Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr(1) with 2',6'-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt(1)]EM-1 and [Dmt(1)]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt(1)]EM-1 (47) and [N-allyl-Dmt(1)]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier.
{"title":"Developmental potential for endomorphin opioidmimetic drugs.","authors":"Yoshio Okada, Yuko Tsuda, Severo Salvadori, Lawrence H Lazarus","doi":"10.1155/2012/715123","DOIUrl":"https://doi.org/10.1155/2012/715123","url":null,"abstract":"<p><p>Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr(1) with 2',6'-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt(1)]EM-1 and [Dmt(1)]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt(1)]EM-1 (47) and [N-allyl-Dmt(1)]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"715123"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/715123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33287294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical compounds represent a rapidly emerging class of environmental contaminants. Such compounds were recently classified by the U.S. Geological Survey, including several antibiotics. An LC-MS/MS screening method for the top five antibiotics in drinking water was developed and validated using a Shimadzu LC-MS-IT-TOF. The separation was performed using a Waters Acquity UPLC BEH C18 column with a gradient elution. Sulfamethazine was exposed to conditions intended to mimic drinking water chlorination, and samples were collected and quenched with excess sodium sulfite. Kinetics of sulfamethazine degradation was followed as well as the formation of the major chlorinated byproduct (m/z 313). For the screening method, all five antibiotic peaks were baseline resolved within 5 minutes. Additionally, precision and accuracy of the screening method were less than 15%. Degradation of sulfamethazine upon exposure to drinking water chlorination occurred by first order kinetics with a half-life of 5.3 × 10(4) min (approximately 37 days) with measurements starting 5 minutes after chlorination. Likewise, the formation of the major chlorinated product occurred by first order kinetics with a rate constant of 2.0 × 10(-2). The proposed identification of the chlorinated product was 4-amino-(5-chloro-4,6-dimethyl-2-pyrimidinyl)-benzenesulfonamide (C12H13N4O2SCl) using MS (n) spectra and databases searches of SciFinder and ChemSpider.
{"title":"The Fate of Sulfamethazine in Sodium-Hypochlorite-Treated Drinking Water: Monitoring by LC-MS (n) -IT-TOF.","authors":"Tyler C Melton, Stacy D Brown","doi":"10.1155/2012/693903","DOIUrl":"https://doi.org/10.1155/2012/693903","url":null,"abstract":"<p><p>Pharmaceutical compounds represent a rapidly emerging class of environmental contaminants. Such compounds were recently classified by the U.S. Geological Survey, including several antibiotics. An LC-MS/MS screening method for the top five antibiotics in drinking water was developed and validated using a Shimadzu LC-MS-IT-TOF. The separation was performed using a Waters Acquity UPLC BEH C18 column with a gradient elution. Sulfamethazine was exposed to conditions intended to mimic drinking water chlorination, and samples were collected and quenched with excess sodium sulfite. Kinetics of sulfamethazine degradation was followed as well as the formation of the major chlorinated byproduct (m/z 313). For the screening method, all five antibiotic peaks were baseline resolved within 5 minutes. Additionally, precision and accuracy of the screening method were less than 15%. Degradation of sulfamethazine upon exposure to drinking water chlorination occurred by first order kinetics with a half-life of 5.3 × 10(4) min (approximately 37 days) with measurements starting 5 minutes after chlorination. Likewise, the formation of the major chlorinated product occurred by first order kinetics with a rate constant of 2.0 × 10(-2). The proposed identification of the chlorinated product was 4-amino-(5-chloro-4,6-dimethyl-2-pyrimidinyl)-benzenesulfonamide (C12H13N4O2SCl) using MS (n) spectra and databases searches of SciFinder and ChemSpider. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"693903"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/693903","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33287293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In our continued attempts at designing new antibiotics based on the structure of the C-9154 antibiotic, to simultaneously improve activity and lower toxicity, an analogue to the C-9154 antibiotic and six derivatives of this analogue were synthesized. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were synthesized using a two-step reaction which involved an additional reaction between benzyl amine and maleic anhydride and then conversion of the terminal carboxylic acid functional group to an ester functional group using a thionyl chloride mediated esterification reaction. The compounds were fully characterized using Infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogues as was anticipated with minimum inhibitory concentration in the range 0.625-5 μg/mL. The analogue had minimum inhibitory concentration in the range 2.5-10 μg/mL. These values are significantly better than that obtained for the original C-9154 antibiotic which had activity in the range 10->100 μg/mL.
