首页 > 最新文献

J. Interconnect. Networks最新文献

英文 中文
The λ4-Connectivity of the Cartesian Product of Trees 树的笛卡尔积的λ4连通性
Pub Date : 2023-01-09 DOI: 10.1142/s0219265922500074
Hengzhe Li, Jiajia Wang, Rongxia Hao
Given a connected graph [Formula: see text] and [Formula: see text] with [Formula: see text], an [Formula: see text]-tree is a such subgraph [Formula: see text] of [Formula: see text] that is a tree with [Formula: see text]. Two [Formula: see text]-trees [Formula: see text] and [Formula: see text] are edge-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum size of a set of edge-disjoint [Formula: see text]-trees in [Formula: see text]. The [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. In this paper, we first show some structural properties of edge-disjoint [Formula: see text]-trees by Fan Lemma and König-ore Formula. Then, the [Formula: see text]-connectivity of the Cartesian product of trees is determined. That is, let [Formula: see text] be trees, then [Formula: see text] if [Formula: see text] for each [Formula: see text], otherwise [Formula: see text]. As corollaries, [Formula: see text]-connectivity for some graph classes such as hypercubes and meshes can be obtained directly.
给定一个连通图[公式:见文]和[公式:见文]与[公式:见文]的连通图[公式:见文],一个[公式:见文]树就是[公式:见文]的这样一个子图[公式:见文],它是一个有[公式:见文]的树。如果[公式:见文本],两个[公式:见文本]-树[公式:见文本]和[公式:见文本]是边不相交的。设[公式:见文]为[公式:见文]中一组边不相交的[公式:见文]树的最大大小。[公式:见文]的[公式:见文]-连通性被定义为[公式:见文]。在本文中,我们首先用范引理和König-ore公式证明了边不相交树的一些结构性质。然后,确定了树的笛卡尔积的连通性。也就是说,设[Formula: see text]为树,如果[Formula: see text]为每个[Formula: see text],则[Formula: see text]为[Formula: see text],否则为[Formula: see text]。作为推论,[公式:见文]-连通性的一些图类,如超立方体和网格可以直接得到。
{"title":"The λ4-Connectivity of the Cartesian Product of Trees","authors":"Hengzhe Li, Jiajia Wang, Rongxia Hao","doi":"10.1142/s0219265922500074","DOIUrl":"https://doi.org/10.1142/s0219265922500074","url":null,"abstract":"Given a connected graph [Formula: see text] and [Formula: see text] with [Formula: see text], an [Formula: see text]-tree is a such subgraph [Formula: see text] of [Formula: see text] that is a tree with [Formula: see text]. Two [Formula: see text]-trees [Formula: see text] and [Formula: see text] are edge-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum size of a set of edge-disjoint [Formula: see text]-trees in [Formula: see text]. The [Formula: see text]-connectivity of [Formula: see text] is defined as [Formula: see text]. In this paper, we first show some structural properties of edge-disjoint [Formula: see text]-trees by Fan Lemma and König-ore Formula. Then, the [Formula: see text]-connectivity of the Cartesian product of trees is determined. That is, let [Formula: see text] be trees, then [Formula: see text] if [Formula: see text] for each [Formula: see text], otherwise [Formula: see text]. As corollaries, [Formula: see text]-connectivity for some graph classes such as hypercubes and meshes can be obtained directly.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114131090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance-Edge-Monitoring Sets in Hierarchical and Corona Graphs 层次图和电晕图中的距离边监测集
Pub Date : 2022-12-28 DOI: 10.1142/s0219265922500037
Gang Yang, Changxiang He
Let [Formula: see text] and [Formula: see text] be the vertex set and edge set of graph [Formula: see text]. Let [Formula: see text] be the distance between vertices [Formula: see text] and [Formula: see text] in the graph [Formula: see text] and [Formula: see text] be the graph obtained by deleting edge [Formula: see text] from [Formula: see text]. For a vertex set [Formula: see text] and an edge [Formula: see text], let [Formula: see text] be the set of pairs [Formula: see text] with a vertex [Formula: see text] and a vertex [Formula: see text] such that [Formula: see text]. A vertex set [Formula: see text] is distance-edge-monitoring set, introduced by Foucaud, Kao, Klasing, Miller, and Ryan, if every edge [Formula: see text] is monitored by some vertex of [Formula: see text], that is, the set [Formula: see text] is nonempty. In this paper, we determine the smallest size of distance-edge-monitoring sets of hierarchical and corona graphs.
