首页 > 最新文献

2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)最新文献

英文 中文
Mining Mid-Level Features for Action Recognition Based on Effective Skeleton Representation 基于有效骨架表示的动作识别中级特征挖掘
Pichao Wang, W. Li, P. Ogunbona, Zhimin Gao, Hanling Zhang
Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D.
近年来,中级特征在计算机视觉中表现出了良好的性能。通过合并类级信息学习的中级特征可能比传统的低级局部特征更具判别性。本文提出了一种有效的Kinect骨架中层特征提取方法,用于三维人体动作识别。首先,计算由两个骨骼关节连接的肢体的方向,并将每个方向编码为表示关节空间关系的27种状态中的一种。其次,将肢体组合成零件,并将肢体状态映射为零件状态;最后,利用频繁模式挖掘在连续的几帧中挖掘出零件最频繁和最相关的状态(判别性、代表性和非冗余性)。这些部件被称为频繁局部部件或flp。flp允许我们构建强大的基于flp包的动作表示。这个新的表示在MSR DailyActivity3D和MSR ActionPairs3D上产生最先进的结果。
{"title":"Mining Mid-Level Features for Action Recognition Based on Effective Skeleton Representation","authors":"Pichao Wang, W. Li, P. Ogunbona, Zhimin Gao, Hanling Zhang","doi":"10.1109/DICTA.2014.7008115","DOIUrl":"https://doi.org/10.1109/DICTA.2014.7008115","url":null,"abstract":"Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"61 17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114369058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Multiple Instance Learning for Breast Cancer Magnetic Resonance Imaging 乳腺癌磁共振成像的多实例学习
F. A. Maken, Y. Gal, D. McClymont, A. Bradley
In this paper we evaluate the suitability of multiple instance learning (MIL) for the classification of T2 weighted magnetic resonance images (MRI) of the breast. Specifically, we compare the performance of citation-kNN against traditional kNN and a random forest (RF) classifier. We utilise both (generic) tile-based features and (domain specific) region-of-interest (ROI) based features We perform experiments on two datasets consisting of A) mass-like lesions and B) both mass-like and non-mass-like lesions. The performance of citation-kNN as both a diagnostic and screening tool is evaluated using the area under the receiver operating characteristics curve (AUC), estimated over 10-fold cross-validation. Results demonstrate that citation- kNN has equivalent performance to traditional kNN and RF. However, the tile-based approach used by citation-kNN does not require the domain specific ROI-based features typically used in breast MRI. This not only makes citation-kNN robust to inaccuracies in the delineation of suspicious lesions, but also makes it suitable for use as a screening tool, where the aim is to discriminate lesions from normal tissue.
在本文中,我们评估了多实例学习(MIL)在乳腺T2加权磁共振图像(MRI)分类中的适用性。具体来说,我们比较了引文kNN与传统kNN和随机森林(RF)分类器的性能。我们利用(通用的)基于瓷砖的特征和(特定领域的)基于感兴趣区域(ROI)的特征。我们在两个数据集上进行实验,这些数据集由A)肿块样病变和B)肿块样病变和非肿块样病变组成。引用- knn作为诊断和筛选工具的性能使用接受者工作特征曲线下的面积(AUC)进行评估,估计超过10倍交叉验证。结果表明,引用- kNN与传统的kNN和RF具有相当的性能。然而,引文- knn使用的基于tile的方法不需要乳房MRI中通常使用的基于特定领域roi的特征。这不仅使引文- knn对可疑病变描述的不准确性具有鲁棒性,而且使其适合用作筛查工具,其目的是区分病变与正常组织。
{"title":"Multiple Instance Learning for Breast Cancer Magnetic Resonance Imaging","authors":"F. A. Maken, Y. Gal, D. McClymont, A. Bradley","doi":"10.1109/DICTA.2014.7008118","DOIUrl":"https://doi.org/10.1109/DICTA.2014.7008118","url":null,"abstract":"In this paper we evaluate the suitability of multiple instance learning (MIL) for the classification of T2 weighted magnetic resonance images (MRI) of the breast. Specifically, we compare the performance of citation-kNN against traditional kNN and a random forest (RF) classifier. We utilise both (generic) tile-based features and (domain specific) region-of-interest (ROI) based features We perform experiments on two datasets consisting of A) mass-like lesions and B) both mass-like and non-mass-like lesions. The performance of citation-kNN as both a diagnostic and screening