The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.
{"title":"Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer's disease across anatomical axes.","authors":"Arjun V Masurkar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005196/pdf/nihms974141.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36245667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-06-29DOI: 10.4172/2161-0460.1000443
Onder Albayram, Peter Angeli, Elizabeth Bernstein, Sean Baxley, Ziang Gao, Kun Ping Lu, Xiao Zhen Zhou
Tau is a microtubule-associated protein heavily implicated in neurodegenerative diseases collectively known as tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Phosphorylation of tau at Thr231 allows for the isomerization of phosphorylated tau (p-tau) into distinct cis and trans conformations. Cis, but not trans, p-tau is detectable not only in Alzheimer's disease and chronic traumatic encephalopathy, but also right after traumatic brain injury depending on injury severity and frequency both in humans and animal models. Cis p-tau is not only neurotoxic but also spreads from a neuron to another in a prion-like fashion, functioning as a primary driver of neurodegeneration, which can be effectively neutralized by cis p-tau antibody. This represents an exciting new opportunity for understanding disease development and developing early biomarkers and effective therapies of tauopathies.
{"title":"Targeting Prion-like Cis Phosphorylated Tau Pathology in Neurodegenerative Diseases.","authors":"Onder Albayram, Peter Angeli, Elizabeth Bernstein, Sean Baxley, Ziang Gao, Kun Ping Lu, Xiao Zhen Zhou","doi":"10.4172/2161-0460.1000443","DOIUrl":"10.4172/2161-0460.1000443","url":null,"abstract":"<p><p>Tau is a microtubule-associated protein heavily implicated in neurodegenerative diseases collectively known as tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Phosphorylation of tau at Thr231 allows for the isomerization of phosphorylated tau (p-tau) into distinct cis and trans conformations. Cis, but not trans, p-tau is detectable not only in Alzheimer's disease and chronic traumatic encephalopathy, but also right after traumatic brain injury depending on injury severity and frequency both in humans and animal models. Cis p-tau is not only neurotoxic but also spreads from a neuron to another in a prion-like fashion, functioning as a primary driver of neurodegeneration, which can be effectively neutralized by cis p-tau antibody. This represents an exciting new opportunity for understanding disease development and developing early biomarkers and effective therapies of tauopathies.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36475802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-05-31DOI: 10.4172/2161-0460.1000439
Troy T Rohn, Nayoung Kim, Noail F Isho, Jacob M Mack
Despite a wealth of knowledge gained in the past three decades concerning the molecular underpinnings of Alzheimer's disease (AD), progress towards obtaining effective, disease modifying therapies has proven to be challenging. In this manner, numerous clinical trials targeting the production, aggregation, and toxicity of beta-amyloid, have failed to meet efficacy standards. This puts into question the beta-amyloid hypothesis and suggests that additional treatment strategies should be explored. The recent emergence of CRISPR/Cas9 gene editing as a relatively straightforward, inexpensive, and precise system has led to an increased interest of applying this technique in AD. CRISPR/Cas9 gene editing can be used as a direct treatment approach or to help establish better animal models that more faithfully mimic human neurodegenerative diseases. In this manner, this technique has already shown promise in other neurological disorders, such as Huntington's disease. The purpose of this review is to examine the potential utility of CRISPR/Cas9 as a treatment option for AD by targeting specific genes including those that cause early-onset AD, as well as those that are significant risk factors for late-onset AD such as the apolipoprotein E4 (APOE4) gene.
{"title":"The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease.","authors":"Troy T Rohn, Nayoung Kim, Noail F Isho, Jacob M Mack","doi":"10.4172/2161-0460.1000439","DOIUrl":"https://doi.org/10.4172/2161-0460.1000439","url":null,"abstract":"<p><p>Despite a wealth of knowledge gained in the past three decades concerning the molecular underpinnings of Alzheimer's disease (AD), progress towards obtaining effective, disease modifying therapies has proven to be challenging. In this manner, numerous clinical trials targeting the production, aggregation, and toxicity of beta-amyloid, have failed to meet efficacy standards. This puts into question the beta-amyloid hypothesis and suggests that additional treatment strategies should be explored. The recent emergence of CRISPR/Cas9 gene editing as a relatively straightforward, inexpensive, and precise system has led to an increased interest of applying this technique in AD. CRISPR/Cas9 gene editing can be used as a direct treatment approach or to help establish better animal models that more faithfully mimic human neurodegenerative diseases. In this manner, this technique has already shown promise in other neurological disorders, such as Huntington's disease. The purpose of this review is to examine the potential utility of CRISPR/Cas9 as a treatment option for AD by targeting specific genes including those that cause early-onset AD, as well as those that are significant risk factors for late-onset AD such as the apolipoprotein E4 (APOE4) gene.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36383522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-02-28DOI: 10.4172/2161-0460.1000428
Moath Hamed, Frank Schraml, Jeffrey Wilson, James Galvin, Marwan N Sabbagh
Objective: To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB).
