Jocelyn Carter, Natalia Swack, Eric Isselbacher, Karen Donelan, Anne N Thorndike
Background: Heart failure (HF) is one of the leading causes of hospital admissions. Clinical (eg, complex comorbidities and low ejection fraction) and social needs factors (eg, access to transportation, food security, and housing security) have both contributed to hospitalizations, emphasizing the importance of increased clinical and social needs support at home. Digital platforms designed for remote monitoring of HF can improve clinical outcomes, but their effectiveness has been limited by patient barriers such as lack of familiarity with technology and unmet social care needs. To address these barriers, this study explored combining a digital platform with community health worker (CHW) social needs care for patients with HF.
Objective: We aim to determine the feasibility and acceptability of an intervention combining digital platform use and CHW social needs care for patients with HF.
Methods: Adults (aged ≥18 years) with HF receiving care at a single health care institution and with a history of hospital admission in the previous 12 months were enrolled in a single-arm pilot study from July to November 2021 (N=14). The 30-day intervention used a digital platform within a mobile app that included symptom questionnaire and educational videos connected to a biometric sensor (tracking heart rate, oxygenation, and steps taken), a digital weight scale, and a digital blood pressure monitor. All patients were paired with a CHW who had access to the digital platform data. A CHW provided routine phone calls to patients throughout the study period to discuss their biometric data and to address barriers to any social needs. Feasibility outcomes were patient use of the platform and engagement with the CHW. The acceptability outcome was patient willingness to use the intervention again.
Results: Participants (N=14) were 67.7 (SD 11.7) years old; 8 (57.1%) were women, and 7 (50%) were insured by Medicare. Participants wore the sensor for 82.2% (n=24.66) of study days with an average of 13.5 (SD 2.1) hours per day. Participants used the digital blood pressure monitor and digital weight scale for an average of 1.2 (SD 0.17) times per day and 1.1 (SD 0.12) times per day, respectively. All participants completed the symptom questionnaire on at least 71% (n=21.3) of study days; 11 (78.6%) participants had ≥3 CHW interactions, and 11 (78.6%) indicated that if given the opportunity, they would use the platform again in the future. Exit interviews found that despite some platform "glitches," participants generally found the remote monitoring platform to be "helpful" and "motivating."
Conclusions: A novel intervention combining a digital platform with CHW social needs care for patients with HF was feasible and acceptable. The majority of participants were engaged throughout the study and indicated their willingness to use the intervention again. A future cl
{"title":"Feasibility and Acceptability of a Combined Digital Platform and Community Health Worker Intervention for Patients With Heart Failure: Single-Arm Pilot Study.","authors":"Jocelyn Carter, Natalia Swack, Eric Isselbacher, Karen Donelan, Anne N Thorndike","doi":"10.2196/47818","DOIUrl":"10.2196/47818","url":null,"abstract":"<p><strong>Background: </strong>Heart failure (HF) is one of the leading causes of hospital admissions. Clinical (eg, complex comorbidities and low ejection fraction) and social needs factors (eg, access to transportation, food security, and housing security) have both contributed to hospitalizations, emphasizing the importance of increased clinical and social needs support at home. Digital platforms designed for remote monitoring of HF can improve clinical outcomes, but their effectiveness has been limited by patient barriers such as lack of familiarity with technology and unmet social care needs. To address these barriers, this study explored combining a digital platform with community health worker (CHW) social needs care for patients with HF.</p><p><strong>Objective: </strong>We aim to determine the feasibility and acceptability of an intervention combining digital platform use and CHW social needs care for patients with HF.</p><p><strong>Methods: </strong>Adults (aged ≥18 years) with HF receiving care at a single health care institution and with a history of hospital admission in the previous 12 months were enrolled in a single-arm pilot study from July to November 2021 (N=14). The 30-day intervention used a digital platform within a mobile app that included symptom questionnaire and educational videos connected to a biometric sensor (tracking heart rate, oxygenation, and steps taken), a digital weight scale, and a digital blood pressure monitor. All patients were paired with a CHW who had access to the digital platform data. A CHW provided routine phone calls to patients throughout the study period to discuss their biometric data and to address barriers to any social needs. Feasibility outcomes were patient use of the platform and engagement with the CHW. The acceptability outcome was patient willingness to use the intervention again.</p><p><strong>Results: </strong>Participants (N=14) were 67.7 (SD 11.7) years old; 8 (57.1%) were women, and 7 (50%) were insured by Medicare. Participants wore the sensor for 82.2% (n=24.66) of study days with an average of 13.5 (SD 2.1) hours per day. Participants used the digital blood pressure monitor and digital weight scale for an average of 1.2 (SD 0.17) times per day and 1.1 (SD 0.12) times per day, respectively. All participants completed the symptom questionnaire on at least 71% (n=21.3) of study days; 11 (78.6%) participants had ≥3 CHW interactions, and 11 (78.6%) indicated that if given the opportunity, they would use the platform again in the future. Exit interviews found that despite some platform \"glitches,\" participants generally found the remote monitoring platform to be \"helpful\" and \"motivating.\"</p><p><strong>Conclusions: </strong>A novel intervention combining a digital platform with CHW social needs care for patients with HF was feasible and acceptable. The majority of participants were engaged throughout the study and indicated their willingness to use the intervention again. A future cl","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":" ","pages":"e47818"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10571694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Numerous antineoplastic drugs such as chemotherapeutics have cardiotoxic side effects and can lead to long QT syndrome (LQTS). When diagnosed and treated in time, the potentially fatal outcomes of LQTS can be prevented. Therefore, regular electrocardiogram (ECG) assessments are critical to ensure patient safety. However, these assessments are associated with patient discomfort and require timely support of the attending oncologist by a cardiologist.
Objective: This study aimed to examine whether this approach can be made more efficient and comfortable by a smartphone app (QTc Tracker), supporting single-lead ECG records on site and transferring to a tele-cardiologist for an immediate diagnosis.
