Electrocatalytic CO reduction (COR) is a promising approach for converting C1 feedstock into valuable multi-carbon fuels using renewable electricity. At ambient temperature, COR, particularly on Cu-based catalysts, typically produces C2 chemicals as the dominant products, with long-chain hydrocarbons containing more than five carbon atoms rarely forming. In contrast, Fischer-Tropsch synthesis (FTS), a thermocatalytic process converting CO and H2, selectively generates long-chain hydrocarbons. In this study, we utilized Ru nanoparticles for electrochemical COR under elevated conditions (423 K and 2.8 MPa). Long-chain products with up to 21 carbon atoms were detected, achieving a Faradaic efficiency of 32 % and a weight selectivity of 65 % for C5+ products. We propose an FTS-like pathway for this electrocatalytic process. Unlike thermocatalytic FTS, where adsorbed H atoms form via H2 dissociation, in this electrocatalytic version, the H atoms are generated through the Volmer reaction from water. Subsequently, the chemisorbed and activated CO species are hydrogenated, forming CHx intermediates that propagate into long-chain products.
{"title":"Electrocatalytic CO Reduction to Produce Long-chain Products Through Fischer-Tropsch Pathway","authors":"Bo Cao, Fu-Zhi Li, Songbai Han, Qiang Xu, Jun Gu","doi":"10.1002/celc.202400595","DOIUrl":"https://doi.org/10.1002/celc.202400595","url":null,"abstract":"<p>Electrocatalytic CO reduction (COR) is a promising approach for converting C<sub>1</sub> feedstock into valuable multi-carbon fuels using renewable electricity. At ambient temperature, COR, particularly on Cu-based catalysts, typically produces C<sub>2</sub> chemicals as the dominant products, with long-chain hydrocarbons containing more than five carbon atoms rarely forming. In contrast, Fischer-Tropsch synthesis (FTS), a thermocatalytic process converting CO and H<sub>2</sub>, selectively generates long-chain hydrocarbons. In this study, we utilized Ru nanoparticles for electrochemical COR under elevated conditions (423 K and 2.8 MPa). Long-chain products with up to 21 carbon atoms were detected, achieving a Faradaic efficiency of 32 % and a weight selectivity of 65 % for C<sub>5+</sub> products. We propose an FTS-like pathway for this electrocatalytic process. Unlike thermocatalytic FTS, where adsorbed H atoms form via H<sub>2</sub> dissociation, in this electrocatalytic version, the H atoms are generated through the Volmer reaction from water. Subsequently, the chemisorbed and activated CO species are hydrogenated, forming CH<sub><i>x</i></sub> intermediates that propagate into long-chain products.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Supercapacitors (SCs) have emerged as promising candidates for efficient and sustainable energy storage devices due to their unique merits, including high power density and long lifespan. However, despite these advantages, SCs face significant challenges related to their relatively low energy density. Current collectors are critical components of SCs, which significantly impacts the efficiency and overall performance by connecting active materials and external devices. However, the reviews on SCs are predominantly focused on electrode active materials or electrolyte materials, with insufficient comprehensive summaries regarding current collectors. This review focuses on the research progress related to current collectors in SCs. Firstly, the article outlines the modification objectives mechanism and inherent nature of SC current collectors. Building on this foundation, the authors further classify the current collector materials towards metallic, carbon-based, polymers and other ones and highlights their modification strategies. Finally, the future development trends and challenges of SCs current collectors are comprehensively discussed.