{"title":"Syntheses and in vitro biological activity of some derivatives of C-9154 antibiotic.","authors":"Isaac Asusheyi Bello, George Iloegbulam Ndukwe, Joseph Olorunju Amupitan, Rachael Gbekele Ayo, Francis Oluwole Shode","doi":"10.1155/2012/782058","DOIUrl":"https://doi.org/10.1155/2012/782058","url":null,"abstract":"<p><p>In our continued attempts at designing new antibiotics based on the structure of the C-9154 antibiotic, to simultaneously improve activity and lower toxicity, an analogue to the C-9154 antibiotic and six derivatives of this analogue were synthesized. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were synthesized using a two-step reaction which involved an additional reaction between benzyl amine and maleic anhydride and then conversion of the terminal carboxylic acid functional group to an ester functional group using a thionyl chloride mediated esterification reaction. The compounds were fully characterized using Infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogues as was anticipated with minimum inhibitory concentration in the range 0.625-5 μg/mL. The analogue had minimum inhibitory concentration in the range 2.5-10 μg/mL. These values are significantly better than that obtained for the original C-9154 antibiotic which had activity in the range 10->100 μg/mL. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"782058"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/782058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32797274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study is to understand the interactions of some antibacterial cationic amphipathic cyclooctapeptides with calcium(II) and their secondary structural preferences. The thermodynamic parameters associated with calcium(II) interactions, between the antibacterial active cyclooctapeptides (COP 1-6) and those that did not exhibit significant activities (COP 7-9), were studied by isothermal titration calorimetry. Calcium(II) binding in the absence and presence of micellar dodecylphosphocholine (DPC), a membrane mimicking detergent, was conducted by circular dichroism (CD). Both groups of cyclopeptides showed weak binding affinities for calcium(II) (Kb ca. 10(-3) M(-1)). However, CD data showed that the antimicrobial peptides COP 1-6 adopted a twisted beta-sheet structure (positive CD absorption band at ca. 203 nm) in the presence of calcium(II) in micellar DPC. In contrast, COP 7-9, which lacked antibacterial activity, adopted a different conformational structure (negative CD absorption band at ca. 203 nm). These results indicate that these cyclopeptides could adopt secondary structural preferences in the presence of calcium(II) amidst a hydrophobic environment to elicit their antibacterial activity. These findings could be useful in facilitating the design of cyclopeptide derivatives that can adopt this beta-sheet-like secondary structure and, thereby, provide a useful molecular template for crafting antibacterial compounds.
{"title":"Secondary Structural Preferences of Some Antibacterial Cyclooctapeptides in the Presence of Calcium(II).","authors":"Tarshona Stevens, Nykia McNeil, Xiuli Lin, Maria Ngu-Schwemlein","doi":"10.1155/2012/730239","DOIUrl":"10.1155/2012/730239","url":null,"abstract":"<p><p>The purpose of this study is to understand the interactions of some antibacterial cationic amphipathic cyclooctapeptides with calcium(II) and their secondary structural preferences. The thermodynamic parameters associated with calcium(II) interactions, between the antibacterial active cyclooctapeptides (COP 1-6) and those that did not exhibit significant activities (COP 7-9), were studied by isothermal titration calorimetry. Calcium(II) binding in the absence and presence of micellar dodecylphosphocholine (DPC), a membrane mimicking detergent, was conducted by circular dichroism (CD). Both groups of cyclopeptides showed weak binding affinities for calcium(II) (Kb ca. 10(-3) M(-1)). However, CD data showed that the antimicrobial peptides COP 1-6 adopted a twisted beta-sheet structure (positive CD absorption band at ca. 203 nm) in the presence of calcium(II) in micellar DPC. In contrast, COP 7-9, which lacked antibacterial activity, adopted a different conformational structure (negative CD absorption band at ca. 203 nm). These results indicate that these cyclopeptides could adopt secondary structural preferences in the presence of calcium(II) amidst a hydrophobic environment to elicit their antibacterial activity. These findings could be useful in facilitating the design of cyclopeptide derivatives that can adopt this beta-sheet-like secondary structure and, thereby, provide a useful molecular template for crafting antibacterial compounds. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"730239"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32799710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3D-QSAR approach has been widely applied and proven to be useful in the case where no reliable crystal structure of the complex between a biologically active molecule and the receptor is available. At the same time, however, it also has highlighted the sensitivity of this approach. The main requirement of the traditional 3D-QSAR method is that molecules should be correctly overlaid in what is assumed to be the bioactive conformation. Identifying an active conformation of a flexible molecule is technically difficult. It has been a bottleneck in the application of the 3D-QSAR method. We have developed a 3D-QSAR software named AutoGPA especially based on an automatic pharmacophore alignment method in order to overcome this problem which has discouraged general medicinal chemists from applying the 3D-QSAR methods to their "real-world" problems. Applications of AutoGPA to three inhibitor-receptor systems have demonstrated that without any prior information about the three-dimensional structure of the bioactive conformations AutoGPA can automatically generate reliable 3D-QSAR models. In this paper, the concept of AutoGPA and the application results will be described.