设[公式:见文]和[公式:见文]分别为图[公式:见文]的顶点集和边集。设[公式:见文]为图[公式:见文]中顶点[公式:见文]与[公式:见文]之间的距离,[公式:见文]为从[公式:见文]中删除边[公式:见文]后得到的图。对于一个顶点集[公式:见文]和一条边[公式:见文],设[公式:见文]是一个顶点[公式:见文]和一个顶点[公式:见文]的对[公式:见文]的集合,使得[公式:见文]。顶点集[Formula: see text]是由Foucaud、Kao、Klasing、Miller和Ryan引入的距离边监控集,如果每条边[Formula: see text]都被[Formula: see text]的某个顶点监控,即集合[Formula: see text]是非空的。在本文中,我们确定了分层图和电晕图的距离-边缘监测集的最小大小。
{"title":"Distance-Edge-Monitoring Sets in Hierarchical and Corona Graphs","authors":"Gang Yang, Changxiang He","doi":"10.1142/s0219265922500037","DOIUrl":"https://doi.org/10.1142/s0219265922500037","url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be the vertex set and edge set of graph [Formula: see text]. Let [Formula: see text] be the distance between vertices [Formula: see text] and [Formula: see text] in the graph [Formula: see text] and [Formula: see text] be the graph obtained by deleting edge [Formula: see text] from [Formula: see text]. For a vertex set [Formula: see text] and an edge [Formula: see text], let [Formula: see text] be the set of pairs [Formula: see text] with a vertex [Formula: see text] and a vertex [Formula: see text] such that [Formula: see text]. A vertex set [Formula: see text] is distance-edge-monitoring set, introduced by Foucaud, Kao, Klasing, Miller, and Ryan, if every edge [Formula: see text] is monitored by some vertex of [Formula: see text], that is, the set [Formula: see text] is nonempty. In this paper, we determine the smallest size of distance-edge-monitoring sets of hierarchical and corona graphs.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130459025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs 对称有向图和完全二部有向图的有向树连通性
Pub Date : 2022-12-24 DOI: 10.1142/s0219265922500086
Junran Yu
Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].
Sun和Yeo引入了有向树连通性的概念,包括广义的[公式:见文]-顶点强连通性,[公式:见文]和广义的[公式:见文]-弧强连通性,[公式:见文][公式:见文],这可以看作是对有向图的经典连通性的推广,也是对已建立的无向树连通性的自然延伸。本文研究了对称有向图和完全二部有向图的有向树连通性。我们给出了对称有向图的两个参数[公式:见文]和[公式:见文]的下界。我们还确定了每个[公式:见文]的[公式:见文]和[公式:见文]的[公式:见文]的[公式:见文]的精确值,其中[公式:见文]是有序的完全二部有向图[公式:见文]。
{"title":"Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs","authors":"Junran Yu","doi":"10.1142/s0219265922500086","DOIUrl":"https://doi.org/10.1142/s0219265922500086","url":null,"abstract":"Sun and Yeo introduced the concept of directed tree connectivity, including the generalized [Formula: see text]-vertex-strong connectivity, [Formula: see text] and generalized [Formula: see text]-arc-strong connectivity, [Formula: see text] [Formula: see text], which could be seen as a generalization of classical connectivity of digraphs and a natural extension of the well-established undirected tree connectivity. In this paper, we study the directed tree connectivity of symmetric digraphs and complete bipartite digraphs. We give lower bounds for the two parameters [Formula: see text] and [Formula: see text] on symmetric digraphs. We also determine the precise values of [Formula: see text] for every [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is a complete bipartite digraph of order [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129058252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless Sensor Network Security Analysis for Data and Aggregation 基于数据和聚合的无线传感器网络安全分析
Pub Date : 2022-12-19 DOI: 10.1142/s0219265922500025
Maravarman Manoharan, S. Babu, R. Pitchai
Data security is critical in wireless sensor networks (WSNs) because communication signals are highly available due to data transmission in free space. Attacks ranging from passive eavesdropping to active snooping are more common on these networks. This paper proposes secure data transfer using data encryption based on the improved Rivest–Shamir–Adleman (RSA) with Diffie–Hellman (DH) key exchange algorithm (IRSA-DH). For this purpose, the adaptive distance-based agglomerative hierarchical (ADAH)-based clustering method is used. Then the cluster head (CH) is selected using the improved weight-based rain optimization (IWRO) to improve the network’s lifespan. This study aims to design a secure group communication method for WSNs. In order to generate and distribute the key to the group, the RSA and DH and key exchange algorithm had been hybridized with the Key Management Center (KMC). For safe communication between users, the key exchange technique is investigated. The performance measures such as throughput, packet loss ratio (PLR), packet delivery ratio (PDR), latency, energy consumption, end-to-end delay (EED) and network lifetime are analyzed and compared with the existing approaches.
