Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin belong to a novel family of actin ADP-ribosylating toxins. ADP-ribosylation of actin inhibits actin polymerization and G-actin-associated ATPase activity. The ADP-form of actin is ADP-ribosylated at a higher rate than actin with bound ATP. ADP-ribosylation of actin is reversible, a reaction, which is accompanied by reconstitution of actin ATPase activity.
{"title":"Characterization of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin.","authors":"K Aktories, U Geipel, M Wille, I Just","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin belong to a novel family of actin ADP-ribosylating toxins. ADP-ribosylation of actin inhibits actin polymerization and G-actin-associated ATPase activity. The ADP-form of actin is ADP-ribosylated at a higher rate than actin with bound ATP. ADP-ribosylation of actin is reversible, a reaction, which is accompanied by reconstitution of actin ATPase activity.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 4","pages":"262-6"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13235460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
1. The assembly of microtubules is essential for the maintenance of both the extension and the radial symmetry of axons and dendrites. Microtubule-associated proteins (MAPs) are implicated in this function because they promote tubulin polymerization and because they appear to be involved in cross-linking microtubules in the neuritic cytoplasm. 2. In a variety of species high molecular weight MAP2 is found only in dendrites and MAP tau is found only is axons, indicating that certain MAPs are associated with specific aspects of neuronal morphology. 3. All neuronal MAPs that have been studied are under strong developmental regulation with either their form or abundance changing between developing and adult brain. In both rat and Xenopus the change from "early" to "late" MAP forms occurs concurrently with the cessation of axon and dendrite growth and the maturation of neuronal morphology. 4. In situations where neuronal growth persists in the adult, such as retinal photoreceptor cells and the olfactory system, "early" MAPs continue to be expressed in the adult brain. 5. These results implicate MAPs in neuronal morphogenesis and suggest that "early" MAPs are involved in axon and dendrite growth whereas the "late" MAPs are involved in the stabilization of their mature form.
{"title":"Microtubule-associated proteins and the determination of neuronal form.","authors":"A Matus","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. The assembly of microtubules is essential for the maintenance of both the extension and the radial symmetry of axons and dendrites. Microtubule-associated proteins (MAPs) are implicated in this function because they promote tubulin polymerization and because they appear to be involved in cross-linking microtubules in the neuritic cytoplasm. 2. In a variety of species high molecular weight MAP2 is found only in dendrites and MAP tau is found only is axons, indicating that certain MAPs are associated with specific aspects of neuronal morphology. 3. All neuronal MAPs that have been studied are under strong developmental regulation with either their form or abundance changing between developing and adult brain. In both rat and Xenopus the change from \"early\" to \"late\" MAP forms occurs concurrently with the cessation of axon and dendrite growth and the maturation of neuronal morphology. 4. In situations where neuronal growth persists in the adult, such as retinal photoreceptor cells and the olfactory system, \"early\" MAPs continue to be expressed in the adult brain. 5. These results implicate MAPs in neuronal morphogenesis and suggest that \"early\" MAPs are involved in axon and dendrite growth whereas the \"late\" MAPs are involved in the stabilization of their mature form.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"134-7"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13345482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Pinçon-Raymond, L García, G Romey, L Houenou, M Lazdunski, F Rieger
Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the "junctional feet". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no "junctional feet" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.
{"title":"A genetic model for the study of abnormal nerve-muscle interactions at the level of excitation-contraction coupling: the mutation muscular dysgenesis.","authors":"M Pinçon-Raymond, L García, G Romey, L Houenou, M Lazdunski, F Rieger","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the \"junctional feet\". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no \"junctional feet\" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"82-7"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13346123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
1. Neuromuscular synapse formation was studied using nerve and muscle cells dissociated from Xenopus embryos and kept in culture for 1 to 3 days. Within a few minutes of manipulated contact with isolated cholinergic neurons, miniature endplate potential-like depolarizations (MEPPs) due to spontaneous release of acetylcholine (ACh) from the neurons were detected in the muscle cells. 2. Addition of an antibody to a frog neural cell adhesion molecule (anti-NCAM) into the culture medium of nerve-muscle co-cultured for 1-3 days decreased the percentage of functional nerve-muscle contacts. 3. Acute exposure to anti-NCAM (1 hour) inhibited significantly muscle cell contact-triggered ACh release from initially identified cholinergic neurons. 4. Lysed muscle cells manipulated into contact with neurons induced ACh release, whereas lysed neurons did not, suggesting the presence of specific molecules on the muscle cell membrane capable of triggering ACh release from the cholinergic neuron. 5. Transient appearance of electrical coupling was detected between neuronal soma and muscle cell, suggesting the possibility of exchange of modulators for the formation and maintenance of neuromuscular synapses. 6. Neuromuscular synaptogenesis constitutes a complex process where at least two different types of direct cell-cell interaction seem to occur: a) cell surface molecule contact (and binding) for cell recognition and triggering of ACh release, and b) transient intercytoplasmic communication between the cells for possible passage of modulatory molecules.
