Pub Date : 2023-11-23DOI: 10.1007/s00271-023-00889-0
Edwin Erazo-Mesa, Paulo J. Murillo-Sandoval, J. G. Ramírez-Gil, Kevin Quiroga Benavides, Andrés Echeverri Sánchez
{"title":"IS-SAR: an irrigation scheduling web application for Hass avocado orchards based on Sentinel-1 images","authors":"Edwin Erazo-Mesa, Paulo J. Murillo-Sandoval, J. G. Ramírez-Gil, Kevin Quiroga Benavides, Andrés Echeverri Sánchez","doi":"10.1007/s00271-023-00889-0","DOIUrl":"https://doi.org/10.1007/s00271-023-00889-0","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1007/s00271-023-00890-7
Farshad Khashaei, Javad Behmanesh, Vahid Rezaverdinejad, Nasrin Azad
{"title":"Field evaluation and numerical simulation of water and nitrate transport in subsurface drip irrigation of corn using HYDRUS-2D","authors":"Farshad Khashaei, Javad Behmanesh, Vahid Rezaverdinejad, Nasrin Azad","doi":"10.1007/s00271-023-00890-7","DOIUrl":"https://doi.org/10.1007/s00271-023-00890-7","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1007/s00271-023-00888-1
Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Jaume Casadesús, Omar García-Tejera, Joaquim Bellvert
Abstract A growing number of intensive irrigated production systems of the almond crop have been established in recent years. However, there is little information regarding the crop water requirements. Remote sensing-based models such as the two-source energy balance (TSEB) have proven to be reliable ways to accurately estimate actual crop evapotranspiration. However, few efforts have been made to validate the transpiration with sap flow measurements in woody row crops with different production systems and water status. In this study, the TSEB Priestley-Taylor (TSEB-PT) and contextual approach (TSEB-2T) models were assessed to estimate canopy transpiration. In addition, the effect of applying a basic clumping index for heterogeneous randomly placed clumped canopies and a rectangular hedgerow clumping index on the TSEB transpiration estimation was assessed. The TSEB inputs were obtained from high resolution multispectral and thermal imagery using an unmanned aerial vehicle. The leaf area index (LAI), stem water potential (Ψ stem ) and fractional intercepted photosynthetically active radiation (fIPAR) were also measured. Significant differences were observed in transpiration between production systems and irrigation treatments. The combined use of the TSEB-2T with the C&N-R transmittance model gave the best transpiration estimations for all production systems and irrigation treatments. The use of in situ PAR transmittance in the TSEB-2T model significantly improved the root mean squared error. Thus, the better agreement observed with the TSEB when using the C&N-R model and in situ PAR transmittance highlights the importance of improving radiative transfer models for shortwave canopy transmittance, especially in woody row crops.
{"title":"Evaluation of transpiration in different almond production systems with two-source energy balance models from UAV thermal and multispectral imagery","authors":"Manuel Quintanilla-Albornoz, Xavier Miarnau, Ana Pelechá, Jaume Casadesús, Omar García-Tejera, Joaquim Bellvert","doi":"10.1007/s00271-023-00888-1","DOIUrl":"https://doi.org/10.1007/s00271-023-00888-1","url":null,"abstract":"Abstract A growing number of intensive irrigated production systems of the almond crop have been established in recent years. However, there is little information regarding the crop water requirements. Remote sensing-based models such as the two-source energy balance (TSEB) have proven to be reliable ways to accurately estimate actual crop evapotranspiration. However, few efforts have been made to validate the transpiration with sap flow measurements in woody row crops with different production systems and water status. In this study, the TSEB Priestley-Taylor (TSEB-PT) and contextual approach (TSEB-2T) models were assessed to estimate canopy transpiration. In addition, the effect of applying a basic clumping index for heterogeneous randomly placed clumped canopies and a rectangular hedgerow clumping index on the TSEB transpiration estimation was assessed. The TSEB inputs were obtained from high resolution multispectral and thermal imagery using an unmanned aerial vehicle. The leaf area index (LAI), stem water potential (Ψ stem ) and fractional intercepted photosynthetically active radiation (fIPAR) were also measured. Significant differences were observed in transpiration between production systems and irrigation treatments. The combined use of the TSEB-2T with the C&N-R transmittance model gave the best transpiration estimations for all production systems and irrigation treatments. The use of in situ PAR transmittance in the TSEB-2T model significantly improved the root mean squared error. Thus, the better agreement observed with the TSEB when using the C&N-R model and in situ PAR transmittance highlights the importance of improving radiative transfer models for shortwave canopy transmittance, especially in woody row crops.","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135862954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1007/s00271-023-00892-5
Rossana Monica Ferrara, Maria Roberta Bruno, Pasquale Campi, Salvatore Camposeo, Gabriele De Carolis, Liliana Gaeta, Nicola Martinelli, Marcello Mastrorilli, Anna Francesca Modugno, Teresa Mongelli, Mariagrazia Piarulli, Sergio Ruggieri, Gianfranco Rana
{"title":"Water use of a super high-density olive orchard submitted to regulated deficit irrigation in Mediterranean environment over three contrasted years","authors":"Rossana Monica Ferrara, Maria Roberta Bruno, Pasquale Campi, Salvatore Camposeo, Gabriele De Carolis, Liliana Gaeta, Nicola Martinelli, Marcello Mastrorilli, Anna Francesca Modugno, Teresa Mongelli, Mariagrazia Piarulli, Sergio Ruggieri, Gianfranco Rana","doi":"10.1007/s00271-023-00892-5","DOIUrl":"https://doi.org/10.1007/s00271-023-00892-5","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135808577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1007/s00271-023-00887-2
