Pub Date : 2024-12-01Epub Date: 2024-10-18DOI: 10.3892/ijmm.2024.5441
Jianyu Wang, Yuankang Zou, Ruili Guan, Shuangshuang Tan, Lihong Su, Zaihua Zhao, Zipeng Cao, Kunyan Jiang, Tao Wang, Gang Zheng
Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress. Cell viability was assessed using the Cell Counting Kit‑8 assay, mitochondrial structure was examined with a transmission electron microscope, intracellular ferrous ions and lipid reactive oxygen species levels in HT22 cells were measured using FerroOrange and BODIPY 581/591 C11 staining, copper content was determined using graphite furnace atomic absorption spectroscopy, and gene and protein expression were analyzed by reverse transcription‑quantitative PCR and western blotting. The present findings indicated that hypoxic exposure may lead to reduced cell viability, along with the upregulation of various markers associated with ferroptosis. Furthermore, hypoxia elevated the levels of reactive oxygen species, hydrogen peroxide and malondialdehyde, and decreased the activity of superoxide dismutase 1 (SOD1) in HT22 cells. In addition, the intracellular copper concentration exhibited a notable decrease, while supplementation with an appropriate dose of copper effectively shielded neurons from hypoxia‑induced oxidative stress and ferroptosis, and elevated cell viability in hypoxia‑exposed HT22 cells through the copper chaperone for superoxide dismutase/SOD1/glutathione peroxidase 4 axis. In conclusion, the present study identified a novel function of copper in protecting neurons from oxidative stress and ferroptosis under hypoxic conditions, providing fresh insights into the therapeutic potential of copper in mitigating hypoxia‑induced neuronal injury.
{"title":"Copper supplementation alleviates hypoxia‑induced ferroptosis and oxidative stress in neuronal cells.","authors":"Jianyu Wang, Yuankang Zou, Ruili Guan, Shuangshuang Tan, Lihong Su, Zaihua Zhao, Zipeng Cao, Kunyan Jiang, Tao Wang, Gang Zheng","doi":"10.3892/ijmm.2024.5441","DOIUrl":"10.3892/ijmm.2024.5441","url":null,"abstract":"<p><p>Hypoxic ischemia is the primary cause of brain damage in newborns. Notably, copper supplementation has potential benefits in ischemic brain damage; however, the precise mechanisms underlying this protective effect remain unclear. In the present study, a hypoxic HT22 cell model was developed to examine the mechanism by which copper mitigates hypoxia‑induced oxidative stress. Cell viability was assessed using the Cell Counting Kit‑8 assay, mitochondrial structure was examined with a transmission electron microscope, intracellular ferrous ions and lipid reactive oxygen species levels in HT22 cells were measured using FerroOrange and BODIPY 581/591 C11 staining, copper content was determined using graphite furnace atomic absorption spectroscopy, and gene and protein expression were analyzed by reverse transcription‑quantitative PCR and western blotting. The present findings indicated that hypoxic exposure may lead to reduced cell viability, along with the upregulation of various markers associated with ferroptosis. Furthermore, hypoxia elevated the levels of reactive oxygen species, hydrogen peroxide and malondialdehyde, and decreased the activity of superoxide dismutase 1 (SOD1) in HT22 cells. In addition, the intracellular copper concentration exhibited a notable decrease, while supplementation with an appropriate dose of copper effectively shielded neurons from hypoxia‑induced oxidative stress and ferroptosis, and elevated cell viability in hypoxia‑exposed HT22 cells through the copper chaperone for superoxide dismutase/SOD1/glutathione peroxidase 4 axis. In conclusion, the present study identified a novel function of copper in protecting neurons from oxidative stress and ferroptosis under hypoxic conditions, providing fresh insights into the therapeutic potential of copper in mitigating hypoxia‑induced neuronal injury.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, for the cell migration and invasion assay data shown in Fig. 3A, C, E and G on p. 1843, a number of overlapping data sections were identified such that data which were intended to show the results from differently performed experiments had apparently been derived from the same original sources; moreover, these overlaps were featured in different alignments relative to their matching partners. In addition, other errors had been made during the process of compiling the figures; for example, the authors had overlooked indicating that the protein data shown in Fig. 1F were for β‑catenin. In view of the number of overlapping data panels that were identified in Fig. 3, the Editor of International Journal of Molecular Medicine has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [ International Journal of Molecular Medicine 45: 1838‑1850, 2020; DOI: 10.3892/ijmm.2020.4543].