{"title":"AutoGPA: An Automated 3D-QSAR Method Based on Pharmacophore Alignment and Grid Potential Analysis.","authors":"Naoyuki Asakawa, Seiichi Kobayashi, Junichi Goto, Noriaki Hirayama","doi":"10.1155/2012/498931","DOIUrl":"10.1155/2012/498931","url":null,"abstract":"<p><p>3D-QSAR approach has been widely applied and proven to be useful in the case where no reliable crystal structure of the complex between a biologically active molecule and the receptor is available. At the same time, however, it also has highlighted the sensitivity of this approach. The main requirement of the traditional 3D-QSAR method is that molecules should be correctly overlaid in what is assumed to be the bioactive conformation. Identifying an active conformation of a flexible molecule is technically difficult. It has been a bottleneck in the application of the 3D-QSAR method. We have developed a 3D-QSAR software named AutoGPA especially based on an automatic pharmacophore alignment method in order to overcome this problem which has discouraged general medicinal chemists from applying the 3D-QSAR methods to their \"real-world\" problems. Applications of AutoGPA to three inhibitor-receptor systems have demonstrated that without any prior information about the three-dimensional structure of the bioactive conformations AutoGPA can automatically generate reliable 3D-QSAR models. In this paper, the concept of AutoGPA and the application results will be described. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"498931"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32820886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research was undertaken to design several new antibiotics, by structurally modifying the C-9154 antibiotic, simultaneously improving its activity and lowering toxicity. This was achieved by synthesizing an analogue to the C-9154 antibiotic and seven derivatives of this analogue. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were fully characterized using infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogue as was anticipated and both were more active than the standard drugs used for comparison. Work is ongoing to establish applications for the compounds as antiplasmodials, antivirals, anticancers/tumours, antitrypanosomiasis, anthelminthic, and as general antibiotics for human, veterinary, and even agricultural use as they had marked effect on both Gram-positive and Gram-negative bacteria and some fungi.
{"title":"Syntheses and biological activity of some derivatives of C-9154 antibiotic.","authors":"Isaac Asusheyi Bello, George Iloegbulam Ndukwe, Joseph Olorunju Amupitan, Rachael Gbekele Ayo, Francis Oluwole Shode","doi":"10.1155/2012/148235","DOIUrl":"https://doi.org/10.1155/2012/148235","url":null,"abstract":"<p><p>This research was undertaken to design several new antibiotics, by structurally modifying the C-9154 antibiotic, simultaneously improving its activity and lowering toxicity. This was achieved by synthesizing an analogue to the C-9154 antibiotic and seven derivatives of this analogue. The approach was to significantly reduce the polarity of the synthesized analogue in the derivatives to achieve increased permeability across cell membranes by conversion of the highly polar carboxylic group to an ester functional group. The compounds were fully characterized using infrared, GC-MS, and 1D and 2D NMR experiments. The in vitro biological activity of the compounds showed that the derivatives were more active than the analogue as was anticipated and both were more active than the standard drugs used for comparison. Work is ongoing to establish applications for the compounds as antiplasmodials, antivirals, anticancers/tumours, antitrypanosomiasis, anthelminthic, and as general antibiotics for human, veterinary, and even agricultural use as they had marked effect on both Gram-positive and Gram-negative bacteria and some fungi. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"148235"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/148235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32797268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the most important functions of the opioid system is the control of pain. Among the three main opioid receptor classes (μ, δ, κ), the μ (MOR) is the main type targeted for pharmacotherapy of pain. Opioid analgesics such as morphine, oxycodone and fentanyl are agonists at the MOR and are the mainstay for the treatment of moderate-to-severe pain. However, adverse effects related to opioid use are severe and often lead to early discontinuation and inadequate analgesia. The development of more effective and safer medications for the management of pain still remains a major direction in pharmaceutical research. Chemical approaches towards the identification of novel MOR analgesics with reduced side effects include structural modifications of 14-alkoxy-N-methylmorphinan-6-ones in key positions that are important for binding, selectivity, potency, and efficacy at opioid receptors. This paper describes a representative strategy to improve the therapeutic usefulness of opioid analgesics from the morphinan class of drugs by targeting position 5. The focus is on chemical and biological studies and structure-activity relationships of this series of ligands. We report on 14-alkoxymorphinan-6-ones having a methyl and benzyl group at position 5 as strong opioid antinociceptive agents with reduced propensity to cause undesired effects compared to morphine although interacting selectively with MORs.