Methods: To evaluate the QTc Tracker, it was implemented in 54 cancer centers in Germany. In total, 266 corrected QT interval (QTc) diagnoses of 122 patients were recorded. Moreover, a questionnaire on routine ECG workflow, turnaround time, and satisfaction (1=best, 6=worst) was answered by the centers before and after the implementation of the QTc Tracker.
Results: Compared to the routine ECG workflow, the QTc Tracker enabled a substantial turnaround time reduction of 98% (mean 2.67, 95% CI 1.72-2.67 h) and even further time efficiency in combination with a cardiologic on-call service (mean 12.10, 95% CI 5.67-18.67 min). Additionally, nurses and patients reported higher satisfaction when using the QTc Tracker. In particular, patients' satisfaction sharply improved from 2.59 (95% CI 2.41-2.88) for the routine ECG workflow to 1.25 (95% CI 0.99-1.51) for the QTc Tracker workflow.
Conclusions: These results reveal a significant improvement regarding reduced turnaround time and increased user satisfaction. Best patient care might be guaranteed as the exposure of patients with an uncontrolled risk of QTc prolongations can be avoided by using the fast and easy QTc Tracker. In particular, as regular side-effect monitoring, the QTc Tracker app promises more convenience for patients and their physicians. Finally, future studies are needed to empirically test the usability and validity of such mobile ECG assessment methods.
{"title":"Corrected QT Interval (QTc) Diagnostic App for the Oncological Routine: Development Study.","authors":"Kristina Klier, Yash J Patel, Timo Schinköthe, Nadia Harbeck, Annette Schmidt","doi":"10.2196/48096","DOIUrl":"10.2196/48096","url":null,"abstract":"<p><strong>Background: </strong>Numerous antineoplastic drugs such as chemotherapeutics have cardiotoxic side effects and can lead to long QT syndrome (LQTS). When diagnosed and treated in time, the potentially fatal outcomes of LQTS can be prevented. Therefore, regular electrocardiogram (ECG) assessments are critical to ensure patient safety. However, these assessments are associated with patient discomfort and require timely support of the attending oncologist by a cardiologist.</p><p><strong>Objective: </strong>This study aimed to examine whether this approach can be made more efficient and comfortable by a smartphone app (QTc Tracker), supporting single-lead ECG records on site and transferring to a tele-cardiologist for an immediate diagnosis.</p><p><strong>Methods: </strong>To evaluate the QTc Tracker, it was implemented in 54 cancer centers in Germany. In total, 266 corrected QT interval (QTc) diagnoses of 122 patients were recorded. Moreover, a questionnaire on routine ECG workflow, turnaround time, and satisfaction (1=best, 6=worst) was answered by the centers before and after the implementation of the QTc Tracker.</p><p><strong>Results: </strong>Compared to the routine ECG workflow, the QTc Tracker enabled a substantial turnaround time reduction of 98% (mean 2.67, 95% CI 1.72-2.67 h) and even further time efficiency in combination with a cardiologic on-call service (mean 12.10, 95% CI 5.67-18.67 min). Additionally, nurses and patients reported higher satisfaction when using the QTc Tracker. In particular, patients' satisfaction sharply improved from 2.59 (95% CI 2.41-2.88) for the routine ECG workflow to 1.25 (95% CI 0.99-1.51) for the QTc Tracker workflow.</p><p><strong>Conclusions: </strong>These results reveal a significant improvement regarding reduced turnaround time and increased user satisfaction. Best patient care might be guaranteed as the exposure of patients with an uncontrolled risk of QTc prolongations can be avoided by using the fast and easy QTc Tracker. In particular, as regular side-effect monitoring, the QTc Tracker app promises more convenience for patients and their physicians. Finally, future studies are needed to empirically test the usability and validity of such mobile ECG assessment methods.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT04055493; https://classic.clinicaltrials.gov/ct2/show/NCT04055493.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e48096"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10555273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The digital transformation of our health care system has experienced a clear shift in the last few years due to political, medical, and technical innovations and reorganization. In particular, the cardiovascular field has undergone a significant change, with new broad perspectives in terms of optimized treatment strategies for patients nowadays.
Objective: After a short historical introduction, this comprehensive literature review aimed to provide a detailed overview of the scientific evidence regarding digitalization in the diagnostics and therapy of cardiovascular diseases (CVDs).
Methods: We performed an extensive literature search of the PubMed database and included all related articles that were published as of March 2022. Of the 3021 studies identified, 1639 (54.25%) studies were selected for a structured analysis and presentation (original articles: n=1273, 77.67%; reviews or comments: n=366, 22.33%). In addition to studies on CVDs in general, 829 studies could be assigned to a specific CVD with a diagnostic and therapeutic approach. For data presentation, all 829 publications were grouped into 6 categories of CVDs.
Results: Evidence-based innovations in the cardiovascular field cover a wide medical spectrum, starting from the diagnosis of congenital heart diseases or arrhythmias and overoptimized workflows in the emergency care setting of acute myocardial infarction to telemedical care for patients having chronic diseases such as heart failure, coronary artery disease, or hypertension. The use of smartphones and wearables as well as the integration of artificial intelligence provides important tools for location-independent medical care and the prevention of adverse events.
Conclusions: Digital transformation has opened up multiple new perspectives in the cardiovascular field, with rapidly expanding scientific evidence. Beyond important improvements in terms of patient care, these innovations are also capable of reducing costs for our health care system. In the next few years, digital transformation will continue to revolutionize the field of cardiovascular medicine and broaden our medical and scientific horizons.