{"title":"Cell-cell interaction during synaptogenesis.","authors":"I Chow","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. Neuromuscular synapse formation was studied using nerve and muscle cells dissociated from Xenopus embryos and kept in culture for 1 to 3 days. Within a few minutes of manipulated contact with isolated cholinergic neurons, miniature endplate potential-like depolarizations (MEPPs) due to spontaneous release of acetylcholine (ACh) from the neurons were detected in the muscle cells. 2. Addition of an antibody to a frog neural cell adhesion molecule (anti-NCAM) into the culture medium of nerve-muscle co-cultured for 1-3 days decreased the percentage of functional nerve-muscle contacts. 3. Acute exposure to anti-NCAM (1 hour) inhibited significantly muscle cell contact-triggered ACh release from initially identified cholinergic neurons. 4. Lysed muscle cells manipulated into contact with neurons induced ACh release, whereas lysed neurons did not, suggesting the presence of specific molecules on the muscle cell membrane capable of triggering ACh release from the cholinergic neuron. 5. Transient appearance of electrical coupling was detected between neuronal soma and muscle cell, suggesting the possibility of exchange of modulators for the formation and maintenance of neuromuscular synapses. 6. Neuromuscular synaptogenesis constitutes a complex process where at least two different types of direct cell-cell interaction seem to occur: a) cell surface molecule contact (and binding) for cell recognition and triggering of ACh release, and b) transient intercytoplasmic communication between the cells for possible passage of modulatory molecules.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"121-7"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13345481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Boisseau, O Semonin, L Leconte, Y Larmet, C Poujeol, M Simonneau
The molecular mechanisms involved in the formation of mammalian peripheral nervous system remain largely unknown. Here we describe the new possibilities offered by mouse mutant analysis, new mouse in vitro models and the recent development of molecular genetic techniques which may permit analysis of the peripheral nervous system development at a level that was heretofore restricted to lower vertebrates.
{"title":"Advantages of mouse models to study early steps of peripheral nervous system development.","authors":"S Boisseau, O Semonin, L Leconte, Y Larmet, C Poujeol, M Simonneau","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The molecular mechanisms involved in the formation of mammalian peripheral nervous system remain largely unknown. Here we describe the new possibilities offered by mouse mutant analysis, new mouse in vitro models and the recent development of molecular genetic techniques which may permit analysis of the peripheral nervous system development at a level that was heretofore restricted to lower vertebrates.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"95-9"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13346125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B Poulain, S Mochida, J D Wadsworth, U Weller, E Habermann, J O Dolly, L Tauc
1. The effects on the release of transmitter by botulinum neurotoxins (BoNT; types A, B, E), tetanus toxin (TeTx), constituent chains or fragments were studied on identified cholinergic and non-cholinergic synapses in Aplysia. 2. Cholinergic synapses in the buccal ganglion were found to be greater than 100 fold more sensitive to extracellular application of BoNT than to TeTx whereas in non-cholinergic synapses of the cerebral ganglion the potencies of the toxins were reversed. When intracellularly applied TeTx and BoNT were found nearly equipotent. This disparity in the susceptibilities of BoNT and TeTx to inhibit transmission was attributed to differences in the toxin's acceptors or uptake systems in the two neurone types. 3. Micro-injection into cholinergic neurones of the isolated renatured toxins' chains showed that both light and heavy chains of BoNT are intracellularly required whereas the light chain of TeTx alone is sufficient. 4. The heavy chain of BoNT as well as that of TeTx were found to mediate internalization of active moieties via its amino-terminal half. Furthermore the heavy chain of one toxin could internalize the light chain of the other.