{"title":"[Retracted] Effects of cisplatin on the proliferation, invasion and apoptosis of breast cancer cells following β‑catenin silencing.","authors":"Xidan Zhu, Jia Feng, Wenguang Fu, Xiaojia Shu, Xue Wan, Jinbo Liu","doi":"10.3892/ijmm.2024.5437","DOIUrl":"10.3892/ijmm.2024.5437","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, for the cell migration and invasion assay data shown in Fig. 3A, C, E and G on p. 1843, a number of overlapping data sections were identified such that data which were intended to show the results from differently performed experiments had apparently been derived from the same original sources; moreover, these overlaps were featured in different alignments relative to their matching partners. In addition, other errors had been made during the process of compiling the figures; for example, the authors had overlooked indicating that the protein data shown in Fig. 1F were for β‑catenin. In view of the number of overlapping data panels that were identified in Fig. 3, the Editor of <i>International Journal of Molecular Medicine</i> has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [ International Journal of Molecular Medicine 45: 1838‑1850, 2020; DOI: 10.3892/ijmm.2020.4543].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11517735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-18DOI: 10.3892/ijmm.2024.5440
Zhou Li, Yao Zhang, Jianhua Lei, Yunxia Wu
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
{"title":"Autophagy in oral cancer: Promises and challenges (Review).","authors":"Zhou Li, Yao Zhang, Jianhua Lei, Yunxia Wu","doi":"10.3892/ijmm.2024.5440","DOIUrl":"10.3892/ijmm.2024.5440","url":null,"abstract":"<p><p>Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518578/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/ijmm.2024.5420
Xudong Jiu, Wenjie Li, Yang Liu, Lin Liu, Hong Lu
Uveal melanoma (UM) is the most prevalent type of primary intraocular malignancy and is prone to metastasize, particularly to the liver. However, due to the poor understanding of the pathogenesis of UM, effective therapeutic approaches are lacking. As a phenolic compound extracted from grapes, piceatannol (PIC) exhibits anti‑cancer properties. To the best of our knowledge, however, the effects of PIC on UM have not been well investigated. Therefore, in the present study, considering the impact of pyroptosis on modulating cell viability, the mechanism underlying the effects of PIC on UM cell proliferation was explored. The inhibitory effect of PIC on proliferation of UM cells was detected by cell counting kit‑8 assay. Wound healing was used to investigate the effects of PIC on the migration of UM cells. Activity detecting assays were performed to test the apoptosis and oxidant level in UM cells. Western blotting and RT‑qPCR were used to detect the inflammatory and pyroptotic levels of UM cell after PIC treatment. PIC‑treated UM cells were screened by high‑throughput sequencing to detect the differential expression of RNA and differential genes. Si‑TREM2 transfection was used to verify the important role of TREM2 in the effects of PIC. Immunohistochemical staining was used to observe the expressions of TREM2 and GSDMR of tumor in nude mice after PIC administration. PIC effectively inhibited proliferation ability of C918 and Mum‑2b UM cell lines via enhancing apoptosis, as evidenced by enhanced activities of caspase 3 and caspase 9. In addition, treatment of UM cells with PIC attenuated cell migration in a dose‑dependent manner. PIC increased reactive oxygen species levels and suppressed the activity of the antioxidant enzymes superoxide dismutase, glutathione‑S‑transferase, glutathione peroxidase and catalase. PIC inhibited inflammatory responses in C918 cells. PIC treatment upregulated IL‑1β, IL‑18 and Nod‑like receptor protein 3 and downregulated gasdermin D (GSDMD). RNA sequencing results revealed the activation of an unconventional pyroptosis‑associated signaling pathway, namely caspase 3/GSDME signaling, following PIC treatment, which was mediated by triggering receptor expressed on myeloid cells 2 (TREM2) upregulation. As an agonist of TREM2, COG1410‑mediated TREM2 upregulation inhibited proliferation of C918 cells, displaying similar effects to PIC. Furthermore, PIC inhibited tumor growth via regulating the TREM2/caspase 3/GSDME pathway in a mouse model. Collectively, the present study revealed a novel mechanism underlying the inhibitory effects of PIC on UM, providing a potential treatment approach for UM in clinic.
