Svante Vikingsson, Ruth E Winecker, David J Kuntz, Michael Clark, Martin Jacques, E Dale Hart, Eugene D Hayes, Ronald R Flegel, Lisa S Davis
Total morphine is an important urinary marker of heroin use but can also be present from prescriptions or poppy seed ingestion. In specimens with morphine concentrations consistent with poppy seed ingestion (<4,000 ng/mL), 6-acetylmorphine has served as an important marker of illicit drug use. However, as illicit fentanyl has become increasingly prevalent as a contaminant in the drug supply, fentanyl might be an alternative marker of illicit opioid use instead of or in combination with 6-acetylmorphine. The aim of this study was to quantify opiates, 6-acetylmorphine, fentanyl and fentanyl analogs in 504 morphine-positive (immunoassay 2,000 ng/mL cutoff) urine specimens from workplace drug testing. Almost half (43%) of morphine-positive specimens had morphine concentrations below 4,000 ng/mL, illustrating the need for markers to differentiate illicit drug use. In these specimens, fentanyl (22% co-positivity) was more prevalent than 6-acetylmorphine (12%). Co-positivity of 6-acetylmorphine and semi-synthetic opioids increased with morphine concentration, while fentanyl prevalence did not. In 110 fentanyl-positive specimens, the median norfentanyl concentration (1,520 ng/mL) was 9.6× higher than the median fentanyl concentration (159 ng/mL), illustrating the possibility of using norfentanyl as a urinary marker of fentanyl use. The only fentanyl analog identified was para-fluorofentanyl (n = 50), with results from most specimens consistent with para-fluorofentanyl contamination in illicit fentanyl. The results confirm the use of fentanyl by employees subject to workplace drug testing and highlight the potential of fentanyl and/or norfentanyl as important markers of illicit drug use.
{"title":"Fentanyl as a marker of illicit drug use in morphine-positive urine specimens from workplace drug testing.","authors":"Svante Vikingsson, Ruth E Winecker, David J Kuntz, Michael Clark, Martin Jacques, E Dale Hart, Eugene D Hayes, Ronald R Flegel, Lisa S Davis","doi":"10.1093/jat/bkae003","DOIUrl":"10.1093/jat/bkae003","url":null,"abstract":"<p><p>Total morphine is an important urinary marker of heroin use but can also be present from prescriptions or poppy seed ingestion. In specimens with morphine concentrations consistent with poppy seed ingestion (<4,000 ng/mL), 6-acetylmorphine has served as an important marker of illicit drug use. However, as illicit fentanyl has become increasingly prevalent as a contaminant in the drug supply, fentanyl might be an alternative marker of illicit opioid use instead of or in combination with 6-acetylmorphine. The aim of this study was to quantify opiates, 6-acetylmorphine, fentanyl and fentanyl analogs in 504 morphine-positive (immunoassay 2,000 ng/mL cutoff) urine specimens from workplace drug testing. Almost half (43%) of morphine-positive specimens had morphine concentrations below 4,000 ng/mL, illustrating the need for markers to differentiate illicit drug use. In these specimens, fentanyl (22% co-positivity) was more prevalent than 6-acetylmorphine (12%). Co-positivity of 6-acetylmorphine and semi-synthetic opioids increased with morphine concentration, while fentanyl prevalence did not. In 110 fentanyl-positive specimens, the median norfentanyl concentration (1,520 ng/mL) was 9.6× higher than the median fentanyl concentration (159 ng/mL), illustrating the possibility of using norfentanyl as a urinary marker of fentanyl use. The only fentanyl analog identified was para-fluorofentanyl (n = 50), with results from most specimens consistent with para-fluorofentanyl contamination in illicit fentanyl. The results confirm the use of fentanyl by employees subject to workplace drug testing and highlight the potential of fentanyl and/or norfentanyl as important markers of illicit drug use.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"185-190"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article traces the origin of various charts and tables delineating the stages of alcohol influence in relation to the clinical signs and symptoms of drunkenness and a person's blood-alcohol concentration (BAC). In forensic science and legal medicine, the most widely used such table was created by Professor Kurt M. Dubowski (University of Oklahoma). The first version of the Dubowski alcohol table was published in 1957, and minor modifications appeared in various articles and book chapters until the final version was published in 2012. Seven stages of alcohol influence were identified including subclinical (sobriety), euphoria, excitement, confusion, stupor, alcoholic coma and death. The BAC causing death was initially reported as 0.45+ g%, although the latest version cited a mean and median BAC of 0.36 g% with a 90% range from 0.21 g% to 0.50 g%. An important feature of the Dubowski alcohol table was the overlapping ranges of BAC for each of the stages of alcohol influence. This was done to reflect variations in the physiological effects of ethanol on the nervous system between different individuals. Information gleaned from the Dubowski table is not intended to apply to any specific individual but more generally for a population of social drinkers, not regular heavy drinkers or alcoholics. Under real-world conditions, much will depend on a person's age, race, gender, pattern of drinking, habituation to alcohol and the development of central nervous tolerance. The impairment effects of ethanol also depend to some extent on whether observations are made on the rising or declining phase of the blood-alcohol curve (Mellanby effect). There will always be some individuals who do not exhibit the expected behavioral impairment effects of ethanol, such as regular heavy drinkers and those suffering from an alcohol use disorder.
