首页 > 最新文献

ASCEND 2020最新文献

英文 中文
Astronauts: Beyond the Boundaries of Space and Dime 宇航员:超越空间和硬币的边界
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4179
Christian E. Pezalla
{"title":"Astronauts: Beyond the Boundaries of Space and Dime","authors":"Christian E. Pezalla","doi":"10.2514/6.2020-4179","DOIUrl":"https://doi.org/10.2514/6.2020-4179","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"223 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114432730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2019-2020 AIAA Undergraduate Space Design Competition: Lunar Basecamp 2019-2020年AIAA大学生空间设计竞赛:月球大本营
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4264
Aerbwong Chitamitara, King Saba, Brandon Delannoy, Bryce Satterfield, Christopher Ligrano, Joshua Barnum, Allan Ramos, N. Nakhjiri, P. Chai
{"title":"2019-2020 AIAA Undergraduate Space Design Competition: Lunar Basecamp","authors":"Aerbwong Chitamitara, King Saba, Brandon Delannoy, Bryce Satterfield, Christopher Ligrano, Joshua Barnum, Allan Ramos, N. Nakhjiri, P. Chai","doi":"10.2514/6.2020-4264","DOIUrl":"https://doi.org/10.2514/6.2020-4264","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"192 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124328970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Considerations for a Mars Highland Helicopter 火星高地直升机的设计考虑
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4027
L. Young, J. Delaune, W. Johnson, Shannah Withrow, H. Cummings, E. Sklyanskiy, J. Izraelevitz, A. Schutte, A. Fraeman, R. Bhagwat
Mars is sharply divided into the relatively low-lying northern hemisphere, filled with plains, to the higher-elevation, rugged, southern hemisphere. All landers sent so far to Mars have only landed on the plains of the northern hemisphere. Access to the Martian Highlands would present an opportunity to acquire unique insights into the early geologic history of Mars. But landing on the Martian highlands presents many engineering challenges. A new approach has recently been proposed to consider the use of mid-air deployment, during the final subsonic stages of entry, descent, and landing, of a small rotorcraft from the aeroshell. The rotorcraft would enter a powered descent state (rotors would be spun to full speed at moderate collectives) after aeroshell release until reaching a modest altitude above the ground where the vehicle would pullout to level flight. After completing this initial EDL mid-air-deployment and landing, the rotorcraft, which would be capable of solarelectric recharging, would recharge over the course of a few days until ready for subsequent flight sorties to explore the highlands. This overall vehicle/mission concept is called the Mars Highland Helicopter. The paper will next demonstrate that a key necessary condition – efficient hover and forward flight under the much thinner atmospheric conditions of the highlands (0.01 kg/m3 vs. 0.015 kg.m3 for the Ingenuity Mars Helicopter Technology Demonstrator at Jezero Crater) – is indeed possible. This paper considers a number of EDL release/deployment strategies to minimize deployment aeroloads and maximize controllability during release from the EDL backshell. This mid-air-deployment discussion will be followed by a general analytical treatment of a Mars rotorcraft entering fullypowered descent and then forward flight cruise. 1 Associate Fellow; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 2 Robotics Technologist, NASA Jet Propulsion Laboratory, Pasadena, CA 3 Fellow; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 4 Member; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 5 Member; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 6 NASA Jet Propulsion Laboratory, Pasadena, CA 7 NASA Jet Propulsion Laboratory, Pasadena, CA 8 NASA Jet Propulsion Laboratory, Pasadena, CA 9 NASA Jet Propulsion Laboratory, Pasadena, CA 10 Student intern, Ohio State University, Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 2 Nomenclature AGL Above ground level AMH Advanced Mars Helicopter CONOPS Concept of operations c Speed of sound, m/s CPL Lower rotor power coefficient CPU Upper rotor power coefficient CTL Lower rotor thrust coefficient CTU Upper rotor thrust coefficient D Aeroshell/capsule diameter, m EDL Entry, Descent, and Landing HIGE Hover in ground effect HOGE Hover out of ground effect MHH Mars Highland Helicopter MSH Mars Science Helicopter MHTD Mars Helicopter Technology Demonstrator, aka “Ingenu
