P. Kleihues, D. Louis, B. Scheithauer, L. Rorke, G. Reifenberger, P. Burger, W. Cavenee
The new World Health Organization (WHO) classification of nervous system tumors, published in 2000, emerged from a 1999 international consensus conference of neuropathologists. New entities include chordoid glioma of the third ventricle, cerebellar liponeurocytoma, atypical teratoid/rhabdoid tumor, and perineurioma. Several histological variants were added, including tanycytic ependymoma, large cell medulloblastoma, and rhabdoid meningioma. The WHO grading scheme was updated and, for meningiomas, extensively revised. In recognition of the emerging role of molecular diagnostic approaches to tumor classification, genetic profiles have been emphasized, as in the distinct subtypes of glioblastoma and the already clinically useful 1p and 19q markers for oligodendroglioma and 22q/INI1 for atypical teratoid/rhabdoid tumors. In accord with the new WHO Blue Book series, the actual classification is accompanied by extensive descriptions and illustrations of clinicopathological characteristics of each tumor type, including molecular genetic features, predictive factors, and separate chapters on inherited tumor syndromes. The 2000 WHO classification of nervous system tumors aims at being used and implemented by the neuro-oncology and biomedical research communities worldwide.
{"title":"The WHO Classification of Tumors of the Nervous System","authors":"P. Kleihues, D. Louis, B. Scheithauer, L. Rorke, G. Reifenberger, P. Burger, W. Cavenee","doi":"10.1093/JNEN/61.3.228","DOIUrl":"https://doi.org/10.1093/JNEN/61.3.228","url":null,"abstract":"The new World Health Organization (WHO) classification of nervous system tumors, published in 2000, emerged from a 1999 international consensus conference of neuropathologists. New entities include chordoid glioma of the third ventricle, cerebellar liponeurocytoma, atypical teratoid/rhabdoid tumor, and perineurioma. Several histological variants were added, including tanycytic ependymoma, large cell medulloblastoma, and rhabdoid meningioma. The WHO grading scheme was updated and, for meningiomas, extensively revised. In recognition of the emerging role of molecular diagnostic approaches to tumor classification, genetic profiles have been emphasized, as in the distinct subtypes of glioblastoma and the already clinically useful 1p and 19q markers for oligodendroglioma and 22q/INI1 for atypical teratoid/rhabdoid tumors. In accord with the new WHO Blue Book series, the actual classification is accompanied by extensive descriptions and illustrations of clinicopathological characteristics of each tumor type, including molecular genetic features, predictive factors, and separate chapters on inherited tumor syndromes. The 2000 WHO classification of nervous system tumors aims at being used and implemented by the neuro-oncology and biomedical research communities worldwide.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"53 1","pages":"215–225"},"PeriodicalIF":0.0,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75145734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-03-01DOI: 10.1046/J.1365-2990.2002.39286_6.X
R. Vitaliani, T. Scaravilli, E. Egarter‐Vigl, B. Giometto, C. Klein, F. Scaravilli, S. An, P. Pramstaller
We describe the results of a study of the spinal cord of 5 patients with progressive supranuclear palsy (PSP). Examination of the 6th cervical, 7th thoracic, and 5th lumbar segments revealed variable degree of gliosis and density of neuropil threads (NTs), nerve cell loss, and tau-positive cytoplasmic staining of neurons, some of which was reminiscent of neurofibrillary tangles (NFT). Tau-positive neurons were seen at each spinal level and in the 3 zones in which each level was subdivided. Cells with the appearance of NFT predominated in the intermediate zone. Morphometric study revealed 47%, 52%, and 32% decrease in cell numbers in the motor area (lamina IX) at the 3 spinal levels, respectively, and 39% in the intermedio-lateral column. This is the first report describing severe neuronal loss throughout the whole spinal cord in patients with PSP and its results are in keeping with a previous study of the nucleus of Onufrowicz. The reasons why cell loss fails to produce clinical symptoms are analyzed and the clinico-pathological correlations between anatomical changes and dystonia are considered. On the basis of existing data, we conclude that previous suggestions implicating spinal interneurons in the pathogenesis of neck dystonia should not be supported.