{"title":"Dubowski's stages of alcohol influence and clinical signs and symptoms of drunkenness in relation to a person's blood-alcohol concentration-Historical background.","authors":"Alan Wayne Jones","doi":"10.1093/jat/bkae008","DOIUrl":"10.1093/jat/bkae008","url":null,"abstract":"<p><p>This article traces the origin of various charts and tables delineating the stages of alcohol influence in relation to the clinical signs and symptoms of drunkenness and a person's blood-alcohol concentration (BAC). In forensic science and legal medicine, the most widely used such table was created by Professor Kurt M. Dubowski (University of Oklahoma). The first version of the Dubowski alcohol table was published in 1957, and minor modifications appeared in various articles and book chapters until the final version was published in 2012. Seven stages of alcohol influence were identified including subclinical (sobriety), euphoria, excitement, confusion, stupor, alcoholic coma and death. The BAC causing death was initially reported as 0.45+ g%, although the latest version cited a mean and median BAC of 0.36 g% with a 90% range from 0.21 g% to 0.50 g%. An important feature of the Dubowski alcohol table was the overlapping ranges of BAC for each of the stages of alcohol influence. This was done to reflect variations in the physiological effects of ethanol on the nervous system between different individuals. Information gleaned from the Dubowski table is not intended to apply to any specific individual but more generally for a population of social drinkers, not regular heavy drinkers or alcoholics. Under real-world conditions, much will depend on a person's age, race, gender, pattern of drinking, habituation to alcohol and the development of central nervous tolerance. The impairment effects of ethanol also depend to some extent on whether observations are made on the rising or declining phase of the blood-alcohol curve (Mellanby effect). There will always be some individuals who do not exhibit the expected behavioral impairment effects of ethanol, such as regular heavy drinkers and those suffering from an alcohol use disorder.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"131-140"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katie Diekhans, Jihau Yu, Megan Farley, Luke N Rodda
Novel Synthetic Opioids (NSO) are frequently found in postmortem (PM) and human performance (HP) forensic toxicology casework, resulting in impairment and fatal overdoses. Developing a broad NSO method benefits public health, as it can be used to identify trends in potent opioid use to develop risk management programs. This project aimed to design a comprehensive, rapid and routine method for the selective analysis of over 250 novel synthetic opioids in blood and urine. This method rapidly extracted 150 µL of blood or urine via protein precipitation followed by size-exclusion filtration, evaporation and reconstitution. Separation and data acquisition were achieved on a 12 min LC-MS-MS method using an F5 column. Data processing was expedited with a custom built-in query created in-house that automated processing and enhanced quality assurance. Validation according to ASB/ANSI Standard 036 was performed and applicability of the method was assessed using proficiency test and authentic casework samples. Assessed in blood and urine qualitatively were 261 unique analytes including fentanyl analogs (fentalogs), nitazenes and other miscellaneous synthetic opioids. As 59 isomeric target analytes were placed into groups due to co-elution, there were 202 distinct acquired targets or target - groups. To demonstrate applicability, 27 proficiency test blood samples received over an approximate 4-year period were analyzed with 126 expected results assessed comprising 25 unique target analytes. Additionally, 617 fatal accidental overdoses within San Francisco in 2022 were retroactively analyzed by this method with almost 10% of cases containing a new NSO substance(s). Such trends and NSO substances were previously unknown in this community.
