感谢国家自然科学基金(11371253)和海南省自然科学基金(120MS029)的支持。
{"title":"A single timescale stochastic quasi-Newton method for stochastic optimization","authors":"Peng Wang, Detong Zhu","doi":"10.1080/00207160.2023.2269430","DOIUrl":"https://doi.org/10.1080/00207160.2023.2269430","url":null,"abstract":"AbstractIn this paper, we propose a single timescale stochastic quasi-Newton method for solving the stochastic optimization problems. The objective function of the problem is a composition of two smooth functions and their derivatives are not available. The algorithm sets to approximate sequences to estimate the gradient of the composite objective function and the inner function. The matrix correction parameters are given in BFGS update form for avoiding the assumption that Hessian matrix of objective is positive definite. We show the global convergence of the algorithm. The algorithm achieves the complexity O(ϵ−1) to find an ϵ−approximate stationary point and ensure that the expectation of the squared norm of the gradient is smaller than the given accuracy tolerance ϵ. The numerical results of nonconvex binary classification problem using the support vector machine and a multicall classification problem using neural networks are reported to show the effectiveness of the algorithm.Keywords: stochastic optimizationquasi-Newton methodBFGS update techniquemachine learning2010: 49M3765K0590C3090C56DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsThe author thanks the support of National Natural Science Foundation (11371253) and Hainan Natural Science Foundation (120MS029).","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136293592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computer Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1