首页 > 最新文献

International journal of molecular medicine最新文献

英文 中文
[Retracted] miR‑92a‑3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN. [撤稿】miR-92a-3p 通过调控 PTEN 促进食管鳞状细胞癌的增殖、迁移和侵袭。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.3892/ijmm.2024.5453
Xin Li, Shuilong Guo, Li Min, Qingdong Guo, Shutian Zhang

Following the publication of this paper, a concerned reader drew to the Editor's attention that it appeared as if the authors had calculated the apoptotic rates erroneously. The authors were asked to provide an explanation to account for the concerns raised by the interested reader; however, they did not respond to this request submitted by the Editorial Office. Therefore, owing to the lack of responsiveness on the part of the authors, the Editor of International Journal of Molecular Medicine has decided that this paper should be retracted from the journal. The Editor would like to apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 973‑981, 2019; DOI: 10.3892/ijmm.2019.4258].

这篇论文发表后,一位关注此事的读者提请编辑注意,作者似乎错误地计算了细胞凋亡率。编辑部要求作者就该读者提出的问题做出解释,但作者并未对编辑部的要求做出回应。因此,由于作者缺乏回应,《国际分子医学杂志》编辑决定从该杂志上撤下这篇论文。给读者造成的不便,编辑在此深表歉意。[国际分子医学杂志》44:973-981, 2019; DOI: 10.3892/ijmm.2019.4258]。
{"title":"[Retracted] miR‑92a‑3p promotes the proliferation, migration and invasion of esophageal squamous cell cancer by regulating PTEN.","authors":"Xin Li, Shuilong Guo, Li Min, Qingdong Guo, Shutian Zhang","doi":"10.3892/ijmm.2024.5453","DOIUrl":"10.3892/ijmm.2024.5453","url":null,"abstract":"<p><p>Following the publication of this paper, a concerned reader drew to the Editor's attention that it appeared as if the authors had calculated the apoptotic rates erroneously. The authors were asked to provide an explanation to account for the concerns raised by the interested reader; however, they did not respond to this request submitted by the Editorial Office. Therefore, owing to the lack of responsiveness on the part of the authors, the Editor of <i>International Journal of Molecular Medicine</i> has decided that this paper should be retracted from the journal. The Editor would like to apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 973‑981, 2019; DOI: 10.3892/ijmm.2019.4258].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway. 槲皮素通过抑制重复元素触发的 RNA 感知途径,改善衰老并促进 BMSCs 的成骨。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-10-25 DOI: 10.3892/ijmm.2024.5445
Yutong Sun, Chunyang Wang, Liling Wen, Zihang Ling, Juan Xia, Bin Cheng, Jianmin Peng

Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.

细胞衰老会阻碍骨髓间充质干细胞(BMSCs)的自我更新和成骨能力,从而限制其在组织再生中的应用。本研究旨在阐明重复元素(RE)激活在骨髓间充质干细胞衰老和成骨过程中的作用和机制,以及槲皮素的干预作用。在H2O2诱导的BMSC衰老模型中,槲皮素能缓解衰老,表现为衰老相关的β-半乳糖苷酶(SA-β-gal)阳性细胞比例下降,集落形成能力增强,p21和衰老相关分泌表型基因的mRNA表达减少。衰老的 BMSCs 中 DNA 损伤反应标记 γ-H2AX 增加,而表观遗传标记组蛋白 H3 Lys9 甲基化、异染色质蛋白 1α 和异染色质相关核膜蛋白层相关多肽 2 的表达减少。槲皮素能缓解这些变化,表明它能通过稳定异染色质结构来改善衰老,而在异染色质结构中,REs主要受到抑制。在 H2O2- 诱导的衰老 BMSCs 中,REs 的转录激活伴随着细胞质双链(ds)RNA 的积累,以及 RNA 传感器视黄酸诱导基因 I(RIG-I)受体通路的触发。同样,槲皮素也能抑制这些反应。此外,敲除 RIG-I 导致 SA-β-gal 阳性细胞数量减少,证实了它对衰老的功能性影响。诱导衰老或施用dsRNA类似物显著阻碍了BMSCs的成骨能力,而槲皮素处理或RIG-I敲除则逆转了成骨功能的下降。本研究结果表明,槲皮素通过表观遗传调控抑制了REs的激活和RIG-I RNA传感通路,从而缓解了BMSCs的衰老并促进了成骨。
{"title":"Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway.","authors":"Yutong Sun, Chunyang Wang, Liling Wen, Zihang Ling, Juan Xia, Bin Cheng, Jianmin Peng","doi":"10.3892/ijmm.2024.5445","DOIUrl":"10.3892/ijmm.2024.5445","url":null,"abstract":"<p><p>Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant Centella asiatica, a novel cultivar rich in madecassoside and asiaticoside, suppresses α‑melanocyte‑stimulating hormone‑induced melanogenesis through MC1R binding. 巨型积雪草是一种富含积雪草苷和积雪草苷的新型栽培品种,它能通过与 MC1R 结合抑制α-黑色素细胞刺激素诱导的黑色素生成。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.3892/ijmm.2024.5454
Jiwon Seo, Chanhyeok Jeong, Seung Man Oh, Sung-Young Lee, Han Woong Park, Dae Bang Seo, Dae Sung Yoo, Woo-Jin Sim, Tae-Gyu Lim, Jung Han Yoon Park, Chang Hyung Lee, Ki Won Lee