{"title":"Analysis of over 250 novel synthetic opioids and xylazine by LC-MS-MS in blood and urine.","authors":"Katie Diekhans, Jihau Yu, Megan Farley, Luke N Rodda","doi":"10.1093/jat/bkae009","DOIUrl":"10.1093/jat/bkae009","url":null,"abstract":"<p><p>Novel Synthetic Opioids (NSO) are frequently found in postmortem (PM) and human performance (HP) forensic toxicology casework, resulting in impairment and fatal overdoses. Developing a broad NSO method benefits public health, as it can be used to identify trends in potent opioid use to develop risk management programs. This project aimed to design a comprehensive, rapid and routine method for the selective analysis of over 250 novel synthetic opioids in blood and urine. This method rapidly extracted 150 µL of blood or urine via protein precipitation followed by size-exclusion filtration, evaporation and reconstitution. Separation and data acquisition were achieved on a 12 min LC-MS-MS method using an F5 column. Data processing was expedited with a custom built-in query created in-house that automated processing and enhanced quality assurance. Validation according to ASB/ANSI Standard 036 was performed and applicability of the method was assessed using proficiency test and authentic casework samples. Assessed in blood and urine qualitatively were 261 unique analytes including fentanyl analogs (fentalogs), nitazenes and other miscellaneous synthetic opioids. As 59 isomeric target analytes were placed into groups due to co-elution, there were 202 distinct acquired targets or target - groups. To demonstrate applicability, 27 proficiency test blood samples received over an approximate 4-year period were analyzed with 126 expected results assessed comprising 25 unique target analytes. Additionally, 617 fatal accidental overdoses within San Francisco in 2022 were retroactively analyzed by this method with almost 10% of cases containing a new NSO substance(s). Such trends and NSO substances were previously unknown in this community.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"150-164"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Jonasson, Roger Magnusson, Håkan Wingfors, Åsa Gustafsson, Gregory Rankin, Linda Elfsmark, Lina Mörén
Exhaled breath (EB) contains various volatile organic compounds (VOCs) that can indicate specific biological or pathological processes in the body. Analytical techniques like gas chromatography-mass spectrometry (GC-MS) can be used to detect and measure these exhaled biomarkers. In this study, the objective was to develop a non-invasive method of EB sampling in animals that were awake, as well as to analyze EB for volatile biomarkers specific for chlorine exposure and/or diagnostic biomarkers for chlorine-induced acute lung injury (ALI). To achieve this, a custom-made sampling device was used to collect EB samples from 19 female Balb/c mice. EB was sampled both pre-exposure (serving as internal control) and 30 min after exposure to chlorine. EB was collected on thermal desorption tubes and subsequently analyzed for VOCs by GC-MS. The following day, the extent of airway injury was assessed in the animals by examining neutrophils in the bronchoalveolar lavage fluid. VOC analysis revealed alterations in the EB biomarker pattern post-chlorine exposure, with eight biomarkers displaying increased levels and six exhibiting decreased levels following exposure. Four chlorinated compounds: trichloromethane, chloroacetone, 1,1-dichloroacetone and dichloroacetonitrile, were increased in chlorine-exposed mice, suggesting their specificity as chlorine EB biomarkers. Furthermore, chlorine-exposed mice displayed a neutrophilic inflammatory response and body weight loss 24 h following exposure. In conclusion, all animals developed an airway inflammation characterized by neutrophil infiltration and a specific EB pattern that could be extracted after chlorine exposure. Monitoring EB samples can readily and non-invasively provide valuable information on biomarkers for diagnosis of chlorine-induced ALI, confirming chlorine exposures.