Background: Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients.
Methods: This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads.
Results: On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05).
Conclusion: Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.
{"title":"Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.","authors":"Moath Hamed, Frank Schraml, Jeffrey Wilson, James Galvin, Marwan N Sabbagh","doi":"10.4172/2161-0460.1000428","DOIUrl":"https://doi.org/10.4172/2161-0460.1000428","url":null,"abstract":"<p><strong>Objective: </strong>To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB).</p><p><strong>Background: </strong>Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients.</p><p><strong>Methods: </strong>This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads.</p><p><strong>Results: </strong>On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05).</p><p><strong>Conclusion: </strong>Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these <i>in vivo</i> biomarkers.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36012412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-08-10DOI: 10.4172/2161-0460.1000444
David J Irwin, Howard I Hurtig
Parkinson's Disease (PD) and the closely related Dementia with Lewy Bodies (DLB) are due to the accumulation of pathogenic alpha-synuclein protein in brain cells manifest by heterogeneous motor and non-motor symptoms, including cognitive impairment and dementia. The majority of patients with Parkinson's Disease develop Dementia (PDD) in late stages of the disease and have widespread neocortical distribution of alpha-synuclein pathology at autopsy, compared with PD without dementia, in which neocortical synuclein pathology is less prevalent. These three entities PD, DLB and PDD comprise a clinical spectrum, collectively known as Lewy Body Disorders (LBD). Recent investigations into the neuropathological basis of LBD have demonstrated that while synuclein pathology is the defining feature of these disorders, it is often accompanied by other age-related neurodegenerative pathologies. In particular, amyloid plaque and tau tangle pathology characteristic of Alzheimer's Disease (AD) (~50% of all LBD patients have sufficient pathology at autopsy for a secondary neuropathologic diagnosis of AD), appear to contribute to cognitive impairment in LBD, and the combination is associated with a shorter interval between onset of motor symptoms and development of dementia and a shorter life span. Further, the co-occurrence of neocortical alpha-synuclein, tau and amyloid pathologies found at end-stage disease suggests a potential synergistic interaction of these individual pathologies in humans during life, mirroring experimental observations in animal and cell model systems that show how pathogenic species of synuclein fibrils can promote trans-synaptic spread of both tauopathy and synucleinopathy with strain-like properties. Newer post-mortem studies using digital methods to measure pathologic burden have highlighted distinct neocortical patterns of areas with relative higher density of tau pathology in LBD compared to AD that support these model data. The emerging field of cerebrospinal fluid and molecular imaging biomarkers of synuclein, amyloid and tau pathologies in LBD is contributing to a greater understanding of how the different pathologies evolve and interact to produce clinical heterogeneity in LBD. Future work to elucidate biologically meaningful clinical subgroups of synucleinopathy and its co-pathology must focus on the full clinicopathological spectrum of LBD and use validated biomarkers, when available, to design clinical trials based on the precise selection of homogeneous patient subgroups to maximize statistical power for detecting the impact of treatment.