The present study investigated the anti‑melanogenesis effects of Giant Centella asiatica (GCA), a new cultivator of Centella asiatica (CA) cataloged by the Korea Forest Service in 2022, and compared its efficacy with that of traditional CA. GCA has a high yield per unit area and enhanced antioxidant properties. The anti‑melanogenic effects of GCA were investigated using B16F10 melanoma cells and a 3D human skin‑equivalent model. Key molecular mechanisms were elucidated through western blotting, cAMP assays and molecular docking studies. Focus was addressed on the effect of GCA on skin whitening by comparing the ability of a GCA extract to inhibit melanin production in B16F10 melanoma cells and a 3D human skin‑equivalent model to that of CA. The results showed that the GCA extracts more effectively reduced melanin production, which was attributed to their higher content of two active components, madecassoside and asiaticoside. Further investigation revealed that GCA primarily inhibited melanogenesis through the PKA‑cAMP response element‑binding (CREB)‑microphthalmia‑associated transcription factor (MITF) axis, a key regulatory pathway in melanin synthesis. Notably, the present study, to the best of our knowledge, is the first to demonstrate that madecassoside and asiaticoside, the two principal compounds in GCA, directly bound to MC1R, which contributed to the significant skin‑whitening effects. Moreover, GCA reduced melanin production in a 3D human skin‑equivalent model, showing efficacy within a complex skin environment. These results demonstrated the superior effectiveness of GCA to that of CA for skin anti‑melanogenesis, indicating its potential as a promising natural material for targeting pigmentation disorders.