葡萄膜黑色素瘤(UM)是眼内原发性恶性肿瘤中最常见的一种,容易发生转移,尤其是向肝脏转移。然而,由于人们对葡萄膜黑色素瘤的发病机制了解甚少,因此缺乏有效的治疗方法。作为一种从葡萄中提取的酚类化合物,皮脂单酚(PIC)具有抗癌特性。然而,据我们所知,PIC 对 UM 的影响尚未得到很好的研究。因此,在本研究中,考虑到热渗透对调节细胞活力的影响,我们探讨了 PIC 对 UM 细胞增殖的影响机制。通过细胞计数试剂盒-8 检测 PIC 对 UM 细胞增殖的抑制作用。利用伤口愈合来研究 PIC 对 UM 细胞迁移的影响。活性检测试验用于检测 UM 细胞的凋亡和氧化水平。用 Western 印迹法和 RT-qPCR 检测 PIC 处理后 UM 细胞的炎症和裂解水平。通过高通量测序筛选经 PIC 处理的 UM 细胞,以检测 RNA 和差异基因的差异表达。用 Si-TREM2 转染验证 TREM2 在 PIC 作用中的重要作用。免疫组化染色观察了 PIC 给药后裸鼠肿瘤中 TREM2 和 GSDMR 的表达。PIC 通过增强细胞凋亡,有效抑制了 C918 和 Mum-2b UM 细胞株的增殖能力,表现为 caspase 3 和 caspase 9 活性的增强。此外,用 PIC 处理 UM 细胞还能以剂量依赖的方式减少细胞迁移。PIC 增加了活性氧水平,抑制了超氧化物歧化酶、谷胱甘肽-S-转移酶、谷胱甘肽过氧化物酶和过氧化氢酶等抗氧化酶的活性。PIC 可抑制 C918 细胞的炎症反应。PIC 处理可上调 IL-1β、IL-18 和 Nod 样受体蛋白 3,下调 gasdermin D (GSDMD)。RNA 测序结果显示,PIC 处理后激活了一个非常规的与化脓相关的信号通路,即 caspase 3/GSDME 信号通路,该通路由触发髓系细胞上表达的受体 2(TREM2)上调介导。作为 TREM2 的激动剂,COG1410 介导的 TREM2 上调抑制了 C918 细胞的增殖,其效果与 PIC 相似。此外,在小鼠模型中,PIC 通过调节 TREM2/caspase 3/GSDME 通路抑制肿瘤生长。总之,本研究揭示了 PIC 抑制 UM 的新机制,为临床治疗 UM 提供了一种潜在的方法。
{"title":"TREM2, a critical activator of pyroptosis, mediates the anti‑tumor effects of piceatannol in uveal melanoma cells via caspase 3/GSDME pathway","authors":"Xudong Jiu, Wenjie Li, Yang Liu, Lin Liu, Hong Lu","doi":"10.3892/ijmm.2024.5420","DOIUrl":"10.3892/ijmm.2024.5420","url":null,"abstract":"<p><p>Uveal melanoma (UM) is the most prevalent type of primary intraocular malignancy and is prone to metastasize, particularly to the liver. However, due to the poor understanding of the pathogenesis of UM, effective therapeutic approaches are lacking. As a phenolic compound extracted from grapes, piceatannol (PIC) exhibits anti‑cancer properties. To the best of our knowledge, however, the effects of PIC on UM have not been well investigated. Therefore, in the present study, considering the impact of pyroptosis on modulating cell viability, the mechanism underlying the effects of PIC on UM cell proliferation was explored. The inhibitory effect of PIC on proliferation of UM cells was detected by cell counting kit‑8 assay. Wound healing was used to investigate the effects of PIC on the migration of UM cells. Activity detecting assays were performed to test the apoptosis and oxidant level in UM cells. Western blotting and RT‑qPCR were used to detect the inflammatory and pyroptotic levels of UM cell after PIC treatment. PIC‑treated UM cells were screened by high‑throughput sequencing to detect the differential expression of RNA and differential genes. Si‑TREM2 transfection was used to verify the important role of TREM2 in the effects of PIC. Immunohistochemical staining was used to observe the expressions of TREM2 and GSDMR of tumor in nude mice after PIC administration. PIC effectively inhibited proliferation ability of C918 and Mum‑2b UM cell lines via enhancing apoptosis, as evidenced by enhanced activities of caspase 3 and caspase 9. In addition, treatment of UM cells with PIC attenuated cell migration in a dose‑dependent manner. PIC increased reactive oxygen species levels and suppressed the activity of the