{"title":"Potential exhaled breath biomarkers identified in chlorine-exposed mice.","authors":"Sofia Jonasson, Roger Magnusson, Håkan Wingfors, Åsa Gustafsson, Gregory Rankin, Linda Elfsmark, Lina Mörén","doi":"10.1093/jat/bkae007","DOIUrl":"10.1093/jat/bkae007","url":null,"abstract":"<p><p>Exhaled breath (EB) contains various volatile organic compounds (VOCs) that can indicate specific biological or pathological processes in the body. Analytical techniques like gas chromatography-mass spectrometry (GC-MS) can be used to detect and measure these exhaled biomarkers. In this study, the objective was to develop a non-invasive method of EB sampling in animals that were awake, as well as to analyze EB for volatile biomarkers specific for chlorine exposure and/or diagnostic biomarkers for chlorine-induced acute lung injury (ALI). To achieve this, a custom-made sampling device was used to collect EB samples from 19 female Balb/c mice. EB was sampled both pre-exposure (serving as internal control) and 30 min after exposure to chlorine. EB was collected on thermal desorption tubes and subsequently analyzed for VOCs by GC-MS. The following day, the extent of airway injury was assessed in the animals by examining neutrophils in the bronchoalveolar lavage fluid. VOC analysis revealed alterations in the EB biomarker pattern post-chlorine exposure, with eight biomarkers displaying increased levels and six exhibiting decreased levels following exposure. Four chlorinated compounds: trichloromethane, chloroacetone, 1,1-dichloroacetone and dichloroacetonitrile, were increased in chlorine-exposed mice, suggesting their specificity as chlorine EB biomarkers. Furthermore, chlorine-exposed mice displayed a neutrophilic inflammatory response and body weight loss 24 h following exposure. In conclusion, all animals developed an airway inflammation characterized by neutrophil infiltration and a specific EB pattern that could be extracted after chlorine exposure. Monitoring EB samples can readily and non-invasively provide valuable information on biomarkers for diagnosis of chlorine-induced ALI, confirming chlorine exposures.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"171-179"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grace Cieri, Amanda L A Mohr, Rebecca Mastrovito, Barry K Logan
Due to the increase in the use of novel psychoactive substances (NPS) and their overall prevalence, it is important to have effective and reliable screening technologies to detect NPS in biological matrices. Enzyme-linked immunosorbent assays (ELISA) are among the most popular screening methods. To evaluate the effectiveness of ELISA for NPS detection, five subclasses of NPS (novel synthetic opioids, fentanyl analogs, stimulants, benzodiazepines and hallucinogens) were evaluated in whole blood for their cross-reactivity on commercially available ELISA kits. A variety of novel synthetic opioids were tested at concentrations of 1-80 ng/mL and 50-2000 ng/mL and demonstrated no cross-reactivity to a morphine ELISA plate at either concentration range. Fentanyl analogs were tested at concentrations ranging from 0.01 to 1 ng/mL and had cross-reactivities ranging from 8% to 178% on the fentanyl ELISA kit used. Both para-chloro fentanyl (178%) and acryl fentanyl (164%) showed cross-reactivities well above that of fentanyl. Novel stimulants were tested at concentrations of 0.5-40 ng/mL and 20-2,000 ng/mL. 4-Fluoroamphetamine was the only novel stimulant with cross-reactivity (3,354%) to the amphetamine ELISA plate. Novel benzodiazepines were tested at concentrations of 1-40 ng/mL on a benzodiazepine plate. Cross-reactivities ranged from 36.1% to 263%, with desalkylflurazepam having the highest cross-reactivity. Finally, novel hallucinogens were tested at concentrations of 0.5-10 ng/mL on a phencyclidine (PCP) ELISA plate, which produced no cross-reactivity and then with 10-1,000 ng/mL, which gave results from 56.6% to 151%. Both hydroxy-PCP (151%) and chloro-PCP (137%) showed cross-reactivities above that of PCP. This research has demonstrated the utility of using ELISA-based screening for novel benzodiazepines, hallucinogens and for fentanyl analogs; however, there is limited application and risk of false-negative results for the other drug classes due to low or non-existent cross-reactivities.