本研究调查了巨型积雪草(Giant Centella asiatica,GCA)的抗黑色素生成效果,并将其与传统积雪草的功效进行了比较。GCA 的单位面积产量高,抗氧化性更强。研究人员使用 B16F10 黑色素瘤细胞和三维人体皮肤等效模型研究了 GCA 的抗黑色素生成作用。通过 Western 印迹、cAMP 检测和分子对接研究阐明了关键的分子机制。通过比较 GCA 提取物与 CA 提取物抑制 B16F10 黑色素瘤细胞和三维人体皮肤等效模型中黑色素生成的能力,重点研究了 GCA 对皮肤美白的影响。结果表明,GCA 提取物能更有效地减少黑色素的生成,这要归功于其较高含量的两种活性成分--马黛茶苷和积雪草苷。进一步的研究发现,GCA主要通过PKA-CAMP反应元件结合(CREB)-微眼炎相关转录因子(MITF)轴抑制黑色素生成,而该轴是黑色素合成的关键调控途径。值得注意的是,据我们所知,本研究首次证明了 GCA 中的两种主要化合物--马黛茶苷和积雪草苷能直接与 MC1R 结合,从而产生显著的美白效果。此外,GCA 在三维人体皮肤等效模型中减少了黑色素的生成,显示了在复杂皮肤环境中的功效。这些结果表明,在抗皮肤黑色素生成方面,GCA 的效果优于 CA,这表明它有望成为一种针对色素沉着疾病的天然材料。
{"title":"Giant <i>Centella asiatica</i>, a novel cultivar rich in madecassoside and asiaticoside, suppresses α‑melanocyte‑stimulating hormone‑induced melanogenesis through MC1R binding.","authors":"Jiwon Seo, Chanhyeok Jeong, Seung Man Oh, Sung-Young Lee, Han Woong Park, Dae Bang Seo, Dae Sung Yoo, Woo-Jin Sim, Tae-Gyu Lim, Jung Han Yoon Park, Chang Hyung Lee, Ki Won Lee","doi":"10.3892/ijmm.2024.5454","DOIUrl":"10.3892/ijmm.2024.5454","url":null,"abstract":"<p><p>The present study investigated the anti‑melanogenesis effects of Giant <i>Centella asiatica</i> (GCA), a new cultivator of <i>Centella asiatica</i> (CA) cataloged by the Korea Forest Service in 2022, and compared its efficacy with that of traditional CA. GCA has a high yield per unit area and enhanced antioxidant properties. The anti‑melanogenic effects of GCA were investigated using B16F10 melanoma cells and a 3D human skin‑equivalent model. Key molecular mechanisms were elucidated through western blotting, cAMP assays and molecular docking studies. Focus was addressed on the effect of GCA on skin whitening by comparing the ability of a GCA extract to inhibit melanin production in B16F10 melanoma cells and a 3D human skin‑equivalent model to that of CA. The results showed that the GCA extracts more effectively reduced melanin production, which was attributed to their higher content of two active components, madecassoside and asiaticoside. Further investigation revealed that GCA primarily inhibited melanogenesis through the PKA‑cAMP response element‑binding (CREB)‑microphthalmia‑associated transcription factor (MITF) axis, a key regulatory pathway in melanin synthesis. Notably, the present study, to the best of our knowledge, is the first to demonstrate that madecassoside and asiaticoside, the two principal compounds in GCA, directly bound to MC1R, which contributed to the significant skin‑whitening effects. Moreover, GCA reduced melanin production in a 3D human skin‑equivalent model, showing efficacy within a complex skin environment. These results demonstrated the superior effectiveness of GCA to that of CA for skin anti‑melanogenesis, indicating its potential as a promising natural material for targeting pigmentation disorders.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). 癌症中的 TP53 突变:分子特征和治疗机会(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-10-25 DOI: 10.3892/ijmm.2024.5448
Maria Lina Tornesello

The tumour suppressor factor p53 plays an essential role in regulating numerous cellular processes, including the cell cycle, DNA repair, apoptosis, autophagy, cell metabolism and immune response. TP53 is the most commonly mutated gene in human cancers. These mutations are primarily non‑synonymous changes that produce mutant p53 proteins characterized by loss of function, a dominant negative effect on p53 tetramerisation and gain of function (GOF). GOF mutations not only disrupt the tumour‑suppressive activities of p53 but also endow the mutant proteins with new oncogenic properties. Recent studies analysing different pathogenic features of mutant p53 in cancer‑derived cell lines have demonstrated that restoring wild‑type p53, rather than removing GOF mutations, reduces cancer cell growth. These findings suggest that therapeutic strategies for reactivating wild‑type p53 function in cancer cells may bring a greater benefit than approaches halting mutant p53. This approach could involve the use of small molecules, gene therapy and other methods to re‑establish wild‑type p53 activity. This review describes the complexity of the biological activities of different p53 mutants and summarizes the current therapeutic approaches to restore p53 function.

