Indrani Bhattacharya, Arkabandhu Chowdhury, V. Raykar
We present a multimodal dialog (MMD) system to assist online customers in visually browsing through large catalogs. Visual browsing allows customers to explore products beyond exact search results. We focus on a slightly asymmetric version of a complete MMD system, in that our agent can understand both text and image queries, but responds only in images. We formulate our problem of "showing the k best images to a user'', based on the dialog context so far, as sampling from a Gaussian Mixture Model (GMM) in a high dimensional joint multimodal embedding space. The joint embedding space is learned by Common Representation Learning and embeds both the text and the image queries. Our system remembers the context of the dialog, and uses an exploration-exploitation paradigm to assist in visual browsing. We train and evaluate the system on an MMD dataset that we synthesize from large catalog data. Our experiments and preliminary human evaluation show that the system is capable of learning and displaying relevant products with an average cosine similarity of 0.85 to the ground truth results, and is capable of engaging human users.
{"title":"Multimodal Dialog for Browsing Large Visual Catalogs using Exploration-Exploitation Paradigm in a Joint Embedding Space","authors":"Indrani Bhattacharya, Arkabandhu Chowdhury, V. Raykar","doi":"10.1145/3323873.3325036","DOIUrl":"https://doi.org/10.1145/3323873.3325036","url":null,"abstract":"We present a multimodal dialog (MMD) system to assist online customers in visually browsing through large catalogs. Visual browsing allows customers to explore products beyond exact search results. We focus on a slightly asymmetric version of a complete MMD system, in that our agent can understand both text and image queries, but responds only in images. We formulate our problem of \"showing the k best images to a user'', based on the dialog context so far, as sampling from a Gaussian Mixture Model (GMM) in a high dimensional joint multimodal embedding space. The joint embedding space is learned by Common Representation Learning and embeds both the text and the image queries. Our system remembers the context of the dialog, and uses an exploration-exploitation paradigm to assist in visual browsing. We train and evaluate the system on an MMD dataset that we synthesize from large catalog data. Our experiments and preliminary human evaluation show that the system is capable of learning and displaying relevant products with an average cosine similarity of 0.85 to the ground truth results, and is capable of engaging human users.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127918851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Person re-identification aims to identify a specific person at distinct times and locations. It is challenging because of occlusion, illumination, and viewpoint change in camera views. Recently, multi-shot person re-id task receives more attention since it is closer to real-world application. A key point of a good algorithm for multi-shot person re-id is the temporal aggregation of the person appearance features. While most of the current approaches apply pooling strategies and obtain a fixed-size vector representation, these may lose the matching evidence between examples. In this work, we propose the idea of visual distributional representation, which interprets an image set as samples drawn from an unknown distribution in appearance feature space. Based on the supervision signals from a downstream task of interest, the method reshapes the appearance feature space and further learns the unknown distribution of each image set. In the context of multi-shot person re-id, we apply this novel concept along with Wasserstein distance and jointly learn a distributional set distance function between two image sets. In this way, the proper alignment between two image sets can be discovered naturally in a non-parametric manner. Our experiment results on three public datasets show the advantages of our proposed method compared to other state-of-the-art approaches.
{"title":"Multi-shot Person Re-identification through Set Distance with Visual Distributional Representation","authors":"Ting-yao Hu, Alexander Hauptmann","doi":"10.1145/3323873.3325030","DOIUrl":"https://doi.org/10.1145/3323873.3325030","url":null,"abstract":"Person re-identification aims to identify a specific person at distinct times and locations. It is challenging because of occlusion, illumination, and viewpoint change in camera views. Recently, multi-shot person re-id task receives more attention since it is closer to real-world application. A key point of a good algorithm for multi-shot person re-id is the temporal aggregation of the person appearance features. While most of the current approaches apply pooling strategies and obtain a fixed-size vector representation, these may lose the matching evidence between examples. In this work, we propose the idea of visual distributional representation, which interprets an image set as samples drawn from an unknown distribution in appearance feature space. Based on the supervision signals from a downstream task of interest, the method reshapes the appearance feature space and further learns the unknown distribution of each image set. In the context of multi-shot person re-id, we apply this novel concept along with Wasserstein distance and jointly learn a distributional set distance function between two image sets. In this way, the proper alignment between two image sets can be discovered naturally in a non-parametric manner. Our experiment results on three public datasets show the advantages of our proposed method compared to other state-of-the-art approaches.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127661563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}