{"title":"Evaluating cross-reactivity of new psychoactive substances (NPS) in human whole blood by enzyme-linked immunosorbent assay (ELISA).","authors":"Grace Cieri, Amanda L A Mohr, Rebecca Mastrovito, Barry K Logan","doi":"10.1093/jat/bkae017","DOIUrl":"10.1093/jat/bkae017","url":null,"abstract":"<p><p>Due to the increase in the use of novel psychoactive substances (NPS) and their overall prevalence, it is important to have effective and reliable screening technologies to detect NPS in biological matrices. Enzyme-linked immunosorbent assays (ELISA) are among the most popular screening methods. To evaluate the effectiveness of ELISA for NPS detection, five subclasses of NPS (novel synthetic opioids, fentanyl analogs, stimulants, benzodiazepines and hallucinogens) were evaluated in whole blood for their cross-reactivity on commercially available ELISA kits. A variety of novel synthetic opioids were tested at concentrations of 1-80 ng/mL and 50-2000 ng/mL and demonstrated no cross-reactivity to a morphine ELISA plate at either concentration range. Fentanyl analogs were tested at concentrations ranging from 0.01 to 1 ng/mL and had cross-reactivities ranging from 8% to 178% on the fentanyl ELISA kit used. Both para-chloro fentanyl (178%) and acryl fentanyl (164%) showed cross-reactivities well above that of fentanyl. Novel stimulants were tested at concentrations of 0.5-40 ng/mL and 20-2,000 ng/mL. 4-Fluoroamphetamine was the only novel stimulant with cross-reactivity (3,354%) to the amphetamine ELISA plate. Novel benzodiazepines were tested at concentrations of 1-40 ng/mL on a benzodiazepine plate. Cross-reactivities ranged from 36.1% to 263%, with desalkylflurazepam having the highest cross-reactivity. Finally, novel hallucinogens were tested at concentrations of 0.5-10 ng/mL on a phencyclidine (PCP) ELISA plate, which produced no cross-reactivity and then with 10-1,000 ng/mL, which gave results from 56.6% to 151%. Both hydroxy-PCP (151%) and chloro-PCP (137%) showed cross-reactivities above that of PCP. This research has demonstrated the utility of using ELISA-based screening for novel benzodiazepines, hallucinogens and for fentanyl analogs; however, there is limited application and risk of false-negative results for the other drug classes due to low or non-existent cross-reactivities.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"191-196"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew P Hewes, Donna M Papsun, Barry K Logan, Alex J Krotulski
Previous research has evaluated the extent to which cocaine and other drugs were detectable on currency in the USA. The literature was in agreement that the majority of bills exhibited some degree of contamination. With the increase of fentanyl in the illicit drug supply, this study was designed to evaluate the extent that fentanyl, cocaine, methamphetamine and other substances were present on circulating currency in 2022. A quantitative assay using liquid chromatography-triple quadrupole mass spectrometry was developed and validated to detect six analytes: fentanyl, 4-anilino-N-phenethylpiperidine, acetylfentanyl, benzylfentanyl, cocaine and methamphetamine. One-dollar bills were collected from 13 cities across the country. Sample preparation consisted of soaking the bills in methanol followed by liquid-liquid extraction. Chromatographic separation was achieved using a C18 analytical column and gradient elution with ammonium formate in water (5 mM, pH 3) and 0.1% formic acid in acetonitrile. The quantitative working range for this assay was 0.1 μg to 1.0 μg per bill (equivalent to 1 ng/mL to 100 ng/mL of extract). Fentanyl was detected on the majority (63%) of samples, with 61% of samples having ≥0.1 μg of fentanyl and 4% of samples having ≥1.0 μg. Cocaine and methamphetamine were detected on 100% and 98% of bills, respectively, typically in amounts >1.0 μg. The remaining fentanyl-related substances were detected in 15% of samples in amounts no >0.69 μg per bill and exclusively in the presence of fentanyl. Unsurprisingly, areas of the country with higher incidence of fentanyl use yielded higher frequency of contaminated bills and higher concentrations. Human exposure to drugs on currency is unlikely to have any significant impacts toxicologically or pharmacologically; however, our research findings suggest that paper currency could serve as a useful substrate for surveillance of drug trends regionally, nationally and/or internationally.