肿瘤抑制因子 p53 在调节细胞周期、DNA 修复、细胞凋亡、自噬、细胞新陈代谢和免疫反应等众多细胞过程中发挥着重要作用。TP53 是人类癌症中最常见的突变基因。这些突变主要是非同义变化,产生的突变 p53 蛋白具有功能缺失、p53 四聚体显性负效应和功能增益(GOF)的特点。GOF突变不仅会破坏p53的抑瘤活性,还会赋予突变蛋白新的致癌特性。最近的研究分析了突变 p53 在癌症衍生细胞系中的不同致病特征,结果表明,恢复野生型 p53 比消除 GOF 突变更能减少癌细胞的生长。这些研究结果表明,在癌细胞中重新激活野生型 p53 功能的治疗策略可能会比阻止突变 p53 的方法带来更大的益处。这种方法可能涉及使用小分子、基因疗法和其他方法来重建野生型 p53 的活性。本综述描述了不同 p53 突变体生物活性的复杂性,并总结了目前恢复 p53 功能的治疗方法。
{"title":"TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review).","authors":"Maria Lina Tornesello","doi":"10.3892/ijmm.2024.5448","DOIUrl":"10.3892/ijmm.2024.5448","url":null,"abstract":"<p><p>The tumour suppressor factor p53 plays an essential role in regulating numerous cellular processes, including the cell cycle, DNA repair, apoptosis, autophagy, cell metabolism and immune response. TP53 is the most commonly mutated gene in human cancers. These mutations are primarily non‑synonymous changes that produce mutant p53 proteins characterized by loss of function, a dominant negative effect on p53 tetramerisation and gain of function (GOF). GOF mutations not only disrupt the tumour‑suppressive activities of p53 but also endow the mutant proteins with new oncogenic properties. Recent studies analysing different pathogenic features of mutant p53 in cancer‑derived cell lines have demonstrated that restoring wild‑type p53, rather than removing GOF mutations, reduces cancer cell growth. These findings suggest that therapeutic strategies for reactivating wild‑type p53 function in cancer cells may bring a greater benefit than approaches halting mutant p53. This approach could involve the use of small molecules, gene therapy and other methods to re‑establish wild‑type p53 activity. This review describes the complexity of the biological activities of different p53 mutants and summarizes the current therapeutic approaches to restore p53 function.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). lncRNA 与 PI3K/AKT 信号通路在消化系统肿瘤进展中的相互作用(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.3892/ijmm.2024.5456
Xiaoyu Zhang, Lei Shi, Mengzhen Xing, Chunjing Li, Fengjun Ma, Yuning Ma, Yuxia Ma

Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.

长非编码 RNA(lncRNA)是一类位于细胞质或细胞核中的非编码 RNA 分子,可通过与 DNA、RNA、蛋白质等分子相互作用,调控染色体结构和功能;以互补方式与 mRNA 碱基结合,影响 mRNA 的剪接、稳定、翻译和降解;作为竞争性内源性 RNA 与 microRNA 竞争性结合,调控基因表达,参与调控机体的各种生命活动。PI3K/AKT 信号通路在细胞增殖、侵袭、迁移和血管生成等众多生物和细胞过程中发挥着关键作用。研究发现,lncRNA/PI3K/AKT 轴调控癌症相关基因的表达,进而影响肿瘤的进展。lncRNA/PI3K/AKT轴中lncRNA表达的异常调控与临床病理特征明显相关,并在调控生物学功能方面发挥着重要作用。本综述全面总结和分析了近年来PI3K/AKT相关lncRNA在体外和体内的表达及生物学功能。同时还评估了它们与临床病理特征的相关性,旨在为消化系统肿瘤的临床诊断和疗效监测提供坚实的理论基础。本综述旨在全面概述 PI3K/AKT 相关 lncRNA 在消化系统肿瘤中的表达和生物学功能,并评估它们与临床病理特征的相关性。这项工作旨在为消化系统肿瘤的临床诊断和疗效监测奠定坚实的理论基础。
{"title":"Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review).","authors":"Xiaoyu Zhang, Lei Shi, Mengzhen Xing, Chunjing Li, Fengjun Ma, Yuning Ma, Yuxia Ma","doi":"10.3892/ijmm.2024.5456","DOIUrl":"10.3892/ijmm.2024.5456","url":null,"abstract":"<p><p>Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both <i>in vitro</i> and <i>in vivo</i> over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). 铁蛋白沉积在心血管疾病中的双刃剑作用(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-14 DOI: 10.3892/ijmm.2024.5457
Sirun Qin, Can Zhu, Chenyang Chen, Zhe Sheng, Yu Cao

The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.