{"title":"The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders.","authors":"David J Irwin, Howard I Hurtig","doi":"10.4172/2161-0460.1000444","DOIUrl":"10.4172/2161-0460.1000444","url":null,"abstract":"<p><p>Parkinson's Disease (PD) and the closely related Dementia with Lewy Bodies (DLB) are due to the accumulation of pathogenic alpha-synuclein protein in brain cells manifest by heterogeneous motor and non-motor symptoms, including cognitive impairment and dementia. The majority of patients with Parkinson's Disease develop Dementia (PDD) in late stages of the disease and have widespread neocortical distribution of alpha-synuclein pathology at autopsy, compared with PD without dementia, in which neocortical synuclein pathology is less prevalent. These three entities PD, DLB and PDD comprise a clinical spectrum, collectively known as Lewy Body Disorders (LBD). Recent investigations into the neuropathological basis of LBD have demonstrated that while synuclein pathology is the defining feature of these disorders, it is often accompanied by other age-related neurodegenerative pathologies. In particular, amyloid plaque and tau tangle pathology characteristic of Alzheimer's Disease (AD) (~50% of all LBD patients have sufficient pathology at autopsy for a secondary neuropathologic diagnosis of AD), appear to contribute to cognitive impairment in LBD, and the combination is associated with a shorter interval between onset of motor symptoms and development of dementia and a shorter life span. Further, the co-occurrence of neocortical alpha-synuclein, tau and amyloid pathologies found at end-stage disease suggests a potential synergistic interaction of these individual pathologies in humans during life, mirroring experimental observations in animal and cell model systems that show how pathogenic species of synuclein fibrils can promote trans-synaptic spread of both tauopathy and synucleinopathy with strain-like properties. Newer post-mortem studies using digital methods to measure pathologic burden have highlighted distinct neocortical patterns of areas with relative higher density of tau pathology in LBD compared to AD that support these model data. The emerging field of cerebrospinal fluid and molecular imaging biomarkers of synuclein, amyloid and tau pathologies in LBD is contributing to a greater understanding of how the different pathologies evolve and interact to produce clinical heterogeneity in LBD. Future work to elucidate biologically meaningful clinical subgroups of synucleinopathy and its co-pathology must focus on the full clinicopathological spectrum of LBD and use validated biomarkers, when available, to design clinical trials based on the precise selection of homogeneous patient subgroups to maximize statistical power for detecting the impact of treatment.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000444","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36713828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-01-23DOI: 10.4172/2161-0460.1000420
Salil Sharma, Hui-Chen Lu
Significant advancements have been made in unraveling and understanding the non-coding elements of the human genome. New insights into the structure and function of noncoding RNAs have emerged. Their relevance in the context of both physiological cellular homeostasis and human diseases is getting appreciated. As a result, exploration of noncoding RNAs, in particular microRNAs (miRs), as therapeutic agents or targets of therapeutic strategies is under way. This review summarizes and discusses in depth the current literature on the role of miRs in neurodegenerative diseases.
{"title":"microRNAs in Neurodegeneration: Current Findings and Potential Impacts.","authors":"Salil Sharma, Hui-Chen Lu","doi":"10.4172/2161-0460.1000420","DOIUrl":"https://doi.org/10.4172/2161-0460.1000420","url":null,"abstract":"<p><p>Significant advancements have been made in unraveling and understanding the non-coding elements of the human genome. New insights into the structure and function of noncoding RNAs have emerged. Their relevance in the context of both physiological cellular homeostasis and human diseases is getting appreciated. As a result, exploration of noncoding RNAs, in particular microRNAs (miRs), as therapeutic agents or targets of therapeutic strategies is under way. This review summarizes and discusses in depth the current literature on the role of miRs in neurodegenerative diseases.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36189345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-01-24DOI: 10.4172/2161-0460.1000421
Julia Derk, Michael MacLean, Judyta Juranek, Ann Marie Schmidt
The Receptor for Advanced Glycation Endproducts (RAGE) is an immunoglobulin-type, transmembrane receptor that is expressed on numerous cell types in the Central Nervous System (CNS) and periphery, such as neurons, astrocytes, microglia, mononuclear phagocytes, epithelial cells and endothelial cells (ECs). RAGE binds a discrete repertoire of ligands, including non-enzymatically glycated proteins and lipids, also known as advanced glycation endproducts (AGEs), for which the receptor is named, in addition to multiple members of the S100/calgranulin family, oligomeric forms of Aβ, high mobility group box 1 (HMGB1), phosphatidylserine (PS) and lysophosphatidic acid.
{"title":"The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration.","authors":"Julia Derk, Michael MacLean, Judyta Juranek, Ann Marie Schmidt","doi":"10.4172/2161-0460.1000421","DOIUrl":"10.4172/2161-0460.1000421","url":null,"abstract":"The Receptor for Advanced Glycation Endproducts (RAGE) is an immunoglobulin-type, transmembrane receptor that is expressed on numerous cell types in the Central Nervous System (CNS) and periphery, such as neurons, astrocytes, microglia, mononuclear phagocytes, epithelial cells and endothelial cells (ECs). RAGE binds a discrete repertoire of ligands, including non-enzymatically glycated proteins and lipids, also known as advanced glycation endproducts (AGEs), for which the receptor is named, in addition to multiple members of the S100/calgranulin family, oligomeric forms of Aβ, high mobility group box 1 (HMGB1), phosphatidylserine (PS) and lysophosphatidic acid.","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000421","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36791501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.4172/2161-0460.1000412
A. Masurkar
The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.