{"title":"Development of 5-Substituted N-Methylmorphinan-6-ones as Potent Opioid Analgesics with Improved Side-Effect Profile.","authors":"Helmut Schmidhammer, Mariana Spetea","doi":"10.1155/2012/208039","DOIUrl":"https://doi.org/10.1155/2012/208039","url":null,"abstract":"<p><p>One of the most important functions of the opioid system is the control of pain. Among the three main opioid receptor classes (μ, δ, κ), the μ (MOR) is the main type targeted for pharmacotherapy of pain. Opioid analgesics such as morphine, oxycodone and fentanyl are agonists at the MOR and are the mainstay for the treatment of moderate-to-severe pain. However, adverse effects related to opioid use are severe and often lead to early discontinuation and inadequate analgesia. The development of more effective and safer medications for the management of pain still remains a major direction in pharmaceutical research. Chemical approaches towards the identification of novel MOR analgesics with reduced side effects include structural modifications of 14-alkoxy-N-methylmorphinan-6-ones in key positions that are important for binding, selectivity, potency, and efficacy at opioid receptors. This paper describes a representative strategy to improve the therapeutic usefulness of opioid analgesics from the morphinan class of drugs by targeting position 5. The focus is on chemical and biological studies and structure-activity relationships of this series of ligands. We report on 14-alkoxymorphinan-6-ones having a methyl and benzyl group at position 5 as strong opioid antinociceptive agents with reduced propensity to cause undesired effects compared to morphine although interacting selectively with MORs. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"208039"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/208039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33285260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxazolidinone is a five-member heterocyclic ring exhibiting potential medicinal properties with preferential antibacterial activity. Scientists reported various synthetic procedures for this heterocyclic structure. Current review articles tried to cover each and every potential aspect of oxazolidinone like synthetic routes, pharmacological mechanism of action, medicinal properties, and current research activities.
{"title":"Current updates on oxazolidinone and its significance.","authors":"Neha Pandit, Rajeev K Singla, Birendra Shrivastava","doi":"10.1155/2012/159285","DOIUrl":"10.1155/2012/159285","url":null,"abstract":"<p><p>Oxazolidinone is a five-member heterocyclic ring exhibiting potential medicinal properties with preferential antibacterial activity. Scientists reported various synthetic procedures for this heterocyclic structure. Current review articles tried to cover each and every potential aspect of oxazolidinone like synthetic routes, pharmacological mechanism of action, medicinal properties, and current research activities. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"159285"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33285259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MDAN-21, 7'-{2-[(7-{2-[({(5α, 6α)-4,5-Epoxy-3,14-dihydroxy-17-methylmorphin-6-yl}-aminocarbonyl)metoxy]-acetylamino}-heptylaminocarbonyl)-methoxy]-acetylamino}-naltrindole, a bivalent opioid ligand containing a mu-opioid receptor agonist (derived from oxymorphone) linked to the delta-opioid receptor antagonist (related to naltrindole) by a spacer of 21 atoms, was reported to have potent analgesic properties in mice. Tolerance, physical dependence, and conditioned place preference were not evident in that species. The finding that bivalent ligands in this series, with spacers 19 atoms or greater, were devoid of tolerance and dependence led to the proposal that MDAN-21 targets heteromeric mu-delta-opioid receptors. The present study focused on its effects in nonhuman primates (Macaca mulatta), a species with a physiology and behavioral repertoire not unlike humans. With regard to opioids, this species usually better predicts clinical outcomes. MDAN-21 substituted for morphine in morphine-dependent monkeys in the remarkably low dose range 0.006-0.032 mg/kg, subcutaneously. Although MDAN-21 failed to produce reliable thermal analgesia in the dose range 0.0032-0.032 mg/kg, intramuscularly, it was active in the same dose range and by the same route of administration, in the capsaicin-induced thermal allodynia assay. The results suggest that MDAN-21 may be useful in the treatment of opioid dependence and allodynia. The data provide additional evidence that opioid withdrawal is associated with sensitized pain.