{"title":"Digital Transformation in the Diagnostics and Therapy of Cardiovascular Diseases: Comprehensive Literature Review.","authors":"Christopher Stremmel, Rüdiger Breitschwerdt","doi":"10.2196/44983","DOIUrl":"10.2196/44983","url":null,"abstract":"<p><strong>Background: </strong>The digital transformation of our health care system has experienced a clear shift in the last few years due to political, medical, and technical innovations and reorganization. In particular, the cardiovascular field has undergone a significant change, with new broad perspectives in terms of optimized treatment strategies for patients nowadays.</p><p><strong>Objective: </strong>After a short historical introduction, this comprehensive literature review aimed to provide a detailed overview of the scientific evidence regarding digitalization in the diagnostics and therapy of cardiovascular diseases (CVDs).</p><p><strong>Methods: </strong>We performed an extensive literature search of the PubMed database and included all related articles that were published as of March 2022. Of the 3021 studies identified, 1639 (54.25%) studies were selected for a structured analysis and presentation (original articles: n=1273, 77.67%; reviews or comments: n=366, 22.33%). In addition to studies on CVDs in general, 829 studies could be assigned to a specific CVD with a diagnostic and therapeutic approach. For data presentation, all 829 publications were grouped into 6 categories of CVDs.</p><p><strong>Results: </strong>Evidence-based innovations in the cardiovascular field cover a wide medical spectrum, starting from the diagnosis of congenital heart diseases or arrhythmias and overoptimized workflows in the emergency care setting of acute myocardial infarction to telemedical care for patients having chronic diseases such as heart failure, coronary artery disease, or hypertension. The use of smartphones and wearables as well as the integration of artificial intelligence provides important tools for location-independent medical care and the prevention of adverse events.</p><p><strong>Conclusions: </strong>Digital transformation has opened up multiple new perspectives in the cardiovascular field, with rapidly expanding scientific evidence. Beyond important improvements in terms of patient care, these innovations are also capable of reducing costs for our health care system. In the next few years, digital transformation will continue to revolutionize the field of cardiovascular medicine and broaden our medical and scientific horizons.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e44983"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10257977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justin Wu, Jenna Napoleone, Sarah Linke, Madison Noble, Michael Turken, Michael Rakotz, Kate Kirley, Jennie Folk Akers, Jessie Juusola, Carolyn Bradner Jasik
Background: Digital health programs that incorporate frequent blood pressure (BP) self-monitoring and support for behavior change offer a scalable solution for hypertension management.
Objective: We examined the impact of a digital hypertension self-management and lifestyle change support program on BP over 12 months.
Methods: Data were analyzed from a retrospective observational cohort of commercially insured members (n=1117) that started the Omada for Hypertension program between January 1, 2019, and September 30, 2021. Paired t tests and linear regression were used to measure the changes in systolic blood pressure (SBP) over 12 months overall and by SBP control status at baseline (≥130 mm Hg vs <130 mm Hg).
Results: Members were on average 50.9 years old, 50.8% (n=567) of them were female, 60.5% (n=675) of them were White, and 70.5% (n=788) of them had uncontrolled SBP at baseline (≥130 mm Hg). At 12 months, all members (including members with controlled and uncontrolled BP at baseline) and those with uncontrolled SBP at baseline experienced significant mean reductions in SBP (mean -4.8 mm Hg, 95% CI -5.6 to -4.0; -8.1 mm Hg, 95% CI -9.0 to -7.1, respectively; both P<.001). Members with uncontrolled SBP at baseline also had significant reductions in diastolic blood pressure (-4.7 mm Hg; 95% CI -5.3 to -4.1), weight (-6.5 lbs, 95% CI -7.7 to -5.3; 2.7% weight loss), and BMI (-1.1 kg/m2; 95% CI -1.3 to -0.9; all P<.001). Those with controlled SBP at baseline maintained within BP goal range. Additionally, 48% (418/860) of members with uncontrolled BP at baseline experienced enough change in BP to improve their BP category.
Conclusions: This study provides real-world evidence that a comprehensive digital health program involving hypertension education, at-home BP monitoring, and behavior change coaching support was effective for self-managing hypertension over 12 months.
背景:结合频繁血压自我监测和行为改变支持的数字健康计划为高血压管理提供了可扩展的解决方案。目的:我们研究了数字高血压自我管理和生活方式改变支持计划对血压的影响。方法:数据分析来自2019年1月1日至2021年9月30日期间开始参加Omada高血压项目的商业保险会员(n=1117)的回顾性观察队列。使用配对t检验和线性回归来测量12个月内收缩压(SBP)的总体变化以及基线时收缩压控制状态(≥130 mm Hg)与结果:参与者平均年龄为50.9岁,50.8% (n=567)为女性,60.5% (n=675)为白人,70.5% (n=788)基线时收缩压未控制(≥130 mm Hg)。在12个月时,所有成员(包括基线时血压控制和不控制的成员)和基线时收缩压不控制的成员的平均收缩压显著降低(平均-4.8 mm Hg, 95% CI -5.6至-4.0;-8.1 mm Hg, 95% CI分别为-9.0 ~ -7.1;P2;95% CI -1.3 ~ -0.9;结论:本研究提供了真实世界的证据,表明一项全面的数字健康计划,包括高血压教育、家庭血压监测和行为改变指导支持,对自我管理高血压有效超过12个月。
{"title":"Long-Term Results of a Digital Hypertension Self-Management Program: Retrospective Cohort Study.","authors":"Justin Wu, Jenna Napoleone, Sarah Linke, Madison Noble, Michael Turken, Michael Rakotz, Kate Kirley, Jennie Folk Akers, Jessie Juusola, Carolyn Bradner Jasik","doi":"10.2196/43489","DOIUrl":"https://doi.org/10.2196/43489","url":null,"abstract":"<p><strong>Background: </strong>Digital health programs that incorporate frequent blood pressure (BP) self-monitoring and support for behavior change offer a scalable solution for hypertension management.</p><p><strong>Objective: </strong>We examined the impact of a digital hypertension self-management and lifestyle change support program on BP over 12 months.</p><p><strong>Methods: </strong>Data were analyzed from a retrospective observational cohort of commercially insured members (n=1117) that started the Omada for Hypertension program between January 1, 2019, and September 30, 2021. Paired t tests and linear regression were used to measure the changes in systolic blood pressure (SBP) over 12 months overall and by SBP control status at baseline (≥130 mm Hg vs <130 mm Hg).</p><p><strong>Results: </strong>Members were on average 50.9 years old, 50.8% (n=567) of them were female, 60.5% (n=675) of them were White, and 70.5% (n=788) of them had uncontrolled SBP at baseline (≥130 mm Hg). At 12 months, all members (including members with controlled and uncontrolled BP at baseline) and those with uncontrolled SBP at baseline experienced significant mean reductions in SBP (mean -4.8 mm Hg, 95% CI -5.6 to -4.0; -8.1 mm Hg, 95% CI -9.0 to -7.1, respectively; both P<.001). Members with uncontrolled SBP at baseline also had significant reductions in diastolic blood pressure (-4.7 mm Hg; 95% CI -5.3 to -4.1), weight (-6.5 lbs, 95% CI -7.7 to -5.3; 2.7% weight loss), and BMI (-1.1 kg/m<sup>2</sup>; 95% CI -1.3 to -0.9; all P<.001). Those with controlled SBP at baseline maintained within BP goal range. Additionally, 48% (418/860) of members with uncontrolled BP at baseline experienced enough change in BP to improve their BP category.</p><p><strong>Conclusions: </strong>This study provides real-world evidence that a comprehensive digital health program involving hypertension education, at-home BP monitoring, and behavior change coaching support was effective for self-managing hypertension over 12 months.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e43489"},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10249664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avinash Pandey, Marie Michelle D'Souza, Amritanshu Shekhar Pandey, Hassan Mir
Background: In addition to aspirin, angiotensin-converting enzyme inhibitors, statins, and lifestyle modification interventions, novel pharmacological agents have been shown to reduce morbidity and mortality in atherosclerotic cardiovascular disease patients, including new antithrombotics, antihyperglycemics, and lipid-modulating therapies. Despite their benefits, the uptake of these guideline-directed therapies remains a challenge. There is a need to develop strategies to support knowledge translation for the uptake of secondary prevention therapies.