antioxidant enzymes superoxide dismutase, glutathione‑S‑transferase, glutathione peroxidase and catalase. PIC inhibited inflammatory responses in C918 cells. PIC treatment upregulated IL‑1β, IL‑18 and Nod‑like receptor protein 3 and downregulated gasdermin D (GSDMD). RNA sequencing results revealed the activation of an unconventional pyroptosis‑associated signaling pathway, namely caspase 3/GSDME signaling, following PIC treatment, which was mediated by triggering receptor expressed on myeloid cells 2 (TREM2) upregulation. As an agonist of TREM2, COG1410‑mediated TREM2 upregulation inhibited proliferation of C918 cells, displaying similar effects to PIC. Furthermore, PIC inhibited tumor growth via regulating the TREM2/caspase 3/GSDME pathway in a mouse model. Collectively, the present study revealed a novel mechanism underlying the inhibitory effects of PIC on UM, providing a potential treatment approach for UM in clinic.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/ijmm.2024.5419
Divya Sankar, Iyyappan Ramalakshmi Oviya
Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.
贫血是全球常见的健康问题,对儿童和孕妇等弱势群体的影响尤为严重。造成贫血的原因多种多样,其中有些是遗传因素。诊断时需要采取综合策略,结合体格检查、实验室检测(如全血细胞计数)和分子工具进行准确鉴定。贫血症有近 400 种,准确诊断仍是一项具有挑战性的任务。红细胞异常在很大程度上是由遗传因素引起的,这意味着要想彻底了解,就必须从分子层面进行解读。因此,利用深度学习和机器学习等人工智能(AI)技术来改善预后评估、治疗预测和诊断准确性已成为精准医疗的重要范式。此外,探索维生素 D 的免疫调节作用以及基于生物标志物的分子技术,为深入了解贫血的病理生理学提供了前景广阔的途径。再生障碍性贫血的复杂性使其成为一个值得集中进行分子研究的课题。鉴于贫血症的复杂性,将临床、实验室、分子和人工智能技术相结合的综合战略大有可为。除了增进我们对这种疾病的了解之外,这种方法还有望改善全球贫血症的管理方案。
{"title":"Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review).","authors":"Divya Sankar, Iyyappan Ramalakshmi Oviya","doi":"10.3892/ijmm.2024.5419","DOIUrl":"10.3892/ijmm.2024.5419","url":null,"abstract":"<p><p>Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/ijmm.2024.5424
Masuko Katoh, Masaru Katoh
The 24 claudin (CLDN) genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.2, are specifically upregulated in human cancer, CLDN‑targeting monoclonal antibodies (mAbs), antibody‑drug conjugates (ADCs), bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells have been developed. In the present review, CLDN1‑, 4‑, 6‑ and 18.2‑targeting investigational drugs in clinical trials are discussed. CLDN18.2‑directed therapy for patients with gastric and other types of cancer is the most advanced area in this field. The mouse/human chimeric anti‑CLDN18.2 mAb zolbetuximab has a single‑agent objective response rate (ORR) of 9%, and increases progression‑free and overall survival in combination with chemotherapy. The human/humanized anti‑CLDN18.2 mAb osemitamab, and ADCs AZD0901, IBI343 and LM‑302, with single‑agent ORRs of 28‑60%, have been tested in phase III clinical trials. In addition, bsAbs, CAR T cells and their derivatives targeting CLDN4, 6 or 18.2 are in phase I and/or II clinical trials. AZD0901, IBI343, zolbetuximab and the anti‑CLDN1 mAb ALE.C04 have been granted fast track designation or priority review designation by the US Food and Drug Administration.