{"title":"The Pathology of the Spinal Cord in Progressive Supranuclear Palsy","authors":"R. Vitaliani, T. Scaravilli, E. Egarter‐Vigl, B. Giometto, C. Klein, F. Scaravilli, S. An, P. Pramstaller","doi":"10.1046/J.1365-2990.2002.39286_6.X","DOIUrl":"https://doi.org/10.1046/J.1365-2990.2002.39286_6.X","url":null,"abstract":"We describe the results of a study of the spinal cord of 5 patients with progressive supranuclear palsy (PSP). Examination of the 6th cervical, 7th thoracic, and 5th lumbar segments revealed variable degree of gliosis and density of neuropil threads (NTs), nerve cell loss, and tau-positive cytoplasmic staining of neurons, some of which was reminiscent of neurofibrillary tangles (NFT). Tau-positive neurons were seen at each spinal level and in the 3 zones in which each level was subdivided. Cells with the appearance of NFT predominated in the intermediate zone. Morphometric study revealed 47%, 52%, and 32% decrease in cell numbers in the motor area (lamina IX) at the 3 spinal levels, respectively, and 39% in the intermedio-lateral column. This is the first report describing severe neuronal loss throughout the whole spinal cord in patients with PSP and its results are in keeping with a previous study of the nucleus of Onufrowicz. The reasons why cell loss fails to produce clinical symptoms are analyzed and the clinico-pathological correlations between anatomical changes and dystonia are considered. On the basis of existing data, we conclude that previous suggestions implicating spinal interneurons in the pathogenesis of neck dystonia should not be supported.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"65 1","pages":"268–274"},"PeriodicalIF":0.0,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76525463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Holton, T. Lashley, J. Ghiso, H. Braendgaard, R. Vidal, C. Guerin, G. Gibb, D. Hanger, A. Rostagno, B. Anderton, C. Strand, H. Ayling, G. Plant, B. Frangione, M. BOJSEN-MØLLER, T. Révész
Familial Danish dementia (FDD) is pathologically characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal protein deposits, and neurofibrillary degeneration. FDD is associated with a mutation of the BRI2 gene located on chromosome 13. In FDD there is a decamer duplication, which abolishes the normal stop codon, resulting in an extended precursor protein and the release of an amyloidogenic fragment, ADan. The aim of this study was to describe the major neuropathological changes in FDD and to assess the distribution of ADan lesions, neurofibrillary pathology, glial, and microglial response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non-fibrillary) lesions was found. Aβ was also present in a proportion of both vascular and parenchymal lesions. There was severe neurofibrillary pathology, and tau immunoblotting revealed a triplet electrophoretic migration pattern comparable with PHF-tau. FDD is a novel form of CNS amyloidosis with extensive neurofibrillary degeneration occurring with parenchymal, predominantly pre-amyloid rather than amyloid, deposition. These findings support the notion that parenchymal amyloid fibril formation is not a prerequisite for the development of neurofibrillary tangles. The significance of concurrent ADan and Aβ deposition in FDD is under further investigation.
