Pub Date : 2024-05-01Epub Date: 2024-03-08DOI: 10.3892/ijo.2024.5634
Leyu Ai, Na Yi, Chunhan Qiu, Wanyi Huang, Keke Zhang, Qiulian Hou, Long Jia, Hui Li, Ling Liu
Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis‑related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis‑related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.
{"title":"Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review).","authors":"Leyu Ai, Na Yi, Chunhan Qiu, Wanyi Huang, Keke Zhang, Qiulian Hou, Long Jia, Hui Li, Ling Liu","doi":"10.3892/ijo.2024.5634","DOIUrl":"10.3892/ijo.2024.5634","url":null,"abstract":"<p><p>Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis‑related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis‑related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 5","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-15DOI: 10.3892/ijo.2024.5636
Guoan Zhang, Sen Hou, Shuyue Li, Yequan Wang, Wen Cui
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
{"title":"Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review).","authors":"Guoan Zhang, Sen Hou, Shuyue Li, Yequan Wang, Wen Cui","doi":"10.3892/ijo.2024.5636","DOIUrl":"10.3892/ijo.2024.5636","url":null,"abstract":"<p><p>Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 5","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-29DOI: 10.3892/ijo.2024.5640
Wenyue Cheng, Fan Li, Yunhuan Gao, Rongcun Yang
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
{"title":"Fungi and tumors: The role of fungi in tumorigenesis (Review).","authors":"Wenyue Cheng, Fan Li, Yunhuan Gao, Rongcun Yang","doi":"10.3892/ijo.2024.5640","DOIUrl":"10.3892/ijo.2024.5640","url":null,"abstract":"<p><p>Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 5","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA‑binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC‑derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR‑24‑3p and miR‑185‑5p were most differentially expressed, as verified by reverse transcription‑quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR‑24‑3p in cells increased the accumulation of miR‑24‑3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR‑24‑3p in exosomes also increased their bioactivity. Exosome‑mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co‑transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.
{"title":"RPL9 acts as an oncogene by shuttling miRNAs through exosomes in human hepatocellular carcinoma cells.","authors":"Ang Li, Jiyan Xie, Lihong Lv, Zhihua Zheng, Weibang Yang, Wenfeng Zhuo, Sijia Yang, Diankui Cai, Jinxin Duan, Peiqing Liu, Jun Min, Jinxing Wei","doi":"10.3892/ijo.2024.5646","DOIUrl":"https://doi.org/10.3892/ijo.2024.5646","url":null,"abstract":"The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA‑binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC‑derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR‑24‑3p and miR‑185‑5p were most differentially expressed, as verified by reverse transcription‑quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR‑24‑3p in cells increased the accumulation of miR‑24‑3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR‑24‑3p in exosomes also increased their bioactivity. Exosome‑mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co‑transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"36 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroRNAs (miRNAs) are noncoding small nucleic acids that contain ~22 nucleotides and are considered to promote the degradation or inhibit the translation of mRNA by targeting its 3'‑untranslated region. However, growing evidence has revealed that nuclear miRNAs, combined with gene promoters or enhancers, are able to directly mediate gene transcription. These miRNAs exert a critical influence on cancer progression by affecting cell growth, migration and invasion. In this review, the direct regulation of gene expression by nuclear miRNAs at the transcriptional level was discussed and summarized, and their mechanisms of action in cancers were highlighted with reference to the various body systems.
{"title":"Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review).","authors":"Ziqiang Wang, Yu Zhang, Kun Li","doi":"10.3892/ijo.2024.5644","DOIUrl":"https://doi.org/10.3892/ijo.2024.5644","url":null,"abstract":"MicroRNAs (miRNAs) are noncoding small nucleic acids that contain ~22 nucleotides and are considered to promote the degradation or inhibit the translation of mRNA by targeting its 3'‑untranslated region. However, growing evidence has revealed that nuclear miRNAs, combined with gene promoters or enhancers, are able to directly mediate gene transcription. These miRNAs exert a critical influence on cancer progression by affecting cell growth, migration and invasion. In this review, the direct regulation of gene expression by nuclear miRNAs at the transcriptional level was discussed and summarized, and their mechanisms of action in cancers were highlighted with reference to the various body systems.","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"214 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giulia Tedesco, Manuela Santarosa, Roberta Maestro
Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.
{"title":"Beyond self‑eating: Emerging autophagy‑independent functions for the autophagy molecules in cancer (Review).","authors":"Giulia Tedesco, Manuela Santarosa, Roberta Maestro","doi":"10.3892/ijo.2024.5645","DOIUrl":"https://doi.org/10.3892/ijo.2024.5645","url":null,"abstract":"Autophagy is a conserved catabolic process that controls organelle quality, removes misfolded or abnormally aggregated proteins and is part of the defense mechanisms against intracellular pathogens. Autophagy contributes to the suppression of tumor initiation by promoting genome stability, cellular integrity, redox balance and proteostasis. On the other hand, once a tumor is established, autophagy can support cancer cell survival and promote epithelial‑to‑mesenchymal transition. A growing number of molecules involved in autophagy have been identified. In addition to their key canonical activity, several of these molecules, such as ATG5, ATG12 and Beclin‑1, also exert autophagy‑independent functions in a variety of biological processes. The present review aimed to summarize autophagy‑independent functions of molecules of the autophagy machinery and how the activity of these molecules can influence signaling pathways that are deregulated in cancer progression.","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"39 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
{"title":"Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review).","authors":"Zixing Kou, Cun Liu, Wenfeng Zhang, Changgang Sun, Lijuan Liu, Qiming Zhang","doi":"10.3892/ijo.2024.5642","DOIUrl":"https://doi.org/10.3892/ijo.2024.5642","url":null,"abstract":"Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"290 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.
{"title":"Knockdown of PGBD5 inhibits the malignant progression of glioma through upregulation of the PPAR pathway.","authors":"Pengren Luo, Jinhong Yang, Lipeng Jian, Jigen Dong, Shi Yin, Chao Luo, Shuai Zhou","doi":"10.3892/ijo.2024.5643","DOIUrl":"https://doi.org/10.3892/ijo.2024.5643","url":null,"abstract":"Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 <i>in vitro</i> could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G<sub>2</sub>/M phase, thus inhibiting cell proliferation. Furthermore, <i>in vivo</i> experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"1 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140595986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neddylation, akin to ubiquitination, represents a post‑translational modification of proteins wherein neural precursor cell‑expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8‑mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti‑CRC target.
{"title":"Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review).","authors":"Tianyu Wang, Xiaobing Li, Ruijie Ma, Jian Sun, Shuhong Huang, Zhigang Sun, Meng Wang","doi":"10.3892/ijo.2024.5627","DOIUrl":"10.3892/ijo.2024.5627","url":null,"abstract":"<p><p>Neddylation, akin to ubiquitination, represents a post‑translational modification of proteins wherein neural precursor cell‑expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8‑mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti‑CRC target.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-23DOI: 10.3892/ijo.2024.5629
Jiao Xu, Bixin Yu, Fan Wang, Jin Yang
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
{"title":"Xenograft and organoid models in developing precision medicine for gastric cancer (Review).","authors":"Jiao Xu, Bixin Yu, Fan Wang, Jin Yang","doi":"10.3892/ijo.2024.5629","DOIUrl":"10.3892/ijo.2024.5629","url":null,"abstract":"<p><p>Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"64 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}