在无线传感器网络(WSNs)中,由于数据在自由空间中传输,通信信号具有很高的可用性,因此数据安全至关重要。从被动窃听到主动窥探的各种攻击在这些网络中更为常见。本文提出了一种基于改进的RSA (Rivest-Shamir-Adleman)和Diffie-Hellman (DH)密钥交换算法(IRSA-DH)的数据加密的安全数据传输方法。为此,采用基于自适应距离的聚类分层(ADAH)聚类方法。然后使用改进的基于权重的降雨优化(IWRO)选择簇头(CH),以提高网络的寿命。本研究旨在设计一种安全的无线传感器网络组通信方法。为了生成密钥并将其分发给组,RSA和DH以及密钥交换算法与密钥管理中心(KMC)混合在一起。为了实现用户间的安全通信,研究了密钥交换技术。分析了吞吐量、丢包率(PLR)、包投递率(PDR)、时延、能耗、端到端时延(EED)和网络寿命等性能指标,并与现有方法进行了比较。
{"title":"Wireless Sensor Network Security Analysis for Data and Aggregation","authors":"Maravarman Manoharan, S. Babu, R. Pitchai","doi":"10.1142/s0219265922500025","DOIUrl":"https://doi.org/10.1142/s0219265922500025","url":null,"abstract":"Data security is critical in wireless sensor networks (WSNs) because communication signals are highly available due to data transmission in free space. Attacks ranging from passive eavesdropping to active snooping are more common on these networks. This paper proposes secure data transfer using data encryption based on the improved Rivest–Shamir–Adleman (RSA) with Diffie–Hellman (DH) key exchange algorithm (IRSA-DH). For this purpose, the adaptive distance-based agglomerative hierarchical (ADAH)-based clustering method is used. Then the cluster head (CH) is selected using the improved weight-based rain optimization (IWRO) to improve the network’s lifespan. This study aims to design a secure group communication method for WSNs. In order to generate and distribute the key to the group, the RSA and DH and key exchange algorithm had been hybridized with the Key Management Center (KMC). For safe communication between users, the key exchange technique is investigated. The performance measures such as throughput, packet loss ratio (PLR), packet delivery ratio (PDR), latency, energy consumption, end-to-end delay (EED) and network lifetime are analyzed and compared with the existing approaches.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"429 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116012989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Intelligent Control of Beaconing Power and Beaconing Rate in Vehicular Ad Hoc Networks 车载自组网中信标功率和信标速率的智能控制研究
Pub Date : 2022-11-21 DOI: 10.1142/s0219265922500013
Driss Ait Omar, Hamid Garmani, Mohamed EL Amrani, Es-said Azougaghe, Mohamed Baslam, M. Jourhmane
In this paper, to avoid congestion in the wireless channel of vehicular ad hoc networks (VANETs), a joint beaconing rate and beaconing power based on game theory are proposed in this paper. The game is formulated as a non-cooperative game, a Bayesian game, and a cooperative game. Three distributed and iterative algorithms (Best Response Algorithm, Fictitious Play Algorithm, and Cooperative Bargaining Algorithm) are proposed for computing the beaconing power and beaconing rate of each vehicle. Extensive simulations show the convergence of a proposed algorithm to the equilibrium beaconing power and beaconing rate and give some insights on how the game parameters may vary the game outcome.