Objective: The goal of this study was to test the feasibility and usability of Stratification and Optimization in Patients With Cardiovascular Disease (STOP-CVD), a point-of-care application that was designed to facilitate knowledge translation by providing individualized risk stratification and optimization guidance.
Methods: Using the REACH (Reduction of Atherothrombosis for Continued Health) Registry trial and predictive modeling (which included 67,888 patients), we designed a free web-based secondary risk calculator. Based on demographic and comorbidity profiles, the application was used to predict an individual's 20-month risk of cardiovascular events and cardiovascular mortality and provides a comparison to an age-matched control with an optimized cardiovascular risk profile to illustrate the modifiable residual risk. Additionally, the application used the patient's risk profile to provide specific guidance for possible therapeutic interventions based on a novel algorithm. During an initial 3-month adoption phase, 1-time invitations were sent through email and telephone to 240 physicians that refer to a regional cardiovascular clinic. After 3 months, a survey of user experience was sent to all users. Following this, no further marketing of the application was performed. Google Analytics was collected postimplementation from January 2021 to December 2021. These were used to tabulate the total number of distinct users and the total number of monthly uses of the application.
Results: During the 1-year pilot, 47 of the 240 invited clinicians used the application 1573 times, an average of 131 times per month, with sustained usage over time. All 24 postimplementation survey respondents confirmed that the application was functional, easy to use, and useful.
Conclusions: This pilot suggests that the STOP-CVD application is feasible and usable, with high clinician satisfaction. This tool can be easily scaled to support the uptake of guideline-directed medical therapy, which could improve clinical outcomes. Future research will be focused on evaluating the impact of this tool on clinician management and patient outcomes.
{"title":"A Web-Based Application for Risk Stratification and Optimization in Patients With Cardiovascular Disease: Pilot Study.","authors":"Avinash Pandey, Marie Michelle D'Souza, Amritanshu Shekhar Pandey, Hassan Mir","doi":"10.2196/46533","DOIUrl":"https://doi.org/10.2196/46533","url":null,"abstract":"<p><strong>Background: </strong>In addition to aspirin, angiotensin-converting enzyme inhibitors, statins, and lifestyle modification interventions, novel pharmacological agents have been shown to reduce morbidity and mortality in atherosclerotic cardiovascular disease patients, including new antithrombotics, antihyperglycemics, and lipid-modulating therapies. Despite their benefits, the uptake of these guideline-directed therapies remains a challenge. There is a need to develop strategies to support knowledge translation for the uptake of secondary prevention therapies.</p><p><strong>Objective: </strong>The goal of this study was to test the feasibility and usability of Stratification and Optimization in Patients With Cardiovascular Disease (STOP-CVD), a point-of-care application that was designed to facilitate knowledge translation by providing individualized risk stratification and optimization guidance.</p><p><strong>Methods: </strong>Using the REACH (Reduction of Atherothrombosis for Continued Health) Registry trial and predictive modeling (which included 67,888 patients), we designed a free web-based secondary risk calculator. Based on demographic and comorbidity profiles, the application was used to predict an individual's 20-month risk of cardiovascular events and cardiovascular mortality and provides a comparison to an age-matched control with an optimized cardiovascular risk profile to illustrate the modifiable residual risk. Additionally, the application used the patient's risk profile to provide specific guidance for possible therapeutic interventions based on a novel algorithm. During an initial 3-month adoption phase, 1-time invitations were sent through email and telephone to 240 physicians that refer to a regional cardiovascular clinic. After 3 months, a survey of user experience was sent to all users. Following this, no further marketing of the application was performed. Google Analytics was collected postimplementation from January 2021 to December 2021. These were used to tabulate the total number of distinct users and the total number of monthly uses of the application.</p><p><strong>Results: </strong>During the 1-year pilot, 47 of the 240 invited clinicians used the application 1573 times, an average of 131 times per month, with sustained usage over time. All 24 postimplementation survey respondents confirmed that the application was functional, easy to use, and useful.</p><p><strong>Conclusions: </strong>This pilot suggests that the STOP-CVD application is feasible and usable, with high clinician satisfaction. This tool can be easily scaled to support the uptake of guideline-directed medical therapy, which could improve clinical outcomes. Future research will be focused on evaluating the impact of this tool on clinician management and patient outcomes.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e46533"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian Einhorn, Andrew R Murphy, Shari S Rogal, Brian Suffoletto, Taya Irizarry, Bruce L Rollman, Daniel E Forman, Matthew Muldoon