火星被明显地分为地势相对较低、布满平原的北半球和地势较高、崎岖不平的南半球。到目前为止,送往火星的所有着陆器都只降落在北半球的平原上。进入火星高地将为获得对火星早期地质历史的独特见解提供机会。但在火星高地着陆面临着许多工程上的挑战。最近提出了一种新的方法,考虑在进入、下降和着陆的最后亚音速阶段使用小型旋翼机。在弹壳释放后,旋翼机将进入动力下降状态(旋翼将以适度的集体速度旋转到全速),直到到达离地面的适度高度,在那里飞行器将拉出到水平飞行。在完成初始EDL空中部署和着陆后,能够进行太阳能充电的旋翼机将在几天内充电,直到准备好后续的飞行架次以探索高地。这个整体飞行器/任务概念被称为火星高地直升机。接下来,本文将论证一个关键的必要条件——在高原更薄的大气条件下(0.01 kg/m3 vs. 0.015 kg)高效悬停和前飞。m3(在耶泽罗陨石坑的独创性火星直升机技术演示器)-确实是可能的。本文考虑了一些EDL释放/部署策略,以最小化部署负载并最大化EDL后壳释放过程中的可控性。这个空中部署的讨论之后,将对火星旋翼飞行器进入全动力下降和向前飞行巡航的一般分析处理。副研究员1名;航空力学办公室,NASA艾姆斯研究中心,莫菲特场,CA 2机器人技术专家,NASA喷气推进实验室,帕萨迪纳,CA 3研究员;NASA艾姆斯研究中心航空力学办公室,莫菲特机场,CA 4成员;美国宇航局艾姆斯研究中心航空力学办公室,莫菲特场,CA 5成员;航空力学办公室,NASA艾姆斯研究中心,莫菲特场,CA 6 NASA喷气推进实验室,帕萨迪纳,CA 7 NASA喷气推进实验室,帕萨迪纳,CA 8 NASA喷气推进实验室,帕萨迪纳,CA 9 NASA喷气推进实验室,帕萨迪纳,CA 10学生实习生,俄亥俄州立大学,航空力学办公室,NASA艾姆斯研究中心,莫菲特场,CA 2命名法AGL地面上AMH先进火星直升机CONOPS操作概念c声速,m/s CPL旋翼下功率系数CPU旋翼上功率系数CTL旋翼下推力系数CTU旋翼上推力系数D外壳/胶囊直径,m EDL进入、下降和着陆high悬停在地效应HOGE悬停在地效应MHH火星高原直升机MSH火星科学直升机MHTD火星直升机技术演示,又名“独创”NDARC NASA旋翼机设计与分析软件工具R旋翼半径m s / R Rotor-to-rotor垂直间距比例对转子半径R sD /太阳能电池阵列垂直间距上转子与转子半径VD下降速度,m / s VTip叶尖速度、m / s V向前飞行的巡航速度,m垂直起落垂直起飞和着陆轴转子轴角,零摄氏度时转子轴垂直,度0.75转子集体,即叶片距角径向站在百分之七十五,度向前飞行之前比,μ= V V⁄
{"title":"Design Considerations for a Mars Highland Helicopter","authors":"L. Young, J. Delaune, W. Johnson, Shannah Withrow, H. Cummings, E. Sklyanskiy, J. Izraelevitz, A. Schutte, A. Fraeman, R. Bhagwat","doi":"10.2514/6.2020-4027","DOIUrl":"https://doi.org/10.2514/6.2020-4027","url":null,"abstract":"Mars is sharply divided into the relatively low-lying northern hemisphere, filled with plains, to the higher-elevation, rugged, southern hemisphere. All landers sent so far to Mars have only landed on the plains of the northern hemisphere. Access to the Martian Highlands would present an opportunity to acquire unique insights into the early geologic history of Mars. But landing on the Martian highlands presents many engineering challenges. A new approach has recently been proposed to consider the use of mid-air deployment, during the final subsonic stages of entry, descent, and landing, of a small rotorcraft from the aeroshell. The rotorcraft would enter a powered descent state (rotors would be spun to full speed at moderate collectives) after aeroshell release until reaching a modest altitude above the ground where the vehicle would pullout to level flight. After completing this initial EDL mid-air-deployment and landing, the rotorcraft, which would be capable of solarelectric recharging, would recharge over the course of a few days until ready for subsequent flight sorties to explore the highlands. This overall vehicle/mission concept is called the Mars Highland Helicopter. The paper will next demonstrate that a key necessary condition – efficient hover and forward flight under the much thinner atmospheric conditions of the highlands (0.01 kg/m3 vs. 0.015 kg.m3 for the Ingenuity Mars Helicopter Technology Demonstrator at Jezero Crater) – is indeed possible. This paper considers a number of EDL release/deployment strategies to minimize deployment aeroloads and maximize controllability during release from the EDL backshell. This mid-air-deployment discussion will be followed by a general analytical treatment of a Mars rotorcraft entering fullypowered descent and then forward flight cruise. 1 Associate Fellow; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 2 Robotics Technologist, NASA Jet Propulsion Laboratory, Pasadena, CA 3 Fellow; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 4 Member; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 5 Member; Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 6 NASA Jet Propulsion Laboratory, Pasadena, CA 7 NASA Jet Propulsion Laboratory, Pasadena, CA 8 NASA Jet Propulsion Laboratory, Pasadena, CA 9 NASA Jet Propulsion Laboratory, Pasadena, CA 10 Student intern, Ohio State University, Aeromechanics Office, NASA Ames Research Center, Moffett Field, CA 2 Nomenclature AGL Above ground level AMH Advanced Mars Helicopter CONOPS Concept of operations c Speed of sound, m/s CPL Lower rotor power coefficient CPU Upper rotor power coefficient CTL Lower rotor thrust coefficient CTU Upper rotor thrust coefficient D Aeroshell/capsule diameter, m EDL Entry, Descent, and Landing HIGE Hover in ground effect HOGE Hover out of ground effect MHH Mars Highland Helicopter MSH Mars Science Helicopter MHTD Mars Helicopter Technology Demonstrator, aka “Ingenu","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"279 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123156918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Solar Polar Imager Concept 太阳极地成像仪概念