{"title":"Familial Danish Dementia: A Novel Form of Cerebral Amyloidosis Associated with Deposition of Both Amyloid‐Dan and Amyloid‐Beta","authors":"J. Holton, T. Lashley, J. Ghiso, H. Braendgaard, R. Vidal, C. Guerin, G. Gibb, D. Hanger, A. Rostagno, B. Anderton, C. Strand, H. Ayling, G. Plant, B. Frangione, M. BOJSEN-MØLLER, T. Révész","doi":"10.1093/JNEN/61.3.254","DOIUrl":"https://doi.org/10.1093/JNEN/61.3.254","url":null,"abstract":"Familial Danish dementia (FDD) is pathologically characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal protein deposits, and neurofibrillary degeneration. FDD is associated with a mutation of the BRI2 gene located on chromosome 13. In FDD there is a decamer duplication, which abolishes the normal stop codon, resulting in an extended precursor protein and the release of an amyloidogenic fragment, ADan. The aim of this study was to describe the major neuropathological changes in FDD and to assess the distribution of ADan lesions, neurofibrillary pathology, glial, and microglial response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non-fibrillary) lesions was found. Aβ was also present in a proportion of both vascular and parenchymal lesions. There was severe neurofibrillary pathology, and tau immunoblotting revealed a triplet electrophoretic migration pattern comparable with PHF-tau. FDD is a novel form of CNS amyloidosis with extensive neurofibrillary degeneration occurring with parenchymal, predominantly pre-amyloid rather than amyloid, deposition. These findings support the notion that parenchymal amyloid fibril formation is not a prerequisite for the development of neurofibrillary tangles. The significance of concurrent ADan and Aβ deposition in FDD is under further investigation.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"231 1","pages":"254–267"},"PeriodicalIF":0.0,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75098276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. De Simone, M. A. Ajmone-Cat, A. Nicolini, L. Minghetti
Exposure of phosphatidylserine (PS), an aminophospholipid normally sequestered in the inner leaflet of plasma membrane, is one of the crucial steps in the recognition and ingestion of apoptotic cells by macrophages. The recognition of PS on apoptotic cells by peripheral macrophages is mediated by a phosphatidylserine-specific receptor (PtdSerR), which has recently been cloned. In spite of the important role of apoptosis in the CNS, the process of apoptotic neuron recognition by microglia is poorly understood. Because recent studies suggest that engagement of PS with a not yet characterized microglial receptor is necessary for apoptotic neuron uptake, we investigated the expression of PtdSer-R and its functional role in neonatal rat brain microglial cultures. Semi-quantitative RT-PCR analysis revealed that PtdSerR mRNA was detectable in unstimulated cultures and enhanced in LPS activated microglia. The presence of PS-liposomes strongly reduced the release of pro-inflammatory molecules such as nitric oxide, interleukin-1β, and tumor necrosis factor-α by LPS-activated microglia. At variance, the immunoregulatory cytokines interleukin-10 and transforming growth factor-β1 were moderately decreased or unaffected. The activity of PS-liposomes was mimicked by the PS head group phospho-L-serine, but not by phosphatidylcholine-containing liposomes. Our data suggest that, as for peripheral macrophages, PS through its receptor can modulate microglial activation toward an anti-inflammatory phenotype.
{"title":"Expression of Phosphatidylserine Receptor and Down‐Regulation of Pro‐Inflammatory Molecule Production by its Natural Ligand in Rat Microglial Cultures","authors":"R. De Simone, M. A. Ajmone-Cat, A. Nicolini, L. Minghetti","doi":"10.1093/JNEN/61.3.237","DOIUrl":"https://doi.org/10.1093/JNEN/61.3.237","url":null,"abstract":"Exposure of phosphatidylserine (PS), an aminophospholipid normally sequestered in the inner leaflet of plasma membrane, is one of the crucial steps in the recognition and ingestion of apoptotic cells by macrophages. The recognition of PS on apoptotic cells by peripheral macrophages is mediated by a phosphatidylserine-specific receptor (PtdSerR), which has recently been cloned. In spite of the important role of apoptosis in the CNS, the process of apoptotic neuron recognition by microglia is poorly understood. Because recent studies suggest that engagement of PS with a not yet characterized microglial receptor is necessary for apoptotic neuron uptake, we investigated the expression of PtdSer-R and its functional role in neonatal rat brain microglial cultures. Semi-quantitative RT-PCR analysis revealed that PtdSerR mRNA was detectable in unstimulated cultures and enhanced in LPS activated microglia. The presence of PS-liposomes strongly reduced the release of pro-inflammatory molecules such as nitric oxide, interleukin-1β, and tumor necrosis factor-α by LPS-activated microglia. At variance, the immunoregulatory cytokines interleukin-10 and transforming growth factor-β1 were moderately decreased or unaffected. The activity of PS-liposomes was mimicked by the PS head group phospho-L-serine, but not by phosphatidylcholine-containing liposomes. Our data suggest that, as for peripheral macrophages, PS through its receptor can modulate microglial activation toward an anti-inflammatory phenotype.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"11 1","pages":"237–244"},"PeriodicalIF":0.0,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86931887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gap junctional communication is likely one means by which neurons can endure glutamate cytotoxicity associated with CNS insults (i.e. ischemia). To examine this neuroprotective role of gap junctions, we employed gap junctional blockers to neuronal and astrocytic co-cultures during exposure to a high concentration of extracellular glutamate. Co-cultures were treated with the blocking agents carbenoxolone (CBX; 25 μM), 18α-glycyrrhetinic acid (AGA; 10 μM), vehicle or the inactive blocking analogue glycyrrhizic acid (GZA; 25 μM). Twenty-four hours following the insult, cell mortality was analyzed and quantified by the release of lactate dehydrogenase (LDH) into the media, the cells' inability to exclude propidium iodide, and terminal dUTP nick end labeling (TUNEL). Measurement of LDH release revealed that the glutamate insult was detrimental to the co-cultures when gap junctions were blocked with CBX and AGA. Based on propidium iodide and TUNEL labeling, the glutamate insult caused significant cell death compared to sham vehicle and mortality was amplified in the presence of CBX and AGA. Since blockers were not themselves toxic and did not affect astrocytic uptake of glutamate, it is likely that blocked gap junctions lead to the increased glutamate cytotoxicity. These findings support the hypothesis that gap junctions play a neuroprotective role against glutamate cytotoxicity.