心血管疾病(CVD)的病理生理学非常复杂,对人类健康构成严重威胁。心肌细胞丢失在心血管疾病的发生和发展过程中起着至关重要的作用。在各种形式的程序性细胞死亡中,铁凋亡与细胞凋亡、自噬和热凋亡一样,与心血管疾病的进展密切相关。铁凋亡是一种细胞死亡机制,由氧化脂质和过量铁的堆积驱动。这一途径受脂质、氨基酸和铁代谢的调节。铁变态反应的主要特征包括铁平衡被破坏、活性氧导致多不饱和脂肪酸过氧化增加、谷胱甘肽水平下降以及谷胱甘肽过氧化物酶 4 失活。针对铁蛋白沉积的治疗可能会通过抑制铁蛋白沉积途径来预防或减轻心血管疾病。铁蛋白沉积与多种心血管疾病的发病机制密不可分,抑制铁蛋白沉积在心肌细胞中的发生可能是未来治疗心血管疾病的一种有前景的治疗策略。本综述深入分析了在了解铁卟啉生成机制方面取得的进展。本手稿总结了铁蛋白沉积与心血管疾病之间的相互作用,强调了铁蛋白沉积在这些疾病中的双重作用。此外,还讨论了铁蛋白沉积途径中的潜在治疗靶点,以及这些新型治疗策略目前的局限性和未来的发展方向。本综述可为心血管疾病的预防和治疗方法提供新的见解。
{"title":"An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review).","authors":"Sirun Qin, Can Zhu, Chenyang Chen, Zhe Sheng, Yu Cao","doi":"10.3892/ijmm.2024.5457","DOIUrl":"10.3892/ijmm.2024.5457","url":null,"abstract":"<p><p>The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] A regulation loop between Nrf1α and MRTF‑A controls migration and invasion in MDA‑MB‑231 breast cancer cells. [更正] Nrf1α 和 MRTF-A 之间的调节环控制着 MDA-MB-231 乳腺癌细胞的迁移和侵袭。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-10-25 DOI: 10.3892/ijmm.2024.5442
Yao Xu, Ying Luo, Chen Liang, Weibing Xing, Tongcun Zhang

Subsequently to the publication of this article, an interested reader drew to the authors' attention that the Control and Nrf1α data panels in Fig. 1G on p. 2463 contained overlapping data, such that these data, which were intended to show the results from differently performed experiments, had apparently been derived from the same original source. Upon examining their original data, the authors realized that the image for the Control experiment was selected incorrectly for this figure. In rectifying this error, the authors have chosen to show the data from one of their repeated experiments for Fig. 1G, and the revised version of this figure is shown on the next page. They can confirm that the replacement of these data in this corrigendum does not significantly affect the conclusions reported in the study. The authors are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this corrigendum, and wish to apologize to readership for any inconvenience caused. [International Journal of Molecular Medicine 42: 2459‑2468, 2018; DOI: 10.3892/ijmm.2018.3816].

本文发表后,一位感兴趣的读者提请作者注意,第 2463 页图 1G 中的对照组和 Nrf1α 数据板包含重叠的数据,因此这些旨在显示不同实验结果的数据显然来自同一原始数据源。在检查原始数据时,作者发现该图中对照组实验的图像选择有误。为了纠正这一错误,作者选择在图 1G 中显示他们重复实验之一的数据,该图的修订版见下页。他们可以确认,在本更正中替换这些数据不会对研究报告中的结论产生重大影响。作者感谢《国际分子医学杂志》(International Journal of Molecular Medicine)编辑允许他们有机会发表本更正,并对给读者带来的不便表示歉意。[International Journal of Molecular Medicine 42: 2459-2468, 2018; DOI: 10.3892/ijmm.2018.3816]。
{"title":"[Corrigendum] A regulation loop between Nrf1α and MRTF‑A controls migration and invasion in MDA‑MB‑231 breast cancer cells.","authors":"Yao Xu, Ying Luo, Chen Liang, Weibing Xing, Tongcun Zhang","doi":"10.3892/ijmm.2024.5442","DOIUrl":"10.3892/ijmm.2024.5442","url":null,"abstract":"<p><p>Subsequently to the publication of this article, an interested reader drew to the authors' attention that the Control and Nrf1α data panels in Fig. 1G on p. 2463 contained overlapping data, such that these data, which were intended to show the results from differently performed experiments, had apparently been derived from the same original source. Upon examining their original data, the authors realized that the image for the Control experiment was selected incorrectly for this figure. In rectifying this error, the authors have chosen to show the data from one of their repeated experiments for Fig. 1G, and the revised version of this figure is shown on the next page. They can confirm that the replacement of these data in this corrigendum does not significantly affect the conclusions reported in the study. The authors are grateful to the Editor of <i>International Journal of Molecular Medicine</i> for allowing them the opportunity to publish this corrigendum, and wish to apologize to readership for any inconvenience caused. [International Journal of Molecular Medicine 42: 2459‑2468, 2018; DOI: 10.3892/ijmm.2018.3816].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review). 预测乳腺癌驱动基因突变的进展:精准肿瘤学的工具(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-10-25 DOI: 10.3892/ijmm.2024.5447
Wenhui Hao, Barani Kumar Rajendran, Tingting Cui, Jiayi Sun, Yingchun Zhao, Thirunavukkarasu Palaniyandi, Masilamani Selvam

In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.