人类基因组中的 24 个 claudin(CLDN)基因编码 26 个具有代表性的 CLDN 家族蛋白。CLDN 是紧密连接处的四跨跨膜蛋白。由于 CLDN6 和 CLDN18.2 等几种 CLDN 异构体在人类癌症中特异性上调,因此开发了针对 CLDN 的单克隆抗体(mAbs)、抗体药物结合体(ADC)、双特异性抗体(bsAbs)和嵌合抗原受体(CAR)T 细胞。本综述将讨论临床试验中的 CLDN1、4、6 和 18.2 靶向研究药物。针对胃癌和其他类型癌症患者的CLDN18.2靶向疗法是这一领域的最前沿。小鼠/人嵌合抗CLDN18.2 mAb zolbetuximab的单药客观反应率(ORR)为9%,与化疗联合使用可提高无进展生存期和总生存期。人/人化抗CLDN18.2 mAb osemitamab以及ADCs AZD0901、IBI343和LM-302的单药客观反应率为28%-60%,已在III期临床试验中进行了测试。此外,针对 CLDN4、6 或 18.2 的 bsAbs、CAR T 细胞及其衍生物也已进入 I 期和/或 II 期临床试验。AZD0901、IBI343、唑贝昔单抗和抗CLDN1 mAb ALE.C04已被美国食品药品管理局授予快速通道指定或优先审评指定。
{"title":"Claudin 1, 4, 6 and 18 isoform 2 as targets for the treatment of cancer (Review).","authors":"Masuko Katoh, Masaru Katoh","doi":"10.3892/ijmm.2024.5424","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5424","url":null,"abstract":"<p><p>The 24 claudin (<i>CLDN</i>) genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.2, are specifically upregulated in human cancer, CLDN‑targeting monoclonal antibodies (mAbs), antibody‑drug conjugates (ADCs), bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells have been developed. In the present review, CLDN1‑, 4‑, 6‑ and 18.2‑targeting investigational drugs in clinical trials are discussed. CLDN18.2‑directed therapy for patients with gastric and other types of cancer is the most advanced area in this field. The mouse/human chimeric anti‑CLDN18.2 mAb zolbetuximab has a single‑agent objective response rate (ORR) of 9%, and increases progression‑free and overall survival in combination with chemotherapy. The human/humanized anti‑CLDN18.2 mAb osemitamab, and ADCs AZD0901, IBI343 and LM‑302, with single‑agent ORRs of 28‑60%, have been tested in phase III clinical trials. In addition, bsAbs, CAR T cells and their derivatives targeting CLDN4, 6 or 18.2 are in phase I and/or II clinical trials. AZD0901, IBI343, zolbetuximab and the anti‑CLDN1 mAb ALE.C04 have been granted fast track designation or priority review designation by the US Food and Drug Administration.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/ijmm.2024.5422
Xiang Li, Yuan Xu, Jing-Xing Si, Fang Gu, Ying-Yu Ma
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
{"title":"Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review).","authors":"Xiang Li, Yuan Xu, Jing-Xing Si, Fang Gu, Ying-Yu Ma","doi":"10.3892/ijmm.2024.5422","DOIUrl":"10.3892/ijmm.2024.5422","url":null,"abstract":"<p><p>Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/ijmm.2024.5415
Lu Chen, Chang Liu, Xuesong Xiang, Wenhong Qiu, Kaiwen Guo
Psoriasis is a chronic inflammatory skin condition with numerous causes, including genetic, immunological and infectious factors. The course of psoriasis is long and recurrence is common; pathogenesis is not completely understood. However, there is an association between advancement of psoriasis and aberrant microRNA (miR or miRNA)‑155 expression. Through bioinformatics, the present study aimed to analyze the differentially expressed genes and miRNAs in psoriasis and its biological mechanism and function psoriatic inflammation. First of all, differentially expressed genes (DEGs) and miRNAs (DEMs) in patients with psoriasis were identified using GEO2R interactive web application. A psoriasis inflammatory model was established using lipopolysaccharide (LPS)‑treated HaCaT keratinocytes, which were transfected with miR‑155 mimic or inhibitor. Cell Counting Kit‑8 was used for the assessment of cell viability and proliferation, and