{"title":"Determination of fentanyl contamination on United States paper currency by LC-QQQ-MS.","authors":"Matthew P Hewes, Donna M Papsun, Barry K Logan, Alex J Krotulski","doi":"10.1093/jat/bkae010","DOIUrl":"10.1093/jat/bkae010","url":null,"abstract":"<p><p>Previous research has evaluated the extent to which cocaine and other drugs were detectable on currency in the USA. The literature was in agreement that the majority of bills exhibited some degree of contamination. With the increase of fentanyl in the illicit drug supply, this study was designed to evaluate the extent that fentanyl, cocaine, methamphetamine and other substances were present on circulating currency in 2022. A quantitative assay using liquid chromatography-triple quadrupole mass spectrometry was developed and validated to detect six analytes: fentanyl, 4-anilino-N-phenethylpiperidine, acetylfentanyl, benzylfentanyl, cocaine and methamphetamine. One-dollar bills were collected from 13 cities across the country. Sample preparation consisted of soaking the bills in methanol followed by liquid-liquid extraction. Chromatographic separation was achieved using a C18 analytical column and gradient elution with ammonium formate in water (5 mM, pH 3) and 0.1% formic acid in acetonitrile. The quantitative working range for this assay was 0.1 μg to 1.0 μg per bill (equivalent to 1 ng/mL to 100 ng/mL of extract). Fentanyl was detected on the majority (63%) of samples, with 61% of samples having ≥0.1 μg of fentanyl and 4% of samples having ≥1.0 μg. Cocaine and methamphetamine were detected on 100% and 98% of bills, respectively, typically in amounts >1.0 μg. The remaining fentanyl-related substances were detected in 15% of samples in amounts no >0.69 μg per bill and exclusively in the presence of fentanyl. Unsurprisingly, areas of the country with higher incidence of fentanyl use yielded higher frequency of contaminated bills and higher concentrations. Human exposure to drugs on currency is unlikely to have any significant impacts toxicologically or pharmacologically; however, our research findings suggest that paper currency could serve as a useful substrate for surveillance of drug trends regionally, nationally and/or internationally.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"141-149"},"PeriodicalIF":2.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140028113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah M Brown, Stephen M Roper, Dennis J Dietzen, Bridgit O Crews
Current guidelines recommend universal screening for substance use disorders in obstetric patients, and neonatal drug testing is also frequently performed. Meconium is often the preferred specimen type to detect neonatal drug exposure due to a longer window of detection compared to urine, but most laboratories send out meconium testing to specialized reference laboratories, which can delay results for several days or more. Here, we evaluate a rapid and definitive liquid chromatography-tandem mass spectrometry method for neonatal urine drug testing and compare results obtained using this method to paired meconium drug testing in 1,424 neonates for amphetamines, cocaine, cannabinoids, opiates, oxycodone and phencyclidine. Urine testing showed equivalent sensitivity to current meconium methods for detecting in utero exposure to amphetamines and cocaine.
{"title":"High-sensitivity neonatal urine drug testing has similar positivity rates to meconium for detecting in utero exposure to methamphetamine and cocaine.","authors":"Hannah M Brown, Stephen M Roper, Dennis J Dietzen, Bridgit O Crews","doi":"10.1093/jat/bkad085","DOIUrl":"10.1093/jat/bkad085","url":null,"abstract":"<p><p>Current guidelines recommend universal screening for substance use disorders in obstetric patients, and neonatal drug testing is also frequently performed. Meconium is often the preferred specimen type to detect neonatal drug exposure due to a longer window of detection compared to urine, but most laboratories send out meconium testing to specialized reference laboratories, which can delay results for several days or more. Here, we evaluate a rapid and definitive liquid chromatography-tandem mass spectrometry method for neonatal urine drug testing and compare results obtained using this method to paired meconium drug testing in 1,424 neonates for amphetamines, cocaine, cannabinoids, opiates, oxycodone and phencyclidine. Urine testing showed equivalent sensitivity to current meconium methods for detecting in utero exposure to amphetamines and cocaine.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"99-103"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klára Odehnalová, Petra Přibilová, Blahoslav Maršálek, Pavel Babica
Saxitoxins (STXs) are potent neurotoxins produced by marine dinoflagellates or freshwater cyanobacteria known to cause acute and eventually fatal human intoxications, which are classified as paralytic shellfish poisonings (PSPs). Rapid analysis of STXs in blood plasma can be used for a timely diagnosis and confirmation of PSPs. We developed a fast and simple method of STX extraction based on plasma sample acidification and precipitation by acetonitrile, followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Our approach provides the results ≤30 min, with a limit of detection of 2.8 ng/mL and a lower limit of quantification of 5.0 ng/mL. Within-run and between-run precision experiments showed good reproducibility with ≤15% values. Standard curves for calibration were linear with correlation coefficients ≥0.98 across the assay calibration range (5-200 ng/mL). In an interlaboratory analytical exercise, the method was found to be 100% accurate in determining the presence or absence of STX in human plasma specimens, with recovery values of 86-99%. This simple method for STX determination in animal or human plasma can quickly and reliably diagnose STX exposures and confirm suspected PSP cases to facilitate patient treatment or expedite necessary public health or security actions.