{"title":"MDAN-21: A Bivalent Opioid Ligand Containing mu-Agonist and Delta-Antagonist Pharmacophores and Its Effects in Rhesus Monkeys.","authors":"Mario D Aceto, Louis S Harris, S Stevens Negus, Matthew L Banks, Larry D Hughes, Eyup Akgün, Philip S Portoghese","doi":"10.1155/2012/327257","DOIUrl":"https://doi.org/10.1155/2012/327257","url":null,"abstract":"<p><p>MDAN-21, 7'-{2-[(7-{2-[({(5α, 6α)-4,5-Epoxy-3,14-dihydroxy-17-methylmorphin-6-yl}-aminocarbonyl)metoxy]-acetylamino}-heptylaminocarbonyl)-methoxy]-acetylamino}-naltrindole, a bivalent opioid ligand containing a mu-opioid receptor agonist (derived from oxymorphone) linked to the delta-opioid receptor antagonist (related to naltrindole) by a spacer of 21 atoms, was reported to have potent analgesic properties in mice. Tolerance, physical dependence, and conditioned place preference were not evident in that species. The finding that bivalent ligands in this series, with spacers 19 atoms or greater, were devoid of tolerance and dependence led to the proposal that MDAN-21 targets heteromeric mu-delta-opioid receptors. The present study focused on its effects in nonhuman primates (Macaca mulatta), a species with a physiology and behavioral repertoire not unlike humans. With regard to opioids, this species usually better predicts clinical outcomes. MDAN-21 substituted for morphine in morphine-dependent monkeys in the remarkably low dose range 0.006-0.032 mg/kg, subcutaneously. Although MDAN-21 failed to produce reliable thermal analgesia in the dose range 0.0032-0.032 mg/kg, intramuscularly, it was active in the same dose range and by the same route of administration, in the capsaicin-induced thermal allodynia assay. The results suggest that MDAN-21 may be useful in the treatment of opioid dependence and allodynia. The data provide additional evidence that opioid withdrawal is associated with sensitized pain. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"327257"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/327257","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33287290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A series of (Z)-2-benzylidenebenzofuran-3-(2H)-ones (aurones) bearing a variety of substituents on rings A and B were synthesized and evaluated for their antiparasitic activity against the intracellular amastigote form of Leishmania infantum and their cytotoxicity against human THP1-differentiated macrophages. In general, aurones bearing no substituents on ring A (compounds 4a-4f) exhibit higher toxicity than aurones with 4,6-dimethoxy substitution (compounds 4g-4l). Among the latter, two aurones possessing a 2'-methoxy or a 2'-methyl group (compounds 4i and 4j) exhibit potent antileishmanial activity (IC50 = 1.3 ± 0.1 μM and IC50 = 1.6 ± 0.2 μM, resp.), comparable to the activity of the reference drug Amphotericin B, whereas they present significantly lower cytotoxicity than Amphotericin B as deduced by the higher selectivity index.
{"title":"Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents.","authors":"Marina Roussaki, Sofia Costa Lima, Anna-Maria Kypreou, Panagiotis Kefalas, Anabela Cordeiro da Silva, Anastasia Detsi","doi":"10.1155/2012/196921","DOIUrl":"https://doi.org/10.1155/2012/196921","url":null,"abstract":"<p><p>A series of (Z)-2-benzylidenebenzofuran-3-(2H)-ones (aurones) bearing a variety of substituents on rings A and B were synthesized and evaluated for their antiparasitic activity against the intracellular amastigote form of Leishmania infantum and their cytotoxicity against human THP1-differentiated macrophages. In general, aurones bearing no substituents on ring A (compounds 4a-4f) exhibit higher toxicity than aurones with 4,6-dimethoxy substitution (compounds 4g-4l). Among the latter, two aurones possessing a 2'-methoxy or a 2'-methyl group (compounds 4i and 4j) exhibit potent antileishmanial activity (IC50 = 1.3 ± 0.1 μM and IC50 = 1.6 ± 0.2 μM, resp.), comparable to the activity of the reference drug Amphotericin B, whereas they present significantly lower cytotoxicity than Amphotericin B as deduced by the higher selectivity index. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"196921"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/196921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32797270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}