BACKGROUND Hypertension is a leading cause of cardiovascular and kidney disease in the United States, yet blood pressure (BP) control at a population level is poor and worsening. Systematic home BP monitoring (HBPM) programs can lower BP, but programs supporting HBPM are not routinely used. The MyBP program deploys automated bidirectional text messaging for HBPM and disease self-management support. OBJECTIVE We aim to produce a qualitative analysis of input from providers and staff regarding implementation of an innovative HBPM program in primary care practices. METHODS Semistructured interviews (average length 31 minutes) were conducted with physicians (n=11), nurses, and medical assistants (n=6) from primary care settings. The interview assessed multiple constructs in the Consolidated Framework for Implementation Research domains of intervention characteristics, outer setting, inner setting, and characteristics of individuals. Interviews were transcribed verbatim and analyzed using inductive coding to organize meaningful excerpts and identify salient themes, followed by mapping to the updated Consolidated Framework for Implementation Research constructs. RESULTS Health care providers reported that MyBP has good ease of use and was likely to engage patients in managing their high BP. They also felt that it would directly support systematic BP monitoring and habit formation in the convenience of the patient's home. This could increase health literacy and generate concrete feedback to raise the day-to-day salience of BP control. Providers expressed concern that the cost of BP devices remains an encumbrance. Some patients were felt to have overriding social or emotional barriers, or lack the needed technical skills to interact with the program, use good measurement technique, and input readings accurately. With respect to effects on their medical practice, providers felt MyBP would improve the accuracy and frequency of HBPM data, and thereby improve diagnosis and treatment management. The program may positively affect the patient-provider relationship by increasing rapport and bidirectional accountability. Providers appreciated receiving aggregated HBPM data to increase their own efficiency but also expressed concern about timely routing of incoming HBPM reports, lack of true integration with the electronic health record, and the need for a dedicated and trained staff member. CONCLUSIONS In this qualitative analysis, health care providers perceived strong relative advantages of using MyBP to support patients. The identified barriers suggest the need for corrective implementation strategies to support providers in adopting the program into routine primary care practice, such as integration into the workflow and provider education. TRIAL REGISTRATION ClinicalTrials.gov NCT03650166; https://tinyurl.com/bduwn6r4.
{"title":"Automated messaging program to facilitate systematic home blood pressure monitoring: A qualitative analysis of provider interviews (Preprint)","authors":"Julian Einhorn, Andrew R Murphy, Shari S Rogal, Brian Suffoletto, Taya Irizarry, Bruce L Rollman, Daniel E Forman, Matthew Muldoon","doi":"10.2196/51316","DOIUrl":"https://doi.org/10.2196/51316","url":null,"abstract":"BACKGROUND\u0000Hypertension is a leading cause of cardiovascular and kidney disease in the United States, yet blood pressure (BP) control at a population level is poor and worsening. Systematic home BP monitoring (HBPM) programs can lower BP, but programs supporting HBPM are not routinely used. The MyBP program deploys automated bidirectional text messaging for HBPM and disease self-management support.\u0000\u0000\u0000OBJECTIVE\u0000We aim to produce a qualitative analysis of input from providers and staff regarding implementation of an innovative HBPM program in primary care practices.\u0000\u0000\u0000METHODS\u0000Semistructured interviews (average length 31 minutes) were conducted with physicians (n=11), nurses, and medical assistants (n=6) from primary care settings. The interview assessed multiple constructs in the Consolidated Framework for Implementation Research domains of intervention characteristics, outer setting, inner setting, and characteristics of individuals. Interviews were transcribed verbatim and analyzed using inductive coding to organize meaningful excerpts and identify salient themes, followed by mapping to the updated Consolidated Framework for Implementation Research constructs.\u0000\u0000\u0000RESULTS\u0000Health care providers reported that MyBP has good ease of use and was likely to engage patients in managing their high BP. They also felt that it would directly support systematic BP monitoring and habit formation in the convenience of the patient's home. This could increase health literacy and generate concrete feedback to raise the day-to-day salience of BP control. Providers expressed concern that the cost of BP devices remains an encumbrance. Some patients were felt to have overriding social or emotional barriers, or lack the needed technical skills to interact with the program, use good measurement technique, and input readings accurately. With respect to effects on their medical practice, providers felt MyBP would improve the accuracy and frequency of HBPM data, and thereby improve diagnosis and treatment management. The program may positively affect the patient-provider relationship by increasing rapport and bidirectional accountability. Providers appreciated receiving aggregated HBPM data to increase their own efficiency but also expressed concern about timely routing of incoming HBPM reports, lack of true integration with the electronic health record, and the need for a dedicated and trained staff member.\u0000\u0000\u0000CONCLUSIONS\u0000In this qualitative analysis, health care providers perceived strong relative advantages of using MyBP to support patients. The identified barriers suggest the need for corrective implementation strategies to support providers in adopting the program into routine primary care practice, such as integration into the workflow and provider education.\u0000\u0000\u0000TRIAL REGISTRATION\u0000ClinicalTrials.gov NCT03650166; https://tinyurl.com/bduwn6r4.","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136382711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sermkiat Lolak, John Attia, Gareth J McKay, Ammarin Thakkinstian
Background: Stroke has multiple modifiable and nonmodifiable risk factors and represents a leading cause of death globally. Understanding the complex interplay of stroke risk factors is thus not only a scientific necessity but a critical step toward improving global health outcomes.
Objective: We aim to assess the performance of explainable machine learning models in predicting stroke risk factors using real-world cohort data by comparing explainable machine learning models with conventional statistical methods.
Methods: This retrospective cohort included high-risk patients from Ramathibodi Hospital in Thailand between January 2010 and December 2020. We compared the performance and explainability of logistic regression (LR), Cox proportional hazard, Bayesian network (BN), tree-augmented Naïve Bayes (TAN), extreme gradient boosting (XGBoost), and explainable boosting machine (EBM) models. We used multiple imputation by chained equations for missing data and discretized continuous variables as needed. Models were evaluated using C-statistics and F1-scores.