Emre Tunca
{"title":"Evaluating the performance of the TSEB model for sorghum evapotranspiration estimation using time series UAV imagery","authors":"Emre Tunca","doi":"10.1007/s00271-023-00887-2","DOIUrl":"https://doi.org/10.1007/s00271-023-00887-2","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1007/s00271-023-00884-5
Peng Hou, Jaume Puig-Bargués, Lu Liu, Yang Xiao, Bo Zhou, Yunkai Li
{"title":"New anti-clogging perspective by discharging sediment from drip irrigation emitters with high-sediment loaded water","authors":"Peng Hou, Jaume Puig-Bargués, Lu Liu, Yang Xiao, Bo Zhou, Yunkai Li","doi":"10.1007/s00271-023-00884-5","DOIUrl":"https://doi.org/10.1007/s00271-023-00884-5","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1007/s00271-023-00886-3
Ramazan İlhan Aytekin, Sevgi Çalışkan
{"title":"Irrigation and potassium fertilization effects on plant growth, tuber yield, quality, and water use efficiency of potato","authors":"Ramazan İlhan Aytekin, Sevgi Çalışkan","doi":"10.1007/s00271-023-00886-3","DOIUrl":"https://doi.org/10.1007/s00271-023-00886-3","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1007/s00271-023-00885-4
Raana Koushki, Jason Warren, Mark James Krzmarzick
{"title":"Carbon footprint of agricultural groundwater pumping with energy demand and supply management analysis","authors":"Raana Koushki, Jason Warren, Mark James Krzmarzick","doi":"10.1007/s00271-023-00885-4","DOIUrl":"https://doi.org/10.1007/s00271-023-00885-4","url":null,"abstract":"","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135829985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1007/s00271-023-00883-6
Mahmoud S. Hashem, Wei Guo, Xue-Bin Qi, Ping Li, Ying-jun She, Jiaxin Cui, Tong Li
Abstract The growing population in the face of water scarcity inevitably necessitates the quest for alternative sources of irrigation water, which integrates them with irrigation strategies for improved agricultural productivity to meet the Sustainable Development Goals. A three-year field experiment was conducted in 2017, 2018, and 2019 to investigate the effect of water quality (reclaimed water (RW) and clean water (CW)), irrigation techniques (subsurface drip irrigation (SDI) and furrow irrigation (FUI)), irrigation methods (full irrigation (FI) and alternate partial root-zone irrigation (APRI) (70% ETc)), and their interactions on the fresh fruit yield (FY), irrigation water use efficiency (IWUE), and nitrogen use efficiency (NUE) of tomatoes. Further, electrical conductivity (EC), pH, and organic matter (OM) of soil were evaluated. The experiments were undertaken over three growing spring seasons in a greenhouse at the Chinese Academy of Agricultural Sciences in Henan Province, China. Throughout the three years of this study, the yield, the IWUE, and the NUE values of all treatments under RW were higher than those corresponding values under CW. The trend was the same under SDI as it was under FUI. Statistical analyses revealed that there was no significant effect ( P > 0.05) of water quality, irrigation technique, and irrigation methods on the soil EC, pH, and OM over the three years. In addition, the interaction between the different experimental factors over the three years of the study was not significant. In conclusion, the application of RW under SDI can result in saving CW and increasing productivity without any negative effect on the investigated soil properties. Furthermore, when RW-SDI is used in conjunction with APRI, it can result in increasing IWUE.
{"title":"Effect of using reclaimed water via furrow and subsurface drip systems under alternate partial root-zone irrigation mechanism on crops growth and soil properties","authors":"Mahmoud S. Hashem, Wei Guo, Xue-Bin Qi, Ping Li, Ying-jun She, Jiaxin Cui, Tong Li","doi":"10.1007/s00271-023-00883-6","DOIUrl":"https://doi.org/10.1007/s00271-023-00883-6","url":null,"abstract":"Abstract The growing population in the face of water scarcity inevitably necessitates the quest for alternative sources of irrigation water, which integrates them with irrigation strategies for improved agricultural productivity to meet the Sustainable Development Goals. A three-year field experiment was conducted in 2017, 2018, and 2019 to investigate the effect of water quality (reclaimed water (RW) and clean water (CW)), irrigation techniques (subsurface drip irrigation (SDI) and furrow irrigation (FUI)), irrigation methods (full irrigation (FI) and alternate partial root-zone irrigation (APRI) (70% ETc)), and their interactions on the fresh fruit yield (FY), irrigation water use efficiency (IWUE), and nitrogen use efficiency (NUE) of tomatoes. Further, electrical conductivity (EC), pH, and organic matter (OM) of soil were evaluated. The experiments were undertaken over three growing spring seasons in a greenhouse at the Chinese Academy of Agricultural Sciences in Henan Province, China. Throughout the three years of this study, the yield, the IWUE, and the NUE values of all treatments under RW were higher than those corresponding values under CW. The trend was the same under SDI as it was under FUI. Statistical analyses revealed that there was no significant effect ( P > 0.05) of water quality, irrigation technique, and irrigation methods on the soil EC, pH, and OM over the three years. In addition, the interaction between the different experimental factors over the three years of the study was not significant. In conclusion, the application of RW under SDI can result in saving CW and increasing productivity without any negative effect on the investigated soil properties. Furthermore, when RW-SDI is used in conjunction with APRI, it can result in increasing IWUE.","PeriodicalId":14650,"journal":{"name":"Irrigation Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}