{"title":"A fast and reliable LC-MS-MS method for the quantification of saxitoxin in blood plasma samples.","authors":"Klára Odehnalová, Petra Přibilová, Blahoslav Maršálek, Pavel Babica","doi":"10.1093/jat/bkad092","DOIUrl":"10.1093/jat/bkad092","url":null,"abstract":"<p><p>Saxitoxins (STXs) are potent neurotoxins produced by marine dinoflagellates or freshwater cyanobacteria known to cause acute and eventually fatal human intoxications, which are classified as paralytic shellfish poisonings (PSPs). Rapid analysis of STXs in blood plasma can be used for a timely diagnosis and confirmation of PSPs. We developed a fast and simple method of STX extraction based on plasma sample acidification and precipitation by acetonitrile, followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Our approach provides the results ≤30 min, with a limit of detection of 2.8 ng/mL and a lower limit of quantification of 5.0 ng/mL. Within-run and between-run precision experiments showed good reproducibility with ≤15% values. Standard curves for calibration were linear with correlation coefficients ≥0.98 across the assay calibration range (5-200 ng/mL). In an interlaboratory analytical exercise, the method was found to be 100% accurate in determining the presence or absence of STX in human plasma specimens, with recovery values of 86-99%. This simple method for STX determination in animal or human plasma can quickly and reliably diagnose STX exposures and confirm suspected PSP cases to facilitate patient treatment or expedite necessary public health or security actions.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"119-125"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urine drug screening by immunoassay is a common method to quickly identify drug exposures in the emergency setting and to detect unexpected drug exposures in a variety of patient care and occupational health settings. Although they provide rapid results, immunoassays are susceptible to cross-reactivity with other medications and metabolites. Herein we evaluate the performance of the Thermo Scientific DRI Amphetamines immunoassay for reactivity with trazodone, aripiprazole, atomoxetine, solriamfetol and relevant metabolites. Each of these compounds were spiked into drug-free urine across a range of concentrations and assessed for positivity on amphetamine screen. We demonstrate that the Thermo Scientific DRI assay is susceptible to interferences from m-chlorophenylpiperazine (mCPP), the main metabolite of trazodone, and solriamfetol. Characterization of assay-specific interferences in toxicology screening is instrumental for accurate interpretation of toxicology results, evaluation of patients in emergent settings and supporting patient care.