在现代医学、预后和治疗领域,包括乳腺癌在内的许多癌症类型的治疗方案都因癌症特异性生物标志物的确定而得到改善。高通量测序和分析平台的可用性、可公开获取的癌症数据库的增长以及分子和组织学特征描述促进了通过精准医疗方法开发新药。然而,通常只有一小部分乳腺癌患者能从精准医疗方法中获益,这些患者的可操作突变很少。本综述系统阐述了乳腺癌驱动基因鉴定、可操作的乳腺癌突变以及乳腺癌精准肿瘤学的现有治疗方案、挑战和应用等方面的最新进展。基于乳腺癌驱动基因突变的精准肿瘤学有助于筛选涉及疾病发展和进展、药物敏感性和耐药基因的关键驱动基因。精准肿瘤学的进展将为乳腺癌患者提供更多的靶向治疗选择,提高无病生存率,并有可能在不久的将来在乳腺癌治疗方面取得重大成就。驱动基因突变的鉴定使得新的靶向治疗方法能够与乳腺癌的标准化疗和免疫疗法相结合。开发新的驱动基因突变识别策略将有助于确定新的治疗靶点,并通过高效药物改善乳腺癌患者的总生存期和无病生存期。
{"title":"Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review).","authors":"Wenhui Hao, Barani Kumar Rajendran, Tingting Cui, Jiayi Sun, Yingchun Zhao, Thirunavukkarasu Palaniyandi, Masilamani Selvam","doi":"10.3892/ijmm.2024.5447","DOIUrl":"10.3892/ijmm.2024.5447","url":null,"abstract":"<p><p>In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective effect of ginseng extract and total ginsenosides on hematopoietic stem cell damage by inhibiting cell apoptosis and regulating the intestinal microflora. 人参提取物和总人参皂苷通过抑制细胞凋亡和调节肠道微生物菌群对造血干细胞损伤的保护作用
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.3892/ijmm.2024.5455
Zuguo Liang, Xiang Gao, Chenxu Jing, Tongyi Yuan, Lancao Zhang, Yifei Yin, Jianze Ou, Xiangyan Li, Wenxiu Qi, Daqing Zhao, Hang Su, He Zhang

Ginseng may improve the myelosuppression and intestinal microbiota disorder induced by cyclophosphamide (CY); however, the effect of ginseng components on hematopoietic stem cell (HSC) damage remains largely unexplored. The present study aimed to assess the protective effect of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) from ginseng on the intestinal microflora and HSCs of model mice. In the present study, a mouse model of HSC damage induced by CY was constructed, intestinal microflora of fecal samples were sequenced using the 16S ribosomal RNA (rRNA) sequencing techniques, the differentially expressed genes (DEGs) of HSCs were analyzed using high‑throughput RNA‑sequencing, cell apoptosis and erythroid differentiation were detected using flow cytometry and the blood cell parameters were analyzed using a hematology analyzer. Analysis of the 16S rRNA in fecal samples showed that GE, TG and TP improved an imbalanced intestinal microflora, where the relative abundance of Lactobacillus intestinalis had a positive correlation with ginsenosides content. Specifically, TP significantly increased the expression of low‑abundance microflora. Transcriptomic analysis results revealed 2,250, 3,432 and 261 DEGs in the GE, TG and TP groups compared with those in the Model group, respectively. In the expression analysis of DEGs, both TG and GE were found to markedly increase the expression levels of Klf4, Hhex, Pbx1, Kmt2a, Mecom, Zc3h12a, Zbtb16, Lilr4b, Flt3 and Klf13. Furthermore, TG inhibited the apoptosis of HSCs by increasing the expression levels of Bcl2 and Mcl1, whilst decreasing the expression of Bax. By contrast, GE inhibited the apoptosis of HSCs by reducing the expression of Bax and Bad. Regarding erythroid differentiation and blood cell parameters, GE was found to significantly increase the expression of TER‑119. In addition, GE and TG improved all blood cell parameters, including the count of white blood cells, neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), hemoglobin (HGB) and reticulocyte and platelets (PLT), whereas TP could only improve the counts of LYMPH, RBC, HGB and PLT. The improvement effect of GE and TG on WBC, NEUT and Ret was superior to TP. In conclusion, TG may protect the hematopoiesis function of HSCs in a CY‑induced mouse model of HSC damage, followed by GE. However, TP did not appear to improve HSC damage. Ginsenosides may therefore be considered essential ingredients in GE when protecting HSCs against damage. GE and TG exerted their protective effects on HSCs by inhibiting the apoptosis of HSCs whilst improving the imbalance of intestinal microflora.