{"title":"Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer's disease across anatomical axes.","authors":"A. Masurkar","doi":"10.4172/2161-0460.1000412","DOIUrl":"https://doi.org/10.4172/2161-0460.1000412","url":null,"abstract":"The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78613381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-01Epub Date: 2017-07-31DOI: 10.4172/2161-0460.1000355
H N Cukier, B K Kunkle, K L Hamilton, S Rolati, M A Kohli, P L Whitehead, J Jaworski, J M Vance, M L Cuccaro, R M Carney, J R Gilbert, L A Farrer, E R Martin, G W Beecham, J L Haines, M A Pericak-Vance
Objective: Alzheimer's disease (AD) is a neurodegenerative disorder for which more than 20 genetic loci have been implicated to date. However, studies demonstrate not all genetic factors have been identified. Therefore, in this study we seek to identify additional rare variants and novel genes potentially contributing to AD.
Methods: Whole exome sequencing was performed on 23 multi-generational families with an average of eight affected subjects. Exome sequencing was filtered for rare, nonsynonymous and loss-of-function variants. Alterations predicted to have a functional consequence and located within either a previously reported AD gene, a linkage peak (LOD>2), or clustering in the same gene across multiple families, were prioritized.
Results: Rare variants were found in known AD risk genes including AKAP9, CD33, CR1, EPHA1, INPP5D, NME8, PSEN1, SORL1, TREM2 and UNC5C. Three families had five variants of interest in linkage regions with LOD>2. Genes with segregating alterations in these peaks include CD163L1 and CLECL1, two genes that have both been implicated in immunity, CTNNA1, which encodes a catenin in the cerebral cortex and MIEF1, a gene that may induce mitochondrial dysfunction and has the potential to damage neurons. Four genes were identified with alterations in more than one family include PLEKHG5, a gene that causes Charcot-Marie-Tooth disease and THBS2, which promotes synaptogenesis.
Conclusion: Utilizing large families with a heavy burden of disease allowed for the identification of rare variants co-segregating with disease. Variants were identified in both known AD risk genes and in novel genes.
{"title":"Exome Sequencing of Extended Families with Alzheimer's Disease Identifies Novel Genes Implicated in Cell Immunity and Neuronal Function.","authors":"H N Cukier, B K Kunkle, K L Hamilton, S Rolati, M A Kohli, P L Whitehead, J Jaworski, J M Vance, M L Cuccaro, R M Carney, J R Gilbert, L A Farrer, E R Martin, G W Beecham, J L Haines, M A Pericak-Vance","doi":"10.4172/2161-0460.1000355","DOIUrl":"https://doi.org/10.4172/2161-0460.1000355","url":null,"abstract":"<p><strong>Objective: </strong>Alzheimer's disease (AD) is a neurodegenerative disorder for which more than 20 genetic loci have been implicated to date. However, studies demonstrate not all genetic factors have been identified. Therefore, in this study we seek to identify additional rare variants and novel genes potentially contributing to AD.</p><p><strong>Methods: </strong>Whole exome sequencing was performed on 23 multi-generational families with an average of eight affected subjects. Exome sequencing was filtered for rare, nonsynonymous and loss-of-function variants. Alterations predicted to have a functional consequence and located within either a previously reported AD gene, a linkage peak (LOD>2), or clustering in the same gene across multiple families, were prioritized.</p><p><strong>Results: </strong>Rare variants were found in known AD risk genes including <i>AKAP9, CD33, CR1, EPHA1, INPP5D, NME8, PSEN1, SORL1, TREM2</i> and <i>UNC5C</i>. Three families had five variants of interest in linkage regions with LOD>2. Genes with segregating alterations in these peaks include <i>CD163L1</i> and <i>CLECL1</i>, two genes that have both been implicated in immunity, <i>CTNNA1</i>, which encodes a catenin in the cerebral cortex and <i>MIEF1</i>, a gene that may induce mitochondrial dysfunction and has the potential to damage neurons. Four genes were identified with alterations in more than one family include <i>PLEKHG5</i>, a gene that causes Charcot-Marie-Tooth disease and <i>THBS2</i>, which promotes synaptogenesis.</p><p><strong>Conclusion: </strong>Utilizing large families with a heavy burden of disease allowed for the identification of rare variants co-segregating with disease. Variants were identified in both known AD risk genes and in novel genes.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"7 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35640969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-01Epub Date: 2017-09-15DOI: 10.4172/2161-0460.1000374
Yong Wang, Yun Shi, Huafeng Wei
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia among aged people whose population is rapidly increasing. AD not only seriously affects the patient's physical health and quality of life, but also adds a heavy burden to the patient's family and society. It is urgent to understand AD pathogenesis and develop the means of prevention and treatment. AD is a chronic devastating neurodegenerative disease without effective treatment. Current approaches for management focus on helping patients relieve or delay the symptoms of cognitive dysfunction. The calcium ion (Ca2+) is an important second messenger in the function and structure of nerve cell circuits in the brain such as neuronal growth, exocytosis, as well as in synaptic and cognitive function. Increasing numbers of studies suggested that disruption of intracellular Ca2+ homeostasis, especially the abnormal and excessive Ca2+ release from the endoplasmic reticulum (ER) via the ryanodine receptor (RYR), plays important roles in orchestrating the dynamic of the neuropathology of AD and associated memory loss, cognitive dysfunction. Dantrolene, a known antagonist of the RYR and a clinically available drug to treat malignant hyperthermia, can ameliorate the abnormal Ca2+ release from the RYR in AD and the subsequent pathogenesis, such as increased β-secretase and γ-secretase activities, production of Amyloid-β 42 (Aβ 42) and its oligomer, impaired autophagy, synapse dysfunction, and memory loss. However, more studies are needed to confirm the efficacy and safety repurposing dantrolene as a therapeutic drug in AD.