{"title":"Solriamfetol and m-chlorophenylpiperazine cause false positive amphetamine results on urine drug screening.","authors":"Ashley R Rackow, Claire E Knezevic","doi":"10.1093/jat/bkad088","DOIUrl":"10.1093/jat/bkad088","url":null,"abstract":"<p><p>Urine drug screening by immunoassay is a common method to quickly identify drug exposures in the emergency setting and to detect unexpected drug exposures in a variety of patient care and occupational health settings. Although they provide rapid results, immunoassays are susceptible to cross-reactivity with other medications and metabolites. Herein we evaluate the performance of the Thermo Scientific DRI Amphetamines immunoassay for reactivity with trazodone, aripiprazole, atomoxetine, solriamfetol and relevant metabolites. Each of these compounds were spiked into drug-free urine across a range of concentrations and assessed for positivity on amphetamine screen. We demonstrate that the Thermo Scientific DRI assay is susceptible to interferences from m-chlorophenylpiperazine (mCPP), the main metabolite of trazodone, and solriamfetol. Characterization of assay-specific interferences in toxicology screening is instrumental for accurate interpretation of toxicology results, evaluation of patients in emergent settings and supporting patient care.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"126-129"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138482387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madeleine E Wood, Glenna J Brown, Erin L Karschner, Joshua Z Seither, Jordan T Brown, Jessica L Knittel, Jeffrey P Walterscheid
A safe and productive workplace requires a sober workforce, free from substances that impair judgment and concentration. Although drug monitoring programs already exist, the scope and loopholes of standard workplace testing panels are well known, allowing other substances to remain a source of risk. Therefore, a high-throughput urine screening method for psilocin, mitragynine, phencyclidine, ketamine, norketamine and dehydronorketamine was developed and validated in conjunction with a urine and blood confirmation method. There are analytical challenges to overcome with psilocin and mitragynine, particularly when it comes to drug stability and unambiguous identification in authentic specimens. Screening and confirmation methods were validated according to the American National Standards Institute/Academy Standards Board (ANSI/ASB) Standard 036, Standard Practices for Method Validation in Forensic Toxicology. An automated liquid handling system equipped with dispersive pipette extraction tips was utilized for preparing screening samples, whereas an offline solid-phase extraction method was used for confirmation sample preparation. Both methods utilized liquid chromatography-tandem mass spectrometry to achieve limits of detection between 1-5 ng/mL for the screening method and 1 ng/mL for the confirmation method. Automation allows for faster throughput and enhanced quality assurance, which improves turnaround time. Compared to previous in-house methods, specimen volumes were substantially decreased for both blood and urine, which is an advantage when volume is limited. This screening technique is well suited for evaluating large numbers of specimens from those employed in safety-sensitive workforce positions. This method can be utilized by workplace drug testing, human performance and postmortem laboratories seeking robust qualitative screening and confirmation methods for analytes that have traditionally been challenging to routinely analyze.
{"title":"Screening and confirmation of psilocin, mitragynine, phencyclidine, ketamine and ketamine metabolites by liquid chromatography-tandem mass spectrometry.","authors":"Madeleine E Wood, Glenna J Brown, Erin L Karschner, Joshua Z Seither, Jordan T Brown, Jessica L Knittel, Jeffrey P Walterscheid","doi":"10.1093/jat/bkae002","DOIUrl":"10.1093/jat/bkae002","url":null,"abstract":"<p><p>A safe and productive workplace requires a sober workforce, free from substances that impair judgment and concentration. Although drug monitoring programs already exist, the scope and loopholes of standard workplace testing panels are well known, allowing other substances to remain a source of risk. Therefore, a high-throughput urine screening method for psilocin, mitragynine, phencyclidine, ketamine, norketamine and dehydronorketamine was developed and validated in conjunction with a urine and blood confirmation method. There are analytical challenges to overcome with psilocin and mitragynine, particularly when it comes to drug stability and unambiguous identification in authentic specimens. Screening and confirmation methods were validated according to the American National Standards Institute/Academy Standards Board (ANSI/ASB) Standard 036, Standard Practices for Method Validation in Forensic Toxicology. An automated liquid handling system equipped with dispersive pipette extraction tips was utilized for preparing screening samples, whereas an offline solid-phase extraction method was used for confirmation sample preparation. Both methods utilized liquid chromatography-tandem mass spectrometry to achieve limits of detection between 1-5 ng/mL for the screening method and 1 ng/mL for the confirmation method. Automation allows for faster throughput and enhanced quality assurance, which improves turnaround time. Compared to previous in-house methods, specimen volumes were substantially decreased for both blood and urine, which is an advantage when volume is limited. This screening technique is well suited for evaluating large numbers of specimens from those employed in safety-sensitive workforce positions. This method can be utilized by workplace drug testing, human performance and postmortem laboratories seeking robust qualitative screening and confirmation methods for analytes that have traditionally been challenging to routinely analyze.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"111-118"},"PeriodicalIF":2.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}