{"title":"Blocked Gap Junctional Coupling Increases Glutamate‐Induced Neurotoxicity in Neuron‐Astrocyte Co‐Cultures","authors":"M. Ozog, Ramin Siushansian","doi":"10.1093/JNEN/61.2.132","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.132","url":null,"abstract":"Gap junctional communication is likely one means by which neurons can endure glutamate cytotoxicity associated with CNS insults (i.e. ischemia). To examine this neuroprotective role of gap junctions, we employed gap junctional blockers to neuronal and astrocytic co-cultures during exposure to a high concentration of extracellular glutamate. Co-cultures were treated with the blocking agents carbenoxolone (CBX; 25 μM), 18α-glycyrrhetinic acid (AGA; 10 μM), vehicle or the inactive blocking analogue glycyrrhizic acid (GZA; 25 μM). Twenty-four hours following the insult, cell mortality was analyzed and quantified by the release of lactate dehydrogenase (LDH) into the media, the cells' inability to exclude propidium iodide, and terminal dUTP nick end labeling (TUNEL). Measurement of LDH release revealed that the glutamate insult was detrimental to the co-cultures when gap junctions were blocked with CBX and AGA. Based on propidium iodide and TUNEL labeling, the glutamate insult caused significant cell death compared to sham vehicle and mortality was amplified in the presence of CBX and AGA. Since blockers were not themselves toxic and did not affect astrocytic uptake of glutamate, it is likely that blocked gap junctions lead to the increased glutamate cytotoxicity. These findings support the hypothesis that gap junctions play a neuroprotective role against glutamate cytotoxicity.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"234 1","pages":"132–141"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86613454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osamu Ikeda, M. Murakami, H. Ino, M. Yamazaki, M. Koda, H. Moriya
Neurotrophins enhance the survival of cells in the nervous system under both physiological and pathological conditions, such as those caused by disease or trauma. We recently demonstrated that expression of brain-derived neurotrophic factor (BDNF) was up-regulated in neurons and glia after compression-induced spinal cord injury (SCI). We show here the effects of BDNF on the oligodendrocyte survival and functional recovery after SCI. The effects of intrathecally administered BDNF on both Cu/Zn superoxide dismutase (CuZnSOD) and myelin basic protein (MBP) expression were examined using rats that had received compression-induced spinal cord injury. CuZnSOD expression in the spinal cord was down-regulated within 24 h of compression-induced injury and then recovered. Continuous infusion of BDNF inhibited the acute down-regulation of CuZnSOD expression. In situ hybridization showed that CuZnSOD was expressed in both neurons and glia. Although MBP expression was greatly reduced after injury, BDNF administration promoted the recovery of MBP expression nearly to a control level after 2 wk. Furthermore, BDNF administration also prompted behavioral recovery. These results suggest BDNF's usefulness in human clinical applications. The attenuation of CuZnSOD down-regulation may be related to a protective effect of BDNF and the promotion of MBP up-regulation may be related to a long-lasting restorative effect.