{"title":"Current Collectors for Supercapacitors: Objectives, Modification Methods and Challenges","authors":"Miao Liu, Ji-Chi Liu, Yue Zhang, Xu Han, Hui Li, Zi-Hang Huang, Tianyi Ma","doi":"10.1002/celc.202400513","DOIUrl":"https://doi.org/10.1002/celc.202400513","url":null,"abstract":"<p>Supercapacitors (SCs) have emerged as promising candidates for efficient and sustainable energy storage devices due to their unique merits, including high power density and long lifespan. However, despite these advantages, SCs face significant challenges related to their relatively low energy density. Current collectors are critical components of SCs, which significantly impacts the efficiency and overall performance by connecting active materials and external devices. However, the reviews on SCs are predominantly focused on electrode active materials or electrolyte materials, with insufficient comprehensive summaries regarding current collectors. This review focuses on the research progress related to current collectors in SCs. Firstly, the article outlines the modification objectives mechanism and inherent nature of SC current collectors. Building on this foundation, the authors further classify the current collector materials towards metallic, carbon-based, polymers and other ones and highlights their modification strategies. Finally, the future development trends and challenges of SCs current collectors are comprehensively discussed.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Ng, Camilo A. Mesa, Elena Más-Marzá, Sixto Giménez
The Glycerol Electrooxidation Reaction (GEOR) is a promising alternative to oxygen evolution in electrochemical processes like hydrogen production and CO2 reduction. Although GEOR has attracted increasing attention, its oxidation kinetics in alkaline media are not well understood. In this study, electrochemical characterization and kinetic analysis were conducted using nickel foil as the electrocatalyst. Four galvanostatic conditions (1, 3, 5, and 10 mA cm−2) were evaluated to study product distribution. Increasing the current density from 3 to 5 mA cm−2 led to a fivefold decrease in formate production, indicating a shift in GEOR selectivity within the Oxygen Evolution Reaction (OER) region. At 10 mA cm−2, formate remained as major product, followed by glycolate and glycerate, while tartronate and oxalate production were significantly inhibited, reducing the total Faradaic Efficiency (FE) by half relative to 5 mA cm−2. Rate constants showed increased kinetics for glycerate, glycolate, oxalate, and tartronate as current increased, surpassing formate production at 5 mA cm−2. Spectroelectrochemical measurements revealed the reaction order for GEOR (αGEOR ~1) and OER (αOER ~3), showing that GEOR proceeds via a more efficient oxidative pathway, requiring interaction with just one NiOOH species, while OER involves three highly oxidized Ni-species.
{"title":"Current-Dependent Product Distribution and Reaction Mechanisms of Glycerol Electrooxidation on Nickel","authors":"Eva Ng, Camilo A. Mesa, Elena Más-Marzá, Sixto Giménez","doi":"10.1002/celc.202400534","DOIUrl":"https://doi.org/10.1002/celc.202400534","url":null,"abstract":"<p>The Glycerol Electrooxidation Reaction (GEOR) is a promising alternative to oxygen evolution in electrochemical processes like hydrogen production and CO<sub>2</sub> reduction. Although GEOR has attracted increasing attention, its oxidation kinetics in alkaline media are not well understood. In this study, electrochemical characterization and kinetic analysis were conducted using nickel foil as the electrocatalyst. Four galvanostatic conditions (1, 3, 5, and 10 mA cm<sup>−2</sup>) were evaluated to study product distribution. Increasing the current density from 3 to 5 mA cm<sup>−2</sup> led to a fivefold decrease in formate production, indicating a shift in GEOR selectivity within the Oxygen Evolution Reaction (OER) region. At 10 mA cm<sup>−2</sup>, formate remained as major product, followed by glycolate and glycerate, while tartronate and oxalate production were significantly inhibited, reducing the total Faradaic Efficiency (FE) by half relative to 5 mA cm<sup>−2</sup>. Rate constants showed increased kinetics for glycerate, glycolate, oxalate, and tartronate as current increased, surpassing formate production at 5 mA cm<sup>−2</sup>. Spectroelectrochemical measurements revealed the reaction order for GEOR (α<sub>GEOR</sub> ~1) and OER (α<sub>OER</sub> ~3), showing that GEOR proceeds via a more efficient oxidative pathway, requiring interaction with just one NiOOH species, while OER involves three highly oxidized Ni-species.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sustainable ammonia synthesis, a key focus in electrochemistry, has seen significant advancements with the emergence of Metal-Organic Frameworks (MOFs). This review provides a comprehensive analysis of the recent strides in MOF-based materials for green ammonia production, reflecting the urgency to develop eco-friendly and energy-efficient chemical commodities. It explores the reaction mechanisms, emphasizing the importance of structure-performance relationships in MOF optimization and the design of MOF-based electrocatalysts, including metal node engineering and hybrid materials. The review also highlights in-situ characterization techniques that are crucial for understanding MOF catalytic activity. It establishes a correlation between MOF features, synthesis methods, and material performance, showcasing their potential in catalysis. Finally, it identifies challenges and future directions for MOFs in green ammonia production, aiming to inspire innovation towards sustainable and economically viable processes.