Results: Out of 275,247 high-risk patients, 9659 (3.5%) experienced a stroke. XGBoost demonstrated the highest performance with a C-statistic of 0.89 and an F1-score of 0.80 followed by EBM and TAN with C-statistics of 0.87 and 0.83, respectively; LR and BN had similar C-statistics of 0.80. Significant factors associated with stroke included atrial fibrillation (AF), hypertension (HT), antiplatelets, HDL, and age. AF, HT, and antihypertensive medication were common significant factors across most models, with AF being the strongest factor in LR, XGBoost, BN, and TAN models.
Conclusions: Our study developed stroke prediction models to identify crucial predictive factors such as AF, HT, or systolic blood pressure or antihypertensive medication, anticoagulant medication, HDL, age, and statin use in high-risk patients. The explainable XGBoost was the best model in predicting stroke risk, followed by EBM.
{"title":"Comparing Explainable Machine Learning Approaches With Traditional Statistical Methods for Evaluating Stroke Risk Models: Retrospective Cohort Study.","authors":"Sermkiat Lolak, John Attia, Gareth J McKay, Ammarin Thakkinstian","doi":"10.2196/47736","DOIUrl":"https://doi.org/10.2196/47736","url":null,"abstract":"<p><strong>Background: </strong>Stroke has multiple modifiable and nonmodifiable risk factors and represents a leading cause of death globally. Understanding the complex interplay of stroke risk factors is thus not only a scientific necessity but a critical step toward improving global health outcomes.</p><p><strong>Objective: </strong>We aim to assess the performance of explainable machine learning models in predicting stroke risk factors using real-world cohort data by comparing explainable machine learning models with conventional statistical methods.</p><p><strong>Methods: </strong>This retrospective cohort included high-risk patients from Ramathibodi Hospital in Thailand between January 2010 and December 2020. We compared the performance and explainability of logistic regression (LR), Cox proportional hazard, Bayesian network (BN), tree-augmented Naïve Bayes (TAN), extreme gradient boosting (XGBoost), and explainable boosting machine (EBM) models. We used multiple imputation by chained equations for missing data and discretized continuous variables as needed. Models were evaluated using C-statistics and F<sub>1</sub>-scores.</p><p><strong>Results: </strong>Out of 275,247 high-risk patients, 9659 (3.5%) experienced a stroke. XGBoost demonstrated the highest performance with a C-statistic of 0.89 and an F<sub>1</sub>-score of 0.80 followed by EBM and TAN with C-statistics of 0.87 and 0.83, respectively; LR and BN had similar C-statistics of 0.80. Significant factors associated with stroke included atrial fibrillation (AF), hypertension (HT), antiplatelets, HDL, and age. AF, HT, and antihypertensive medication were common significant factors across most models, with AF being the strongest factor in LR, XGBoost, BN, and TAN models.</p><p><strong>Conclusions: </strong>Our study developed stroke prediction models to identify crucial predictive factors such as AF, HT, or systolic blood pressure or antihypertensive medication, anticoagulant medication, HDL, age, and statin use in high-risk patients. The explainable XGBoost was the best model in predicting stroke risk, followed by EBM.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e47736"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10330154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: High blood pressure (BP) and physical inactivity are the major risk factors for cardiovascular diseases. Mobile health is expected to support patients' self-management for improving cardiovascular health; the development of fully automated systems is necessary to minimize the workloads of health care providers.
Objective: The objective of our study was to evaluate the preliminary efficacy, feasibility, and perceived usefulness of an intervention using a novel smartphone-based self-management system (DialBetes Step) in increasing steps per day among workers with high BP.
Methods: On the basis of the Social Cognitive Theory, we developed personalized goal-setting and feedback functions and information delivery functions for increasing step count. Personalized goal setting and feedback consist of 4 components to support users' self-regulation and enhance their self-efficacy: goal setting for daily steps, positive feedback, action planning, and barrier identification and problem-solving. In the goal-setting component, users set their own step goals weekly in gradual increments based on the system's suggestion. We added these fully automated functions to an extant system with the function of self-monitoring daily step count, BP, body weight, blood glucose, exercise, and diet. We conducted a single-arm before-and-after study of workers with high BP who were willing to increase their physical activity. After an educational group session, participants used only the self-monitoring function for 2 weeks (baseline) and all functions of DialBetes Step for 24 weeks. We evaluated changes in steps per day, self-reported frequencies of self-regulation and self-management behavior, self-efficacy, and biomedical characteristics (home BP, BMI, visceral fat area, and glucose and lipid parameters) around week 6 (P1) of using the new functions and at the end of the intervention (P2). Participants rated the usefulness of the system using a paper-based questionnaire.
Results: We analyzed 30 participants (n=19, 63% male; mean age 52.9, SD 5.3 years); 1 (3%) participant dropped out of the intervention. The median percentage of step measurement was 97%. Compared with baseline (median 10,084 steps per day), steps per day significantly increased at P1 (median +1493 steps per day; P<.001), but the increase attenuated at P2 (median +1056 steps per day; P=.04). Frequencies of self-regulation and self-management behavior increased at P1 and P2. Goal-related self-efficacy tended to increase at P2 (median +5%; P=.05). Home BP substantially decreased only at P2. Of the other biomedical characteristics, BMI decreased significantly at P1 (P<.001) and P2 (P=.001), and high-density lipoprotein cholesterol increased significantly only at P1 (P<.001). DialBetes Step was rated as useful or moderately useful by 97% (28/29) of the participants.