{"title":"Effects of Brain‐Derived Neurotrophic Factor (BDNF) on Compression‐Induced Spinal Cord Injury: BDNF Attenuates Down‐Regulation of Superoxide Dismutase Expression and Promotes Up‐Regulation of Myelin Basic Protein Expression","authors":"Osamu Ikeda, M. Murakami, H. Ino, M. Yamazaki, M. Koda, H. Moriya","doi":"10.1093/JNEN/61.2.142","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.142","url":null,"abstract":"Neurotrophins enhance the survival of cells in the nervous system under both physiological and pathological conditions, such as those caused by disease or trauma. We recently demonstrated that expression of brain-derived neurotrophic factor (BDNF) was up-regulated in neurons and glia after compression-induced spinal cord injury (SCI). We show here the effects of BDNF on the oligodendrocyte survival and functional recovery after SCI. The effects of intrathecally administered BDNF on both Cu/Zn superoxide dismutase (CuZnSOD) and myelin basic protein (MBP) expression were examined using rats that had received compression-induced spinal cord injury. CuZnSOD expression in the spinal cord was down-regulated within 24 h of compression-induced injury and then recovered. Continuous infusion of BDNF inhibited the acute down-regulation of CuZnSOD expression. In situ hybridization showed that CuZnSOD was expressed in both neurons and glia. Although MBP expression was greatly reduced after injury, BDNF administration promoted the recovery of MBP expression nearly to a control level after 2 wk. Furthermore, BDNF administration also prompted behavioral recovery. These results suggest BDNF's usefulness in human clinical applications. The attenuation of CuZnSOD down-regulation may be related to a protective effect of BDNF and the promotion of MBP up-regulation may be related to a long-lasting restorative effect.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"79 1","pages":"142–153"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87725339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Maki, N. Matsukawa, H. Yuasa, Yasushi Otsuka, Takayuki Yamamoto, H. Akatsu, T. Okamoto, R. Ueda, K. Ojika
Hippocampal cholinergic neurostimulating peptide (HCNP) is involved in the phenotype development of the septo-hippocampal system. HCNP precursor protein (HCNP-pp) is known to interact with other molecules including phosphatidylethanolamine and Raf-1 kinase, and is also known as phosphatidylethanolamine-binding protein and raf kinase-inhibitory protein. To assess whether HCNP-pp is involved in the pathogenesis of Alzheimer disease (AD), the expression levels of its mRNA in the hippocampus of autopsy brains from patients with dementia (including AD and ischemic vascular dementia) were compared with those of non-demented control subjects. The in situ hybridization analysis revealed that the expression of HCNP-pp mRNA in patients with clinically late-onset AD was decreased in the hippocampal CA1 field, but not in the CA3 field or the dentate gyrus. The early-onset AD patients showed a wide range of expression levels in the hippocampal sub-regions. Northern blot analysis of HCNP-pp mRNA in brain tissue supported these observations. Since HCNP is known to stimulate the enzymatic activity of choline acetyltransferase in neurons, its low expression in the CA1 field of AD patients may explain the downregulation of cholinergic neurons seen in these patients and may thus contribute to the pathogenic processes underlying AD.