{"title":"Metal-Organic Frameworks for Advanced Electrochemical Ammonia Production in Water","authors":"Zhiwei Wang, Zeying Yang, Ken-ichi Otake, Jiahui Guo, Xuetong Yang, Ziqian Xue, Ming-Shui Yao, Susumu Kitagawa","doi":"10.1002/celc.202400525","DOIUrl":"https://doi.org/10.1002/celc.202400525","url":null,"abstract":"<p>Sustainable ammonia synthesis, a key focus in electrochemistry, has seen significant advancements with the emergence of Metal-Organic Frameworks (MOFs). This review provides a comprehensive analysis of the recent strides in MOF-based materials for green ammonia production, reflecting the urgency to develop eco-friendly and energy-efficient chemical commodities. It explores the reaction mechanisms, emphasizing the importance of structure-performance relationships in MOF optimization and the design of MOF-based electrocatalysts, including metal node engineering and hybrid materials. The review also highlights in-situ characterization techniques that are crucial for understanding MOF catalytic activity. It establishes a correlation between MOF features, synthesis methods, and material performance, showcasing their potential in catalysis. Finally, it identifies challenges and future directions for MOFs in green ammonia production, aiming to inspire innovation towards sustainable and economically viable processes.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
[The Acknowledgements should be changed from “The authors are grateful for the financial support from the NCN, Poland, UMO-2020/39/B/ST8/02937.” To “The authors are grateful for the financial supports from Project Number 101092189 (Acronim: HEDAsupercap) under the framework of HORIZON-CL4-2022-RESILIENCE-01, funded by European Commission“]
We apologize for this error.
{"title":"CORRIGENDUM: Correction to [Recent progress in polymer waste-derived porous carbon for supercapacitors]","authors":"","doi":"10.1002/celc.202400636","DOIUrl":"https://doi.org/10.1002/celc.202400636","url":null,"abstract":"<p>[The Acknowledgements should be changed from “The authors are grateful for the financial support from the NCN, Poland, UMO-2020/39/B/ST8/02937.” To “The authors are grateful for the financial supports from Project Number 101092189 (Acronim: HEDAsupercap) under the framework of HORIZON-CL4-2022-RESILIENCE-01, funded by European Commission“]</p><p>We apologize for this error.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400636","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Zhang, Na Li, Xu Li, Le Yang, Wei-Li Song, Ya-Na Wang
Active particle materials with high capacity, safety, and abundance, such as Sn and Si-based materials, and nickel-rich layered materials like LiNixCoyMn1−x−yO2 (with x≥0.8) are viewed as promising candidates for the evolution of next-generation batteries. However, structural degradation during cycling often limits the application of these active particle materials. Currently, research efforts are focused on developing new characterization techniques to understand the structural degradation mechanisms of active particle materials during the cycle, to improve their performance. This paper reviews advanced single-particle electrochemical and structural characterization techniques and their main findings. These findings included lattice displacement and rotation, microstructure evolution, and reaction kinetics of single-particle during cycling. In addition, we also discuss the potential future applications and developments of single-particle measurement technologies.
{"title":"Single-Particle Measurement: A Valuable Method for Studying Structural Evolution of Battery and Performance Degradation","authors":"Xin Zhang, Na Li, Xu Li, Le Yang, Wei-Li Song, Ya-Na Wang","doi":"10.1002/celc.202400529","DOIUrl":"https://doi.org/10.1002/celc.202400529","url":null,"abstract":"<p>Active particle materials with high capacity, safety, and abundance, such as Sn and Si-based materials, and nickel-rich layered materials like LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>1−x−y</sub>O<sub>2</sub> (with x≥0.8) are viewed as promising candidates for the evolution of next-generation batteries. However, structural degradation during cycling often limits the application of these active particle materials. Currently, research efforts are focused on developing new characterization techniques to understand the structural degradation mechanisms of active particle materials during the cycle, to improve their performance. This paper reviews advanced single-particle electrochemical and structural characterization techniques and their main findings. These findings included lattice displacement and rotation, microstructure evolution, and reaction kinetics of single-particle during cycling. In addition, we also discuss the potential future applications and developments of single-particle measurement technologies.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400529","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Front Cover shows how the most typical elements present in electrochemistry work together to power and light up the 10th anniversary sign celebrating the last decade of excellent research published in ChemElectroChem. Cover art by Tomáš Belloň (IOCB Prague).