{"title":"Preliminary Efficacy, Feasibility, and Perceived Usefulness of a Smartphone-Based Self-Management System With Personalized Goal Setting and Feedback to Increase Step Count Among Workers With High Blood Pressure: Before-and-After Study.","authors":"Tomomi Shibuta, Kayo Waki, Kana Miyake, Ayumi Igarashi, Noriko Yamamoto-Mitani, Akiko Sankoda, Yoshinori Takeuchi, Masahiko Sumitani, Toshimasa Yamauchi, Masaomi Nangaku, Kazuhiko Ohe","doi":"10.2196/43940","DOIUrl":"https://doi.org/10.2196/43940","url":null,"abstract":"<p><strong>Background: </strong>High blood pressure (BP) and physical inactivity are the major risk factors for cardiovascular diseases. Mobile health is expected to support patients' self-management for improving cardiovascular health; the development of fully automated systems is necessary to minimize the workloads of health care providers.</p><p><strong>Objective: </strong>The objective of our study was to evaluate the preliminary efficacy, feasibility, and perceived usefulness of an intervention using a novel smartphone-based self-management system (DialBetes Step) in increasing steps per day among workers with high BP.</p><p><strong>Methods: </strong>On the basis of the Social Cognitive Theory, we developed personalized goal-setting and feedback functions and information delivery functions for increasing step count. Personalized goal setting and feedback consist of 4 components to support users' self-regulation and enhance their self-efficacy: goal setting for daily steps, positive feedback, action planning, and barrier identification and problem-solving. In the goal-setting component, users set their own step goals weekly in gradual increments based on the system's suggestion. We added these fully automated functions to an extant system with the function of self-monitoring daily step count, BP, body weight, blood glucose, exercise, and diet. We conducted a single-arm before-and-after study of workers with high BP who were willing to increase their physical activity. After an educational group session, participants used only the self-monitoring function for 2 weeks (baseline) and all functions of DialBetes Step for 24 weeks. We evaluated changes in steps per day, self-reported frequencies of self-regulation and self-management behavior, self-efficacy, and biomedical characteristics (home BP, BMI, visceral fat area, and glucose and lipid parameters) around week 6 (P1) of using the new functions and at the end of the intervention (P2). Participants rated the usefulness of the system using a paper-based questionnaire.</p><p><strong>Results: </strong>We analyzed 30 participants (n=19, 63% male; mean age 52.9, SD 5.3 years); 1 (3%) participant dropped out of the intervention. The median percentage of step measurement was 97%. Compared with baseline (median 10,084 steps per day), steps per day significantly increased at P1 (median +1493 steps per day; P<.001), but the increase attenuated at P2 (median +1056 steps per day; P=.04). Frequencies of self-regulation and self-management behavior increased at P1 and P2. Goal-related self-efficacy tended to increase at P2 (median +5%; P=.05). Home BP substantially decreased only at P2. Of the other biomedical characteristics, BMI decreased significantly at P1 (P<.001) and P2 (P=.001), and high-density lipoprotein cholesterol increased significantly only at P1 (P<.001). DialBetes Step was rated as useful or moderately useful by 97% (28/29) of the participants.</p><p><strong>Conclusions: </strong>DialBetes S","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e43940"},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9998535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Many current studies have claimed that the actual risk of heart disease among women is equal to that in men. Using a large machine learning algorithm (MLA) data set to predict mortality in women, data mining techniques have been used to identify significant aspects of variables that help in identifying the primary causes of mortality within this target category of the population.
Objective: This study aims to predict mortality caused by heart disease among women, using an artificial intelligence technique-based MLA.
Methods: A retrospective design was used to retrieve big data from the electronic health records of 2028 women with heart disease. Data were collected for Jordanian women who were admitted to public health hospitals from 2015 to the end of 2021. We checked the extracted data for noise, consistency issues, and missing values. After categorizing, organizing, and cleaning the extracted data, the redundant data were eliminated.
Results: Out of 9 artificial intelligence models, the Chi-squared Automatic Interaction Detection model had the highest accuracy (93.25%) and area under the curve (0.825) among the build models. The participants were 62.6 (SD 15.4) years old on average. Angina pectoris was the most frequent diagnosis in the women's extracted files (n=1,264,000, 62.3%), followed by congestive heart failure (n=764,000, 37.7%). Age, systolic blood pressure readings with a cutoff value of >187 mm Hg, medical diagnosis (women diagnosed with congestive heart failure were at a higher risk of death [n=31, 16.58%]), pulse pressure with a cutoff value of 98 mm Hg, and oxygen saturation (measured using pulse oximetry) with a cutoff value of 93% were the main predictors for death among women.
Conclusions: To predict the outcomes in this study, we used big data that were extracted from the clinical variables from the electronic health records. The Chi-squared Automatic Interaction Detection model-an MLA-confirmed the precise identification of the key predictors of cardiovascular mortality among women and can be used as a practical tool for clinical prediction.
背景:目前许多研究都声称,女性患心脏病的实际风险与男性相同。使用大型机器学习算法(MLA)数据集预测妇女死亡率,数据挖掘技术已被用于确定变量的重要方面,这些变量有助于确定这一目标人群中死亡的主要原因。目的:本研究旨在利用基于人工智能技术的MLA预测女性心脏病死亡率。方法:采用回顾性设计,从2028例心脏病女性的电子健康记录中检索大数据。收集了2015年至2021年底在公共卫生医院住院的约旦妇女的数据。我们检查了提取的数据是否存在噪声、一致性问题和缺失值。对提取的数据进行分类、组织和清理后,消除了冗余数据。结果:在9个人工智能模型中,卡方自动交互检测模型在构建模型中准确率最高(93.25%),曲线下面积最高(0.825)。参与者的平均年龄为62.6岁(SD 15.4)。心绞痛是最常见的诊断(n= 126.4万,62.3%),其次是充血性心力衰竭(n= 76.4万,37.7%)。年龄、收缩压(临界值> 187mmhg)、医学诊断(诊断为充血性心力衰竭的女性死亡风险更高[n=31, 16.58%])、脉压(临界值为98 mm Hg)和血氧饱和度(使用脉搏血氧仪测量)(临界值为93%)是女性死亡的主要预测因素。结论:为了预测本研究的结果,我们使用了从电子健康记录中提取的临床变量的大数据。卡方自动交互检测模型-一种mla -确认了女性心血管死亡率关键预测因子的精确识别,并可作为临床预测的实用工具。