tool is evaluated using the area under the receiver operating characteristics curve (AUC), estimated over 10-fold cross-validation. Results demonstrate that citation- kNN has equivalent performance to traditional kNN and RF. However, the tile-based approach used by citation-kNN does not require the domain specific ROI-based features typically used in breast MRI. This not only makes citation-kNN robust to inaccuracies in the delineation of suspicious lesions, but also makes it suitable for use as a screening tool, where the aim is to discriminate lesions from normal tissue.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114968542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Detection of Anomalous Crowd Behaviour Using Hyperspherical Clustering 使用超球面聚类检测异常人群行为
A. S. Rao, J. Gubbi, S. Rajasegarar, S. Marusic, M. Palaniswami
Analysis of crowd behaviour in public places is an indispensable tool for video surveillance. Automated detection of anomalous crowd behaviour is a critical problem with the increase in human population. Anomalous events may include a person loitering about a place for unusual amounts of time; people running and causing panic; the size of a group of people growing over time etc. In this work, to detect anomalous events and objects, two types of feature coding has been proposed: spatial features and spatio-temporal features. Spatial features comprises of contrast, correlation, energy and homogeneity, which are derived from Gray Level Co-occurrence Matrix (GLCM). Spatio-temporal feature includes the time spent by an object at different locations in the scene. Hyperspherical clustering has been employed to detect the anomalies. Spatial features revealed the anomalous frames by using contrast and homogeneity measures. Loitering behaviour of the people were detected as anomalous objects using the spatio-temporal coding.
公共场所人群行为分析是视频监控不可或缺的工具。随着人口的增加,异常人群行为的自动检测是一个关键问题。异常事件可能包括一个人在一个地方闲逛不寻常的时间;人们四处奔跑,引起恐慌;一群人的规模随着时间的推移而增长等等。在这项工作中,为了检测异常事件和对象,提出了两种类型的特征编码:空间特征和时空特征。空间特征由灰度共生矩阵(GLCM)导出,包括对比度、相关性、能量和均匀性。时空特征包括物体在场景中不同位置所花费的时间。采用超球面聚类方法检测异常。空间特征通过对比和均匀性度量来揭示异常帧。利用时空编码将人的徘徊行为检测为异常对象。
{"title":"Detection of Anomalous Crowd Behaviour Using Hyperspherical Clustering","authors":"A. S. Rao, J. Gubbi, S. Rajasegarar, S. Marusic, M. Palaniswami","doi":"10.1109/DICTA.2014.7008100","DOIUrl":"https://doi.org/10.1109/DICTA.2014.7008100","url":null,"abstract":"Analysis of crowd behaviour in public places is an indispensable tool for video surveillance. Automated detection of anomalous crowd behaviour is a critical problem with the increase in human population. Anomalous events may include a person loitering about a place for unusual amounts of time; people running and causing panic; the size of a group of people growing over time etc. In this work, to detect anomalous events and objects, two types of feature coding has been proposed: spatial features and spatio-temporal features. Spatial features comprises of contrast, correlation, energy and homogeneity, which are derived from Gray Level Co-occurrence Matrix (GLCM). Spatio-temporal feature includes the time spent by an object at different locations in the scene. Hyperspherical clustering has been employed to detect the anomalies. Spatial features revealed the anomalous frames by using contrast and homogeneity measures. Loitering behaviour of the people were detected as anomalous objects using the spatio-temporal coding.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117156073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1