为了避免车载自组网无线信道的拥塞,提出了基于博弈论的联合信标速率和信标功率。该游戏分为非合作游戏、贝叶斯游戏和合作游戏。提出了三种分布式迭代算法(最佳响应算法、虚拟游戏算法和合作议价算法)来计算每辆车的信标功率和信标率。广泛的模拟显示了所提出的算法对平衡信标功率和信标速率的收敛性,并对游戏参数如何改变游戏结果提供了一些见解。
{"title":"Towards Intelligent Control of Beaconing Power and Beaconing Rate in Vehicular Ad Hoc Networks","authors":"Driss Ait Omar, Hamid Garmani, Mohamed EL Amrani, Es-said Azougaghe, Mohamed Baslam, M. Jourhmane","doi":"10.1142/s0219265922500013","DOIUrl":"https://doi.org/10.1142/s0219265922500013","url":null,"abstract":"In this paper, to avoid congestion in the wireless channel of vehicular ad hoc networks (VANETs), a joint beaconing rate and beaconing power based on game theory are proposed in this paper. The game is formulated as a non-cooperative game, a Bayesian game, and a cooperative game. Three distributed and iterative algorithms (Best Response Algorithm, Fictitious Play Algorithm, and Cooperative Bargaining Algorithm) are proposed for computing the beaconing power and beaconing rate of each vehicle. Extensive simulations show the convergence of a proposed algorithm to the equilibrium beaconing power and beaconing rate and give some insights on how the game parameters may vary the game outcome.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134017495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Security and Energy Aware Clustering-Based Routing in Wireless Sensor Network: Hybrid Nature-Inspired Algorithm for Optimal Cluster Head Selection 无线传感器网络中基于安全和能量感知的聚类路由:最优簇头选择的混合自然启发算法
Pub Date : 2022-10-29 DOI: 10.1142/s0219265921500390
Mallanagouda Biradar, Basavaraj Mathapathi
One of the significant approaches in implementing the routing of WSNs is clustering that leads to scalability and extending of network lifetime. In the clustered WSN, cluster heads (CHs) utilize maximum energy to another node. Moreover, it balanced the load present in the sensor nodes (SNs) between the CHS for enhancing the network lifespan. Moreover, the CH plays an important part in efficient routing, as well as it must be selected in an optimal way. Thus, this work intends to introduce a cluster-based routing approach in WSN, where it selects the CHs by the optimization algorithm. A new hybrid seagull rock swarm with opposition-based learning (HSROBL) is introduced for this purpose, which is the hybridized concept of rock hyraxes swarm optimization (RHSO) and seagull optimization algorithm (SOA). Further, the optimal CH selection is based on various parameters including distance, security, delay, and energy. At the end, the outcomes of the presented approach are analyzed to extant algorithms based on delay, alive nodes, average throughput, and residual energy, respectively. Based on throughput, alive node, residual energy, as well as delay, the overall improvement in performance is about 28.50%.