changes in the cell cycle were examined using flow cytometry. ELISA and reverse transcription‑quantitative PCR (RT‑qPCR) were used to detect the expression levels of the inflammatory factors IL‑1β and IL‑6. The dual‑luciferase reporter assay was used to verify the targeting association between miR‑155‑5p and IFN regulatory factor 2 binding protein 2 (IRF2BP2). To verify the targeting association of miR‑155 and the IRF2BP2/kruppel‑like factor 2 (KLF2)/NF‑κB signaling pathway, expression levels of IRF2BP2, KLF2 and p65 were identified by RT‑qPCR and western blotting. IRF2BP2 levels were also confirmed by immunofluorescence, in conjunction with bioinformatics database analysis. Overexpression of miR‑155 inhibited proliferation of HaCaT cells and increased the number of cells in S phase and decreasing number of cells in G1 and G2 phase. In the LPS‑induced inflammatory state, miR‑155 overexpression heightened the inflammatory response of HaCaT cells while inhibition of miR‑155 lessened it. Suppression of inflammatory cytokine expression by miR‑155‑5p inhibitor was reversed by knockdown of IRF2BP2. miR‑155 was shown to interact with IRF2BP2 to negatively regulate its expression, leading to decreased KLF2 expression and increased p65 expression and secretion of inflammatory factors, intensifying the inflammatory response of HaCaT cells. Therefore, miR‑155 may contribute to development of psoriasis by inducing tissue and cell damage by increasing the inflammatory response of HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway. In conclusion, the results of the present study offer novel perspectives on the role of miR‑155 in the onset and progression of psoriasis.
{"title":"miR‑155 promotes an inflammatory response in HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway in psoriasis.","authors":"Lu Chen, Chang Liu, Xuesong Xiang, Wenhong Qiu, Kaiwen Guo","doi":"10.3892/ijmm.2024.5415","DOIUrl":"10.3892/ijmm.2024.5415","url":null,"abstract":"<p><p>Psoriasis is a chronic inflammatory skin condition with numerous causes, including genetic, immunological and infectious factors. The course of psoriasis is long and recurrence is common; pathogenesis is not completely understood. However, there is an association between advancement of psoriasis and aberrant microRNA (miR or miRNA)‑155 expression. Through bioinformatics, the present study aimed to analyze the differentially expressed genes and miRNAs in psoriasis and its biological mechanism and function psoriatic inflammation. First of all, differentially expressed genes (DEGs) and miRNAs (DEMs) in patients with psoriasis were identified using GEO2R interactive web application. A psoriasis inflammatory model was established using lipopolysaccharide (LPS)‑treated HaCaT keratinocytes, which were transfected with miR‑155 mimic or inhibitor. Cell Counting Kit‑8 was used for the assessment of cell viability and proliferation, and changes in the cell cycle were examined using flow cytometry. ELISA and reverse transcription‑quantitative PCR (RT‑qPCR) were used to detect the expression levels of the inflammatory factors IL‑1β and IL‑6. The dual‑luciferase reporter assay was used to verify the targeting association between miR‑155‑5p and IFN regulatory factor 2 binding protein 2 (IRF2BP2). To verify the targeting association of miR‑155 and the IRF2BP2/kruppel‑like factor 2 (KLF2)/NF‑κB signaling pathway, expression levels of IRF2BP2, KLF2 and p65 were