{"title":"Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aplysia synapses: role of the constituent chains.","authors":"B Poulain, S Mochida, J D Wadsworth, U Weller, E Habermann, J O Dolly, L Tauc","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. The effects on the release of transmitter by botulinum neurotoxins (BoNT; types A, B, E), tetanus toxin (TeTx), constituent chains or fragments were studied on identified cholinergic and non-cholinergic synapses in Aplysia. 2. Cholinergic synapses in the buccal ganglion were found to be greater than 100 fold more sensitive to extracellular application of BoNT than to TeTx whereas in non-cholinergic synapses of the cerebral ganglion the potencies of the toxins were reversed. When intracellularly applied TeTx and BoNT were found nearly equipotent. This disparity in the susceptibilities of BoNT and TeTx to inhibit transmission was attributed to differences in the toxin's acceptors or uptake systems in the two neurone types. 3. Micro-injection into cholinergic neurones of the isolated renatured toxins' chains showed that both light and heavy chains of BoNT are intracellularly required whereas the light chain of TeTx alone is sufficient. 4. The heavy chain of BoNT as well as that of TeTx were found to mediate internalization of active moieties via its amino-terminal half. Furthermore the heavy chain of one toxin could internalize the light chain of the other.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 4","pages":"247-61"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13139764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D S Hartman, M M Poo, W N Green, A F Ross, T Claudio
1. Mouse fibroblast cell lines were established that stably express Torpedo californica acetylcholine receptors (AChR) on their cell surface in quantities sufficient for biochemical and pharmacological analyses, as well as electrophysiological analysis at the single channel level. 2. Surface-expressed AChRs were shown to be assembled into proper alpha 2 beta gamma delta pentamers. 3. The distribution of surface-AChRs was uniform and identical in every cell. 4. We were able to successfully coculture AChR-fibroblasts with 1-day old Xenopus laevis embryonal neurons and maintain expression of cell surface AChRs. 5. Using the voltage-clamp technique, miniature end-plate currents were recorded from AChR-fibroblasts which were contacted by neurons. The current amplitudes of these AChRs were approximately 10-fold smaller than those observed in Xenopus myocytes, and the rise-times were slower.
{"title":"Synaptic contact between embryonic neurons and acetylcholine receptor-fibroblast.","authors":"D S Hartman, M M Poo, W N Green, A F Ross, T Claudio","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. Mouse fibroblast cell lines were established that stably express Torpedo californica acetylcholine receptors (AChR) on their cell surface in quantities sufficient for biochemical and pharmacological analyses, as well as electrophysiological analysis at the single channel level. 2. Surface-expressed AChRs were shown to be assembled into proper alpha 2 beta gamma delta pentamers. 3. The distribution of surface-AChRs was uniform and identical in every cell. 4. We were able to successfully coculture AChR-fibroblasts with 1-day old Xenopus laevis embryonal neurons and maintain expression of cell surface AChRs. 5. Using the voltage-clamp technique, miniature end-plate currents were recorded from AChR-fibroblasts which were contacted by neurons. The current amplitudes of these AChRs were approximately 10-fold smaller than those observed in Xenopus myocytes, and the rise-times were slower.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"42-9"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13507934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G Ahnert-Hilger, M E Dauzenroth, E Habermann, A Henschen, K Krieglstein, F Mauler, U Weller
1. Single-chain toxin is enzymatically converted into two-chain isotoxins which differ from the precursor by their higher pharmacological activity, acidity and hydrophilicity. The interchain disulfide bridge and the disulfide loop within fragment C have been located at the amino acid level. 2. Independent of the enzymes used, the nicking sites are positioned within a region spanning no more than 17 amino acids. The N- and C-termini of the primary gene product are preserved in the two-chain toxin. The chains have been separated by isoelectric focussing and can be reconstituted to functionally intact toxin. 3. Light chain inhibits neurotransmitter release on different systems. First, permeabilized bovine adrenal chromaffin cells and rat pheochromocytoma (PC 12) cells release catecholamines when exposed to micromolar [Ca2+]. Inhibition is achieved with light chain or reduced two-chain toxin, but not with single-chain toxin or heavy chain. Washing away the light chain does not restitute the Ca2(+)-evoked release. The light chains of tetanus and botulinum A toxin act in a apparently similar, however not identical manner. Second, light but not heavy chain inhibits the release of acetylcholine when injected into Aplysia neurones. 4. The pharmacology of heavy chain is quite different. Ganglioside binding is mediated by its fragment C moiety, and modulated by the adjoining beta 2 piece and by light chain. Heavy chain and to a lesser degree its N-terminal beta 2-fragment promote the loss of calcein from liposomes indicating pore formation. Its C-terminal fragment C is inactive in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)