{"title":"Effective Prediction of Mortality by Heart Disease Among Women in Jordan Using the Chi-Squared Automatic Interaction Detection Model: Retrospective Validation Study.","authors":"Salam Bani Hani, Muayyad Ahmad","doi":"10.2196/48795","DOIUrl":"https://doi.org/10.2196/48795","url":null,"abstract":"<p><strong>Background: </strong>Many current studies have claimed that the actual risk of heart disease among women is equal to that in men. Using a large machine learning algorithm (MLA) data set to predict mortality in women, data mining techniques have been used to identify significant aspects of variables that help in identifying the primary causes of mortality within this target category of the population.</p><p><strong>Objective: </strong>This study aims to predict mortality caused by heart disease among women, using an artificial intelligence technique-based MLA.</p><p><strong>Methods: </strong>A retrospective design was used to retrieve big data from the electronic health records of 2028 women with heart disease. Data were collected for Jordanian women who were admitted to public health hospitals from 2015 to the end of 2021. We checked the extracted data for noise, consistency issues, and missing values. After categorizing, organizing, and cleaning the extracted data, the redundant data were eliminated.</p><p><strong>Results: </strong>Out of 9 artificial intelligence models, the Chi-squared Automatic Interaction Detection model had the highest accuracy (93.25%) and area under the curve (0.825) among the build models. The participants were 62.6 (SD 15.4) years old on average. Angina pectoris was the most frequent diagnosis in the women's extracted files (n=1,264,000, 62.3%), followed by congestive heart failure (n=764,000, 37.7%). Age, systolic blood pressure readings with a cutoff value of >187 mm Hg, medical diagnosis (women diagnosed with congestive heart failure were at a higher risk of death [n=31, 16.58%]), pulse pressure with a cutoff value of 98 mm Hg, and oxygen saturation (measured using pulse oximetry) with a cutoff value of 93% were the main predictors for death among women.</p><p><strong>Conclusions: </strong>To predict the outcomes in this study, we used big data that were extracted from the clinical variables from the electronic health records. The Chi-squared Automatic Interaction Detection model-an MLA-confirmed the precise identification of the key predictors of cardiovascular mortality among women and can be used as a practical tool for clinical prediction.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e48795"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9998534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandra Zepeda-Echavarria, Rutger R van de Leur, Meike van Sleuwen, Rutger J Hassink, Thierry X Wildbergh, Pieter A Doevendans, Joris Jaspers, René van Es
Background: Electrocardiograms (ECGs) are used by physicians to record, monitor, and diagnose the electrical activity of the heart. Recent technological advances have allowed ECG devices to move out of the clinic and into the home environment. There is a great variety of mobile ECG devices with the capabilities to be used in home environments.
Objective: This scoping review aimed to provide a comprehensive overview of the current landscape of mobile ECG devices, including the technology used, intended clinical use, and available clinical evidence.
Methods: We conducted a scoping review to identify studies concerning mobile ECG devices in the electronic database PubMed. Secondarily, an internet search was performed to identify other ECG devices available in the market. We summarized the devices' technical information and usability characteristics based on manufacturer data such as datasheets and user manuals. For each device, we searched for clinical evidence on the capabilities to record heart disorders by performing individual searches in PubMed and ClinicalTrials.gov, as well as the Food and Drug Administration (FDA) 510(k) Premarket Notification and De Novo databases.
Results: From the PubMed database and internet search, we identified 58 ECG devices with available manufacturer information. Technical characteristics such as shape, number of electrodes, and signal processing influence the capabilities of the devices to record cardiac disorders. Of the 58 devices, only 26 (45%) had clinical evidence available regarding their ability to detect heart disorders such as rhythm disorders, more specifically atrial fibrillation.
Conclusions: ECG devices available in the market are mainly intended to be used for the detection of arrhythmias. No devices are intended to be used for the detection of other cardiac disorders. Technical and design characteristics influence the intended use of the devices and use environments. For mobile ECG devices to be intended to detect other cardiac disorders, challenges regarding signal processing and sensor characteristics should be solved to increase their detection capabilities. Devices recently released include the use of other sensors on ECG devices to increase their detection capabilities.
{"title":"Electrocardiogram Devices for Home Use: Technological and Clinical Scoping Review.","authors":"Alejandra Zepeda-Echavarria, Rutger R van de Leur, Meike van Sleuwen, Rutger J Hassink, Thierry X Wildbergh, Pieter A Doevendans, Joris Jaspers, René van Es","doi":"10.2196/44003","DOIUrl":"10.2196/44003","url":null,"abstract":"<p><strong>Background: </strong>Electrocardiograms (ECGs) are used by physicians to record, monitor, and diagnose the electrical activity of the heart. Recent technological advances have allowed ECG devices to move out of the clinic and into the home environment. There is a great variety of mobile ECG devices with the capabilities to be used in home environments.</p><p><strong>Objective: </strong>This scoping review aimed to provide a comprehensive overview of the current landscape of mobile ECG devices, including the technology used, intended clinical use, and available clinical evidence.</p><p><strong>Methods: </strong>We conducted a scoping review to identify studies concerning mobile ECG devices in the electronic database PubMed. Secondarily, an internet search was performed to identify other ECG devices available in the market. We summarized the devices' technical information and usability characteristics based on manufacturer data such as datasheets and user manuals. For each device, we searched for clinical evidence on the capabilities to record heart disorders by performing individual searches in PubMed and ClinicalTrials.gov, as well as the Food and Drug Administration (FDA) 510(k) Premarket Notification and De Novo databases.</p><p><strong>Results: </strong>From the PubMed database and internet search, we identified 58 ECG devices with available manufacturer information. Technical characteristics such as shape, number of electrodes, and signal processing influence the capabilities of the devices to record cardiac disorders. Of the 58 devices, only 26 (45%) had clinical evidence available regarding their ability to detect heart disorders such as rhythm disorders, more specifically atrial fibrillation.</p><p><strong>Conclusions: </strong>ECG devices available in the market are mainly intended to be used for the detection of arrhythmias. No devices are intended to be used for the detection of other cardiac disorders. Technical and design characteristics influence the intended use of the devices and use environments. For mobile ECG devices to be intended to detect other cardiac disorders, challenges regarding signal processing and sensor characteristics should be solved to increase their detection capabilities. Devices recently released include the use of other sensors on ECG devices to increase their detection capabilities.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"7 ","pages":"e44003"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9857189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}