实现无线传感器网络路由的重要方法之一是集群,集群可以提高网络的可扩展性和延长网络生存期。在集群WSN中,簇头(CHs)将最大能量分配给另一个节点。此外,它还平衡了传感器节点(SNs)之间的负载,以提高网络寿命。此外,CH在高效路由中起着重要作用,必须以最优的方式选择CH。因此,本研究试图在WSN中引入一种基于集群的路由方法,通过优化算法选择CHs。为此,提出了一种新的基于对立学习的混合海鸥岩群算法(HSROBL),它是岩群优化(RHSO)和海鸥优化算法(SOA)的混合概念。此外,最优CH选择是基于各种参数,包括距离、安全性、延迟和能量。最后,对现有的基于延迟、活节点、平均吞吐量和剩余能量的算法进行了分析。基于吞吐量、活节点、剩余能量和延迟,总体性能提升约为28.50%。
{"title":"Security and Energy Aware Clustering-Based Routing in Wireless Sensor Network: Hybrid Nature-Inspired Algorithm for Optimal Cluster Head Selection","authors":"Mallanagouda Biradar, Basavaraj Mathapathi","doi":"10.1142/s0219265921500390","DOIUrl":"https://doi.org/10.1142/s0219265921500390","url":null,"abstract":"One of the significant approaches in implementing the routing of WSNs is clustering that leads to scalability and extending of network lifetime. In the clustered WSN, cluster heads (CHs) utilize maximum energy to another node. Moreover, it balanced the load present in the sensor nodes (SNs) between the CHS for enhancing the network lifespan. Moreover, the CH plays an important part in efficient routing, as well as it must be selected in an optimal way. Thus, this work intends to introduce a cluster-based routing approach in WSN, where it selects the CHs by the optimization algorithm. A new hybrid seagull rock swarm with opposition-based learning (HSROBL) is introduced for this purpose, which is the hybridized concept of rock hyraxes swarm optimization (RHSO) and seagull optimization algorithm (SOA). Further, the optimal CH selection is based on various parameters including distance, security, delay, and energy. At the end, the outcomes of the presented approach are analyzed to extant algorithms based on delay, alive nodes, average throughput, and residual energy, respectively. Based on throughput, alive node, residual energy, as well as delay, the overall improvement in performance is about 28.50%.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125005655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of Augmented 3-Ary n-Cubes with Extra Faults 带额外故障的增广3-Ary n-立方体的可靠性
Pub Date : 2022-09-29 DOI: 10.1142/s0219265921500407
Xueli Sun, Jianxi Fan, B. Cheng, Yan Wang, Jingya Zhou
Fault tolerance is critical to reliability analysis of interconnection networks since the vulnerability of component failure increases with the growth of network scale. Extra connectivity and extra diagnosability are two decisive indicators of the ability of parallel and distributed systems to tolerate and diagnose faulty nodes. This paper mainly establishes the [Formula: see text]-extra connectivity and [Formula: see text]-extra diagnosability of augmented [Formula: see text]-ary [Formula: see text]-cubes [Formula: see text], which is a generalization of [Formula: see text]-ary [Formula: see text]-cubes and augmented cubes. In addition, we explore the [Formula: see text]-extra diagnosis algorithm of [Formula: see text] under the MM* model.
随着网络规模的扩大,组件失效的脆弱性也随之增加,因此容错对互连网络的可靠性分析至关重要。额外的连通性和额外的可诊断性是并行和分布式系统容忍和诊断故障节点能力的两个决定性指标。本文主要建立了增广[公式:见文]-额外连通性[公式:见文]-ary[公式:见文]-立方体[公式:见文]的额外可诊断性[公式:见文],这是对[公式:见文]-ary[公式:见文]-立方体和增广立方体的推广。此外,我们还探索了MM*模型下[Formula: see text]- [Formula: see text]的额外诊断算法。
{"title":"Reliability of Augmented 3-Ary n-Cubes with Extra Faults","authors":"Xueli Sun, Jianxi Fan, B. Cheng, Yan Wang, Jingya Zhou","doi":"10.1142/s0219265921500407","DOIUrl":"https://doi.org/10.1142/s0219265921500407","url":null,"abstract":"Fault tolerance is critical to reliability analysis of interconnection networks since the vulnerability of component failure increases with the growth of network scale. Extra connectivity and extra diagnosability are two decisive indicators of the ability of parallel and distributed systems to tolerate and diagnose faulty nodes. This paper mainly establishes the [Formula: see text]-extra connectivity and [Formula: see text]-extra diagnosability of augmented [Formula: see text]-ary [Formula: see text]-cubes [Formula: see text], which is a generalization of [Formula: see text]-ary [Formula: see text]-cubes and augmented cubes. In addition, we explore the [Formula: see text]-extra diagnosis algorithm of [Formula: see text] under the MM* model.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132675655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance Optimally Edge Connectedness of Arrangement Graph Based on Subgraph Fault Pattern 基于子图故障模式的排列图距离最优边连通性
Pub Date : 2022-09-21 DOI: 10.1142/s0219265921500389
Zhengqi Yu, Shuming Zhou, Hong Zhang, Xiaoqing Liu
Large-scale multiprocessor systems or multicomputer systems based on networking have been extensively used in the big data era and social network. Fault tolerance is becoming an essential attribute in multiprocessor systems with the increase of the system scale. For any distinct vertices [Formula: see text], the local connectivity of [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the maximum number of independent [Formula: see text]-paths in system graph [Formula: see text]. The local edge connectivity of [Formula: see text], [Formula: see text], [Formula: see text], is defined similarly. For any [Formula: see text], [Formula: see text], if [Formula: see text] (or [Formula: see text], then [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the degree of [Formula: see text]. For any integers [Formula: see text] subject to [Formula: see text], if [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, then we call [Formula: see text] is [Formula: see text]-distance local optimally (edge) connected. In this work, we show that [Formula: see text] ([Formula: see text] is [Formula: see text]-arrangement graph) is [Formula: see text]-distance local optimally edge connected for [Formula: see text] and [Formula: see text].