identified by RT‑qPCR and western blotting. IRF2BP2 levels were also confirmed by immunofluorescence, in conjunction with bioinformatics database analysis. Overexpression of miR‑155 inhibited proliferation of HaCaT cells and increased the number of cells in S phase and decreasing number of cells in G1 and G2 phase. In the LPS‑induced inflammatory state, miR‑155 overexpression heightened the inflammatory response of HaCaT cells while inhibition of miR‑155 lessened it. Suppression of inflammatory cytokine expression by miR‑155‑5p inhibitor was reversed by knockdown of IRF2BP2. miR‑155 was shown to interact with IRF2BP2 to negatively regulate its expression, leading to decreased KLF2 expression and increased p65 expression and secretion of inflammatory factors, intensifying the inflammatory response of HaCaT cells. Therefore, miR‑155 may contribute to development of psoriasis by inducing tissue and cell damage by increasing the inflammatory response of HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway. In conclusion, the results of the present study offer novel perspectives on the role of miR‑155 in the onset and progression of psoriasis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/ijmm.2024.5427
Ying Tang, Hua Ji, Yanyan Yan, Die Hu, Murong Xu, Min Xu, Xiaotong Zhao, Mingwei Chen
Diabetic foot ulcer (DFU) is a destructive complication of diabetes. Negative pressure wound therapy (NPWT) promotes DFU wound healing through an undetermined mechanism. In the present study, RNA sequencing was performed on wound granulation tissue from 3 patients with DFU before and after 1 week of NPWT. The fused in sarcoma (FUS) and interleukin enhancer binding factor 2 (ILF2) encoding RNA‑binding proteins (RBPs) were screened from the sequencing data, and wound tissue samples from 24 patients with DFU were validated and analyzed before and after receiving NPWT by reverse transcription‑quantitative PCR, western blotting and immunohistochemistry. In addition, in vitro and in vivo experiments were conducted to determine the effect of the expression of FUS and ILF2 on the function of human epidermal keratinocyte cells (HaCaT cells) and the healing of diabetic skin wounds. The results indicated that NPWT induced the upregulation of 101 genes and the downregulation of 98 genes in DFU wound granulation tissue. After NPWT, the expression of FUS and ILF2 was significantly upregulated (P<0.05). Pearson's correlation coefficient showed that the changes in FUS and ILF2 before and after NPWT were negatively correlated with changes in white blood cells, the neutrophil percentage, C‑reactive protein, tumor necrosis factor‑α, reactive oxygen species, lipid peroxides, matrix metalloproteinase (MMP) 2 and MMP9 (P<0.05), but positively correlated with the anti‑inflammatory factor, IL‑4 (P<0.01). There was also a positive correlation (P<0.05) with the 4‑week ulcer healing rate. Additionally, the knockdown of FUS and ILF2 expression inhibited the proliferation and migration of HaCaT cells, while increasing cell apoptosis. In vivo, the knockdown of FUS and ILF2 significantly reduced the rate of skin wound healing in diabetic mice. The results of the present study therefore provide new insights into the mechanism by which NPWT promotes DFU wound healing. In conclusion, the RBPs, FUS and ILF2, promoted DFU wound healing by regulating the function of keratinocytes and reducing the inflammatory response and oxidative stress.