阿尔茨海默病(AD)是一种破坏性的神经退行性疾病,是老年人痴呆症的最常见原因,其人口正在迅速增加。AD不仅严重影响患者的身体健康和生活质量,也给患者的家庭和社会增加了沉重的负担。了解阿尔茨海默病的发病机制,发展预防和治疗手段是当务之急。阿尔茨海默病是一种慢性破坏性神经退行性疾病,没有有效的治疗方法。目前的治疗方法侧重于帮助患者缓解或延缓认知功能障碍的症状。钙离子(Ca2+)是脑内神经细胞回路功能和结构的重要第二信使,如神经元生长、胞外分泌以及突触和认知功能。越来越多的研究表明,细胞内Ca2+稳态的破坏,特别是通过ryanodine受体(RYR)从内质网(ER)释放异常和过量的Ca2+,在AD的神经病理动态和相关的记忆丧失、认知功能障碍中起着重要作用。丹trolene是一种已知的RYR拮抗剂和临床可用的治疗恶性高热的药物,可以改善AD中RYR的异常Ca2+释放和随后的发病机制,如β-分泌酶和γ-分泌酶活性增加,淀粉样蛋白-β 42 (a β 42)及其寡聚物的产生,自噬受损,突触功能障碍和记忆丧失。然而,需要更多的研究来证实丹曲林作为阿尔茨海默病治疗药物的有效性和安全性。
{"title":"Calcium Dysregulation in Alzheimer's Disease: A Target for New Drug Development.","authors":"Yong Wang, Yun Shi, Huafeng Wei","doi":"10.4172/2161-0460.1000374","DOIUrl":"https://doi.org/10.4172/2161-0460.1000374","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia among aged people whose population is rapidly increasing. AD not only seriously affects the patient's physical health and quality of life, but also adds a heavy burden to the patient's family and society. It is urgent to understand AD pathogenesis and develop the means of prevention and treatment. AD is a chronic devastating neurodegenerative disease without effective treatment. Current approaches for management focus on helping patients relieve or delay the symptoms of cognitive dysfunction. The calcium ion (Ca<sup>2+</sup>) is an important second messenger in the function and structure of nerve cell circuits in the brain such as neuronal growth, exocytosis, as well as in synaptic and cognitive function. Increasing numbers of studies suggested that disruption of intracellular Ca<sup>2+</sup> homeostasis, especially the abnormal and excessive Ca<sup>2+</sup> release from the endoplasmic reticulum (ER) via the ryanodine receptor (RYR), plays important roles in orchestrating the dynamic of the neuropathology of AD and associated memory loss, cognitive dysfunction. Dantrolene, a known antagonist of the RYR and a clinically available drug to treat malignant hyperthermia, can ameliorate the abnormal Ca<sup>2</sup>+ release from the RYR in AD and the subsequent pathogenesis, such as increased β-secretase and γ-secretase activities, production of Amyloid-β 42 (Aβ 42) and its oligomer, impaired autophagy, synapse dysfunction, and memory loss. However, more studies are needed to confirm the efficacy and safety repurposing dantrolene as a therapeutic drug in AD.</p>","PeriodicalId":15013,"journal":{"name":"Journal of Alzheimer's disease & Parkinsonism","volume":"7 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-0460.1000374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35230821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}