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4060
Dan Thomas, Ken-ichiro Kobayashi, Baysinger Mike, Q. Bean, P. Capizzo, K. Clements, L. Fabisinski, J. Garcia, Sutherlin Steve
{"title":"Solar Polar Imager Concept","authors":"Dan Thomas, Ken-ichiro Kobayashi, Baysinger Mike, Q. Bean, P. Capizzo, K. Clements, L. Fabisinski, J. Garcia, Sutherlin Steve","doi":"10.2514/6.2020-4060","DOIUrl":"https://doi.org/10.2514/6.2020-4060","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122243512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Lunar Water Pilot Plant Conceptual Design 月球水试验厂概念设计
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4236
D. Linne, J. Kleinhenz, A. Paz
{"title":"Lunar Water Pilot Plant Conceptual Design","authors":"D. Linne, J. Kleinhenz, A. Paz","doi":"10.2514/6.2020-4236","DOIUrl":"https://doi.org/10.2514/6.2020-4236","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129971900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Overview of NASA’s Break the Ice Lunar Challenge 美国宇航局“破冰月球挑战”概述
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4196
M. Roman, N. Vetcha, M. Fiske, P. Carrato, K. Leucht
{"title":"Overview of NASA’s Break the Ice Lunar Challenge","authors":"M. Roman, N. Vetcha, M. Fiske, P. Carrato, K. Leucht","doi":"10.2514/6.2020-4196","DOIUrl":"https://doi.org/10.2514/6.2020-4196","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134630332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enabling the Future - Developing the Space Workforce through Mobilization of Industry Experts 赋能未来-通过动员工业专家发展空间劳动力
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4253
Carie Lemack, Kathleen J. fredette
{"title":"Enabling the Future - Developing the Space Workforce through Mobilization of Industry Experts","authors":"Carie Lemack, Kathleen J. fredette","doi":"10.2514/6.2020-4253","DOIUrl":"https://doi.org/10.2514/6.2020-4253","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134315734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Information-Driven and Risk-Bounded Autonomy for Adaptive Science and Exploration 面向自适应科学与探索的信息驱动和风险有限自治
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4149
B. Ayton, Marlyse Reeves, E. Timmons, B. Williams, M. Ingham
{"title":"Toward Information-Driven and Risk-Bounded Autonomy for Adaptive Science and Exploration","authors":"B. Ayton, Marlyse Reeves, E. Timmons, B. Williams, M. Ingham","doi":"10.2514/6.2020-4149","DOIUrl":"https://doi.org/10.2514/6.2020-4149","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129793550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Can Space Insurance Underwriters Keep Up with a Growing Commercial Space Industry? 太空保险承销商能否跟上日益增长的商业太空产业?
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4200
Ronald H. Freeman
{"title":"Can Space Insurance Underwriters Keep Up with a Growing Commercial Space Industry?","authors":"Ronald H. Freeman","doi":"10.2514/6.2020-4200","DOIUrl":"https://doi.org/10.2514/6.2020-4200","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"326 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133042166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Keplerian Analysis for Versatile Evaluation of Arbitrary Trajectories 任意轨迹通用性评价的开普勒分析
Pub Date : 2020-11-02 DOI: 10.2514/6.2020-4031
Katherine T. McBrayer, S. J. Edwards
{"title":"Keplerian Analysis for Versatile Evaluation of Arbitrary Trajectories","authors":"Katherine T. McBrayer, S. J. Edwards","doi":"10.2514/6.2020-4031","DOIUrl":"https://doi.org/10.2514/6.2020-4031","url":null,"abstract":"","PeriodicalId":153489,"journal":{"name":"ASCEND 2020","volume":"81 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133106686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ASCEND 2020
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1