人参可改善环磷酰胺(CY)引起的骨髓抑制和肠道微生物区系紊乱;然而,人参成分对造血干细胞(HSC)损伤的影响在很大程度上仍未得到探讨。本研究旨在评估人参提取物(GE)、总人参皂苷(TG)和总多糖(TP)对模型小鼠肠道微生物区系和造血干细胞的保护作用。本研究构建了 CY 诱导造血干细胞损伤的小鼠模型,利用 16S 核糖体 RNA(rRNA)测序技术对粪便样本中的肠道微生物区系进行了测序,利用高通量 RNA 测序技术分析了造血干细胞的差异表达基因(DEGs),利用流式细胞术检测了细胞凋亡和红细胞分化,并利用血液分析仪分析了血细胞参数。粪便样本中 16S rRNA 的分析表明,GE、TG 和 TP 改善了失衡的肠道微生物区系,其中肠道乳酸杆菌的相对丰度与人参皂苷的含量呈正相关。特别是,人参皂苷明显增加了低丰度微生物菌群的表达。转录组分析结果显示,与模型组相比,GE 组、TG 组和 TP 组分别有 2,250 个、3,432 个和 261 个 DEGs。在 DEGs 的表达分析中,发现 TG 和 GE 均能显著提高 Klf4、Hhex、Pbx1、Kmt2a、Mecom、Zc3h12a、Zbtb16、Lilr4b、Flt3 和 Klf13 的表达水平。此外,TG 还能提高 Bcl2 和 Mcl1 的表达水平,同时降低 Bax 的表达水平,从而抑制造血干细胞的凋亡。相比之下,GE 通过降低 Bax 和 Bad 的表达抑制造血干细胞的凋亡。在红细胞分化和血细胞参数方面,研究发现 GE 能显著增加 TER-119 的表达。此外,GE和TG还能改善所有血细胞参数,包括白细胞、中性粒细胞(NEUT)、淋巴细胞(LYMPH)、红细胞(RBC)、血红蛋白(HGB)以及网织红细胞和血小板(PLT)的数量,而TP只能改善LYMPH、RBC、HGB和PLT的数量。GE 和 TG 对 WBC、NEUT 和 Ret 的改善效果优于 TP。总之,在 CY 诱导的小鼠造血干细胞损伤模型中,TG 可保护造血干细胞的造血功能,随后 GE 也可保护造血干细胞的造血功能。然而,TP似乎并不能改善造血干细胞损伤。因此,在保护造血干细胞免受损伤时,人参皂苷可能被认为是GE的重要成分。GE 和 TG 通过抑制造血干细胞的凋亡,同时改善肠道微生物菌群的失衡,对造血干细胞产生保护作用。
{"title":"Protective effect of ginseng extract and total ginsenosides on hematopoietic stem cell damage by inhibiting cell apoptosis and regulating the intestinal microflora.","authors":"Zuguo Liang, Xiang Gao, Chenxu Jing, Tongyi Yuan, Lancao Zhang, Yifei Yin, Jianze Ou, Xiangyan Li, Wenxiu Qi, Daqing Zhao, Hang Su, He Zhang","doi":"10.3892/ijmm.2024.5455","DOIUrl":"10.3892/ijmm.2024.5455","url":null,"abstract":"<p><p>Ginseng may improve the myelosuppression and intestinal microbiota disorder induced by cyclophosphamide (CY); however, the effect of ginseng components on hematopoietic stem cell (HSC) damage remains largely unexplored. The present study aimed to assess the protective effect of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) from ginseng on the intestinal microflora and HSCs of model mice. In the present study, a mouse model of HSC damage induced by CY was constructed, intestinal microflora of fecal samples were sequenced using the 16S ribosomal RNA (rRNA) sequencing techniques, the differentially expressed genes (DEGs) of HSCs were analyzed using high‑throughput RNA‑sequencing, cell apoptosis and erythroid differentiation were detected using flow cytometry and the blood cell parameters were analyzed using a hematology analyzer. Analysis of the 16S rRNA in fecal samples showed that GE, TG and TP improved an imbalanced intestinal microflora, where the relative abundance of <i>Lactobacillus intestinalis</i> had a positive correlation with ginsenosides content. Specifically, TP significantly increased the expression of low‑abundance microflora. Transcriptomic analysis results revealed 2,250, 3,432 and 261 DEGs in the GE, TG and TP groups compared with those in the Model group, respectively. In the expression analysis of DEGs, both TG and GE were found to markedly increase the expression levels of <i>Klf4</i>, <i>Hhex</i>, <i>Pbx1</i>, <i>Kmt2a</i>, <i>Mecom</i>, <i>Zc3h12a</i>, <i>Zbtb16</i>, <i>Lilr4b</i>, <i>Flt3</i> and <i>Klf13</i>. Furthermore, TG inhibited the apoptosis of HSCs by increasing the expression levels of <i>Bcl2</i> and <i>Mcl1</i>, whilst decreasing the expression of <i>Bax</i>. By contrast, GE inhibited the apoptosis of HSCs by reducing the expression of <i>Bax</i> and <i>Bad</i>. Regarding erythroid differentiation and blood cell parameters, GE was found to significantly increase the expression of TER‑119. In addition, GE and TG improved all blood cell parameters, including the count of white blood cells, neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), hemoglobin (HGB) and reticulocyte and platelets (PLT), whereas TP could only improve the counts of LYMPH, RBC, HGB and PLT. The improvement effect of GE and TG on WBC, NEUT and Ret was superior to TP. In conclusion, TG may protect the hematopoiesis function of HSCs in a CY‑induced mouse model of HSC damage, followed by GE. However, TP did not appear to improve HSC damage. Ginsenosides may therefore be considered essential ingredients in GE when protecting HSCs against damage. GE and TG exerted their protective effects on HSCs by inhibiting the apoptosis of HSCs whilst improving the imbalance of intestinal microflora.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1. 骨肉瘤干细胞通过DRP1维持线粒体动态稳定性,从而抵御化疗。
IF 8.3 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.3892/ijmm.2024.5451
Boren Tian, Yaxuan Wu, Xiaoyun Du, Yan Zhang

Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.

骨肉瘤恶性肿瘤具有明显的异质性,包括骨肉瘤干细胞和非骨肉瘤干细胞。由于其独特的细胞和分子特征,骨肉瘤干细胞对化疗的耐药性增强。线粒体形态和稳态的改变可通过调节代谢和调节过程增强化疗耐药性。然而,线粒体稳态与 OSCs 化疗耐药性之间的关系仍有待阐明。本研究采用高分辨率显微镜进行多层图像重建,对线粒体形态进行定量分析。结果表明,与非 OSCs 相比,OSCs 的线粒体更大。此外,用顺铂 (CIS) 或多柔比星 (DOX) 处理 OSCs 可保持线粒体形态的稳定性,而在非 OSCs 中则观察不到这种稳定性。这一发现表明线粒体稳态与化疗耐受性之间存在潜在联系。进一步的分析表明,Dynamin相关蛋白1(DRP1)可能在维持OSCs线粒体稳态稳定方面起着关键作用。当用CIS或DOX处理OSCs时,耗尽DRP1会导致线粒体稳定性被破坏。此外,敲除 OSCs 中的 DRP1 会降低化疗耐药性。这些发现揭示了骨肉瘤化疗耐药性的新机制,并表明靶向DRP1可能是克服骨肉瘤化疗耐药性的一种有前途的治疗策略。这为提高骨肉瘤患者的治疗效果提供了宝贵的见解。
{"title":"Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1.","authors":"Boren Tian, Yaxuan Wu, Xiaoyun Du, Yan Zhang","doi":"10.3892/ijmm.2024.5451","DOIUrl":"10.3892/ijmm.2024.5451","url":null,"abstract":"<p><p>Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of molecular medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1