{"title":"Decreased Expression of Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein mRNA in the Hippocampus in Alzheimer Disease","authors":"M. Maki, N. Matsukawa, H. Yuasa, Yasushi Otsuka, Takayuki Yamamoto, H. Akatsu, T. Okamoto, R. Ueda, K. Ojika","doi":"10.1093/JNEN/61.2.176","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.176","url":null,"abstract":"Hippocampal cholinergic neurostimulating peptide (HCNP) is involved in the phenotype development of the septo-hippocampal system. HCNP precursor protein (HCNP-pp) is known to interact with other molecules including phosphatidylethanolamine and Raf-1 kinase, and is also known as phosphatidylethanolamine-binding protein and raf kinase-inhibitory protein. To assess whether HCNP-pp is involved in the pathogenesis of Alzheimer disease (AD), the expression levels of its mRNA in the hippocampus of autopsy brains from patients with dementia (including AD and ischemic vascular dementia) were compared with those of non-demented control subjects. The in situ hybridization analysis revealed that the expression of HCNP-pp mRNA in patients with clinically late-onset AD was decreased in the hippocampal CA1 field, but not in the CA3 field or the dentate gyrus. The early-onset AD patients showed a wide range of expression levels in the hippocampal sub-regions. Northern blot analysis of HCNP-pp mRNA in brain tissue supported these observations. Since HCNP is known to stimulate the enzymatic activity of choline acetyltransferase in neurons, its low expression in the CA1 field of AD patients may explain the downregulation of cholinergic neurons seen in these patients and may thus contribute to the pathogenic processes underlying AD.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"251 1","pages":"176–185"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79411168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During embryogenesis, the developmental potential of individual cells is continuously restricted. While embryonic stem (ES) cells derived from the inner cell mass of the blastocyst can give rise to all tissues and cell types, their progeny segregates into a multitude of tissue-specific stem and progenitor cells. Following organogenesis, a pool of resident “adult” stem cells is maintained in many tissues. In this hierarchical concept, transition through defined intermediate stages of decreasing potentiality is regarded as prerequisite for the generation of a somatic cell type. Several recent findings have challenged this view. First, adult stem cells have been shown to adopt properties of pluripotent cells and contribute cells to a variety of tissues. Second, a direct transition from a pluripotent ES cell to a defined somatic phenotype has been postulated for the neural lineage. Finally, nuclear transplantation has revealed that the transcriptional machinery associated with a distinct somatic cell fate can be reprogrammed to totipotency. The possibility to bypass developmental hierarchies in stem cell differentiation opens new avenues for the study of nervous system development, disease, and repair.
{"title":"Fifty Ways to Make a Neuron*: Shifts in Stem Cell Hierarchy and Their Implications for Neuropathology and CNS Repair","authors":"Marius Wernig, O. Brüstle","doi":"10.1093/JNEN/61.2.101","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.101","url":null,"abstract":"During embryogenesis, the developmental potential of individual cells is continuously restricted. While embryonic stem (ES) cells derived from the inner cell mass of the blastocyst can give rise to all tissues and cell types, their progeny segregates into a multitude of tissue-specific stem and progenitor cells. Following organogenesis, a pool of resident “adult” stem cells is maintained in many tissues. In this hierarchical concept, transition through defined intermediate stages of decreasing potentiality is regarded as prerequisite for the generation of a somatic cell type. Several recent findings have challenged this view. First, adult stem cells have been shown to adopt properties of pluripotent cells and contribute cells to a variety of tissues. Second, a direct transition from a pluripotent ES cell to a defined somatic phenotype has been postulated for the neural lineage. Finally, nuclear transplantation has revealed that the transcriptional machinery associated with a distinct somatic cell fate can be reprogrammed to totipotency. The possibility to bypass developmental hierarchies in stem cell differentiation opens new avenues for the study of nervous system development, disease, and repair.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"62 1","pages":"101–110"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82543202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Parsons, Marie L. Smith, Adrian C Williams, R. Waring, D. Ramsden
Nicotinamide N-methyltransferase (NNMT) has been proposed as a link between the environmental and genetic factors of Parkinson disease (PD). Therefore, we explored the hypothesis that high levels of NNMT expression may predispose to the development of PD. Regions of high mRNA expression were shown in the spinal cord, medulla, and temporal lobe, with lowest expression in the cerebellum, subthalamic nucleus, and caudate nucleus. Using 2 NNMT antibodies, the protein was shown to be expressed in multipolar neurons in the temporal lobe, caudate nucleus, and spinal cord, granular neurons of the cerebellum, dopaminergic neurons in the substantia nigra, and in the axons of the third nerve. Expression of NNMT was compared in PD and non-PD control cerebella and caudate nucleus. PD tissue exhibited significantly increased levels of NNMT protein and activity. PD disease duration was inversely correlated with the level of expression in cerebellum. This is the first demonstration that patients with PD have higher levels of NNMT activity and protein in brain tissue than those without PD and that NNMT expression is associated with neurons that degenerate in PD.