{"title":"Chains and fragments of tetanus toxin, and their contribution to toxicity.","authors":"G Ahnert-Hilger, M E Dauzenroth, E Habermann, A Henschen, K Krieglstein, F Mauler, U Weller","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. Single-chain toxin is enzymatically converted into two-chain isotoxins which differ from the precursor by their higher pharmacological activity, acidity and hydrophilicity. The interchain disulfide bridge and the disulfide loop within fragment C have been located at the amino acid level. 2. Independent of the enzymes used, the nicking sites are positioned within a region spanning no more than 17 amino acids. The N- and C-termini of the primary gene product are preserved in the two-chain toxin. The chains have been separated by isoelectric focussing and can be reconstituted to functionally intact toxin. 3. Light chain inhibits neurotransmitter release on different systems. First, permeabilized bovine adrenal chromaffin cells and rat pheochromocytoma (PC 12) cells release catecholamines when exposed to micromolar [Ca2+]. Inhibition is achieved with light chain or reduced two-chain toxin, but not with single-chain toxin or heavy chain. Washing away the light chain does not restitute the Ca2(+)-evoked release. The light chains of tetanus and botulinum A toxin act in a apparently similar, however not identical manner. Second, light but not heavy chain inhibits the release of acetylcholine when injected into Aplysia neurones. 4. The pharmacology of heavy chain is quite different. Ganglioside binding is mediated by its fragment C moiety, and modulated by the adjoining beta 2 piece and by light chain. Heavy chain and to a lesser degree its N-terminal beta 2-fragment promote the loss of calcein from liposomes indicating pore formation. Its C-terminal fragment C is inactive in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 3","pages":"229-36"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13229807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
1. We have analysed the development of the larval PNS of Drosophila, with the aim of understanding the genetic programme that underlies this development. 2. The achaete-scute gene complex (AS-C), which is required for the development of the adult PNS, is also necessary for the larval PNS. The analysis of different AS-C lesions shows that the larval PNS results from the superimposition of two independent subpatterns, each of which depends on one AS-C gene. 3. The analysis of the two subpatterns reveals hidden homologies between the very different arrangements of sense organs observed on different segments, suggesting that the initial pattern is the same in all segments and is later modified in the different segments. 4. The early arrangement of sensory mother cells can be visualised in a special transgenic line, A37. In this line the initial repetitive pattern inferred above can be directly observed. Furthermore this line makes it possible to decide whether a given mutation acts on the very early steps of the PNS development (determination) or at later stages (differentiation). 5. The line A37 has been used to show that mutations that reduce the PNS such as AS-C- or da- alter the very first steps of the process, while mutations which result in a hypertrophied PNS such as N seem to alter a subsequent step. We end up with an overview of the genetic operations that generate the arrangement of sense organs and sensory neurons.
{"title":"Early events in the development of Drosophila peripheral nervous system.","authors":"A Ghysen, C Dambly-Chaudière","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>1. We have analysed the development of the larval PNS of Drosophila, with the aim of understanding the genetic programme that underlies this development. 2. The achaete-scute gene complex (AS-C), which is required for the development of the adult PNS, is also necessary for the larval PNS. The analysis of different AS-C lesions shows that the larval PNS results from the superimposition of two independent subpatterns, each of which depends on one AS-C gene. 3. The analysis of the two subpatterns reveals hidden homologies between the very different arrangements of sense organs observed on different segments, suggesting that the initial pattern is the same in all segments and is later modified in the different segments. 4. The early arrangement of sensory mother cells can be visualised in a special transgenic line, A37. In this line the initial repetitive pattern inferred above can be directly observed. Furthermore this line makes it possible to decide whether a given mutation acts on the very early steps of the PNS development (determination) or at later stages (differentiation). 5. The line A37 has been used to show that mutations that reduce the PNS such as AS-C- or da- alter the very first steps of the process, while mutations which result in a hypertrophied PNS such as N seem to alter a subsequent step. We end up with an overview of the genetic operations that generate the arrangement of sense organs and sensory neurons.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"11-20"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13345480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
According to the agrin hypothesis molecules that mediate the nerve-induced aggregation of acetylcholine receptors and acetylcholinesterase on developing and regenerating skeletal muscle fibers are similar or identical to agrin, a protein extracted from the electric organ of marine rays. Here we present evidence that agrin is highly concentrated in the cell bodies of motor neurons and is transported to axon terminals which is consistent with the agrin hypothesis.
{"title":"Agrin-like molecules in motor neurons.","authors":"C Magill-Solc, U J McMahan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>According to the agrin hypothesis molecules that mediate the nerve-induced aggregation of acetylcholine receptors and acetylcholinesterase on developing and regenerating skeletal muscle fibers are similar or identical to agrin, a protein extracted from the electric organ of marine rays. Here we present evidence that agrin is highly concentrated in the cell bodies of motor neurons and is transported to axon terminals which is consistent with the agrin hypothesis.</p>","PeriodicalId":14735,"journal":{"name":"Journal de physiologie","volume":"84 1","pages":"78-81"},"PeriodicalIF":0.0,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"13346122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}