{"title":"Enhancing diabetic foot ulcer healing: Impact of the regulation of the FUS and ILF2 RNA‑binding proteins through negative pressure wound therapy.","authors":"Ying Tang, Hua Ji, Yanyan Yan, Die Hu, Murong Xu, Min Xu, Xiaotong Zhao, Mingwei Chen","doi":"10.3892/ijmm.2024.5427","DOIUrl":"10.3892/ijmm.2024.5427","url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a destructive complication of diabetes. Negative pressure wound therapy (NPWT) promotes DFU wound healing through an undetermined mechanism. In the present study, RNA sequencing was performed on wound granulation tissue from 3 patients with DFU before and after 1 week of NPWT. The fused in sarcoma (FUS) and interleukin enhancer binding factor 2 (ILF2) encoding RNA‑binding proteins (RBPs) were screened from the sequencing data, and wound tissue samples from 24 patients with DFU were validated and analyzed before and after receiving NPWT by reverse transcription‑quantitative PCR, western blotting and immunohistochemistry. In addition, <i>in vitro</i> and <i>in vivo</i> experiments were conducted to determine the effect of the expression of FUS and ILF2 on the function of human epidermal keratinocyte cells (HaCaT cells) and the healing of diabetic skin wounds. The results indicated that NPWT induced the upregulation of 101 genes and the downregulation of 98 genes in DFU wound granulation tissue. After NPWT, the expression of FUS and ILF2 was significantly upregulated (P<0.05). Pearson's correlation coefficient showed that the changes in FUS and ILF2 before and after NPWT were negatively correlated with changes in white blood cells, the neutrophil percentage, C‑reactive protein, tumor necrosis factor‑α, reactive oxygen species, lipid peroxides, matrix metalloproteinase (MMP) 2 and MMP9 (P<0.05), but positively correlated with the anti‑inflammatory factor, IL‑4 (P<0.01). There was also a positive correlation (P<0.05) with the 4‑week ulcer healing rate. Additionally, the knockdown of FUS and ILF2 expression inhibited the proliferation and migration of HaCaT cells, while increasing cell apoptosis. <i>In vivo</i>, the knockdown of FUS and ILF2 significantly reduced the rate of skin wound healing in diabetic mice. The results of the present study therefore provide new insights into the mechanism by which NPWT promotes DFU wound healing. In conclusion, the RBPs, FUS and ILF2, promoted DFU wound healing by regulating the function of keratinocytes and reducing the inflammatory response and oxidative stress.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sepsis‑induced myopathy (SIM) is one of the leading causes of death in critically ill patients. SIM mainly involves the respiratory and skeletal muscles of patients, resulting in an increased risk of lung infection, aggravated respiratory failure, and prolonged mechanical ventilation and hospital stay. SIM is also an independent risk factor associated with increased mortality in critically ill patients. At present, no effective treatment for SIM has yet been established. However, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach and have been utilized in the treatment of various clinical conditions. A significant body of basic and clinical research supports the efficacy of MSCs in managing sepsis and muscle‑related diseases. This literature review aims to explore the relationship between MSCs and sepsis, as well as their impact on skeletal muscle‑associated diseases. Additionally, the present review discusses the potential mechanisms and therapeutic benefits of MSCs in the context of SIM.
{"title":"Role of mesenchymal stem cells in sepsis and their therapeutic potential in sepsis‑associated myopathy (Review).","authors":"Dongfang Wang, Ligang Xu, Yukun Liu, Chuntao Wang, Siyuan Qi, Zhanfei Li, Xiangjun Bai, Yiliu Liao, Yuchang Wang","doi":"10.3892/ijmm.2024.5416","DOIUrl":"10.3892/ijmm.2024.5416","url":null,"abstract":"<p><p>Sepsis‑induced myopathy (SIM) is one of the leading causes of death in critically ill patients. SIM mainly involves the respiratory and skeletal muscles of patients, resulting in an increased risk of lung infection, aggravated respiratory failure, and prolonged mechanical ventilation and hospital stay. SIM is also an independent risk factor associated with increased mortality in critically ill patients. At present, no effective treatment for SIM has yet been established. However, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach and have been utilized in the treatment of various clinical conditions. A significant body of basic and clinical research supports the efficacy of MSCs in managing sepsis and muscle‑related diseases. This literature review aims to explore the relationship between MSCs and sepsis, as well as their impact on skeletal muscle‑associated diseases. Additionally, the present review discusses the potential mechanisms and therapeutic benefits of MSCs in the context of SIM.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}