{"title":"Expression of Nicotinamide N‐Methyltransferase (E.C. 2.1.1.1) in the Parkinsonian Brain","authors":"R. Parsons, Marie L. Smith, Adrian C Williams, R. Waring, D. Ramsden","doi":"10.1093/JNEN/61.2.111","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.111","url":null,"abstract":"Nicotinamide N-methyltransferase (NNMT) has been proposed as a link between the environmental and genetic factors of Parkinson disease (PD). Therefore, we explored the hypothesis that high levels of NNMT expression may predispose to the development of PD. Regions of high mRNA expression were shown in the spinal cord, medulla, and temporal lobe, with lowest expression in the cerebellum, subthalamic nucleus, and caudate nucleus. Using 2 NNMT antibodies, the protein was shown to be expressed in multipolar neurons in the temporal lobe, caudate nucleus, and spinal cord, granular neurons of the cerebellum, dopaminergic neurons in the substantia nigra, and in the axons of the third nerve. Expression of NNMT was compared in PD and non-PD control cerebella and caudate nucleus. PD tissue exhibited significantly increased levels of NNMT protein and activity. PD disease duration was inversely correlated with the level of expression in cerebellum. This is the first demonstration that patients with PD have higher levels of NNMT activity and protein in brain tissue than those without PD and that NNMT expression is associated with neurons that degenerate in PD.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"91 1","pages":"111–124"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80926175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Calon, S. Birdi, A. Rajput, O. Hornykiewicz, P. Bédard, T. Di Paolo
The expression of preproenkephalin messenger RNA was studied in the brain of Parkinson disease (PD) patients using in situ hybridization. All these patients were treated with levodopa (LD) and the development of motor complications was recorded. Eleven normal controls and 14 PD patients were used, of which 4 developed dyskinesias, 3 developed wearing-off, 3 developed both dyskinesias and wearing-off, and 4 developed no adverse effect following dopaminomimetic therapy. Nigrostriatal denervation was similar between the subgroups of PD patients as assessed using 125I-RTI-specific binding to the dopamine transporter and measures of catecholamine concentrations by HPLC. A significant increase of preproenkephalin messenger RNA levels was observed in the lateral putamen of dyskinetic patients in comparison to controls (+210%; p < 0.01) and in comparison to nondyskinetic patients (+112%; p < 0.05). No change was observed in medial parts of the putamen or in the caudate nucleus. No relationship between preproenkephalin messenger RNA levels and other clinical variables such as development of wearing-off, age of death, duration of disease, or duration of LD therapy was found. These findings suggest that increase synthesis of preproenkephalin in the medium spiny output neurons of the striatopallidal pathway play a role in the development of dyskinesias following long-term LD therapy in Parkinson disease.
{"title":"Increase of Preproenkephalin mRNA Levels in the Putamen of Parkinson Disease Patients with Levodopa‐Induced Dyskinesias","authors":"F. Calon, S. Birdi, A. Rajput, O. Hornykiewicz, P. Bédard, T. Di Paolo","doi":"10.1093/JNEN/61.2.186","DOIUrl":"https://doi.org/10.1093/JNEN/61.2.186","url":null,"abstract":"The expression of preproenkephalin messenger RNA was studied in the brain of Parkinson disease (PD) patients using in situ hybridization. All these patients were treated with levodopa (LD) and the development of motor complications was recorded. Eleven normal controls and 14 PD patients were used, of which 4 developed dyskinesias, 3 developed wearing-off, 3 developed both dyskinesias and wearing-off, and 4 developed no adverse effect following dopaminomimetic therapy. Nigrostriatal denervation was similar between the subgroups of PD patients as assessed using 125I-RTI-specific binding to the dopamine transporter and measures of catecholamine concentrations by HPLC. A significant increase of preproenkephalin messenger RNA levels was observed in the lateral putamen of dyskinetic patients in comparison to controls (+210%; p < 0.01) and in comparison to nondyskinetic patients (+112%; p < 0.05). No change was observed in medial parts of the putamen or in the caudate nucleus. No relationship between preproenkephalin messenger RNA levels and other clinical variables such as development of wearing-off, age of death, duration of disease, or duration of LD therapy was found. These findings suggest that increase synthesis of preproenkephalin in the medium spiny output neurons of the striatopallidal pathway play a role in the development of dyskinesias following long-term LD therapy in Parkinson disease.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"51 1","pages":"186–196"},"PeriodicalIF":0.0,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79545524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}