基于网络的大型多处理机系统或多机系统在大数据时代和社会网络中得到了广泛的应用。随着多处理机系统规模的增大,容错性逐渐成为多处理机系统的基本属性。对于任意不同的顶点[公式:见文],[公式:见文]与[公式:见文]的局部连通性,用[公式:见文]表示为系统图[公式:见文]中独立[公式:见文]路径的最大数目。[公式:见文],[公式:见文],[公式:见文],[公式:见文]的局部边缘连通性定义类似。对于任意的[公式:见文],[公式:见文],如果[公式:见文](或[公式:见文]),则[公式:见文]是[公式:见文]的直径,[公式:见文]是[公式:见文]的度。对于服从于[公式:见文]的任意整数[公式:见文],如果[公式:见文]是[公式:见文]-距离最优(边)连通,则我们称[公式:见文]是[公式:见文]-距离局部最优(边)连通。在这项工作中,我们证明了[公式:见文]([公式:见文]是[公式:见文]-排列图)是[公式:见文]-距离局部最优边缘连接[公式:见文]和[公式:见文]。
{"title":"Distance Optimally Edge Connectedness of Arrangement Graph Based on Subgraph Fault Pattern","authors":"Zhengqi Yu, Shuming Zhou, Hong Zhang, Xiaoqing Liu","doi":"10.1142/s0219265921500389","DOIUrl":"https://doi.org/10.1142/s0219265921500389","url":null,"abstract":"Large-scale multiprocessor systems or multicomputer systems based on networking have been extensively used in the big data era and social network. Fault tolerance is becoming an essential attribute in multiprocessor systems with the increase of the system scale. For any distinct vertices [Formula: see text], the local connectivity of [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the maximum number of independent [Formula: see text]-paths in system graph [Formula: see text]. The local edge connectivity of [Formula: see text], [Formula: see text], [Formula: see text], is defined similarly. For any [Formula: see text], [Formula: see text], if [Formula: see text] (or [Formula: see text], then [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the degree of [Formula: see text]. For any integers [Formula: see text] subject to [Formula: see text], if [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, then we call [Formula: see text] is [Formula: see text]-distance local optimally (edge) connected. In this work, we show that [Formula: see text] ([Formula: see text] is [Formula: see text]-arrangement graph) is [Formula: see text]-distance local optimally edge connected for [Formula: see text] and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121292333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise Values for the Strong Subgraph 3-Arc-Connectivity of Cartesian Products of Some Digraph Classes 某些有向图类笛卡尔积的强子图3-弧连通性的精确值
Pub Date : 2022-08-27 DOI: 10.1142/s0219265921500365
Yiling Dong
Let [Formula: see text] be a digraph of order [Formula: see text], [Formula: see text] a subset of [Formula: see text] of size [Formula: see text] and [Formula: see text]. A strong subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-strong subgraph if [Formula: see text]. A pair of [Formula: see text]-strong subgraphs [Formula: see text] and [Formula: see text] is said to be arc-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum number of arc-disjoint [Formula: see text]-strong subgraphs in [Formula: see text]. Sun and Gutin defined the strong subgraph [Formula: see text]-arc-connectivity as [Formula: see text] The new parameter [Formula: see text] could be seen as a generalization of classical edge-connectivity of undirected graphs. In this paper, we get precise values for the strong subgraph 3-arc-connectivity of Cartesian products of some digraph classes. Also, we prove that there is no upper bound on [Formula: see text] depending on [Formula: see text] and [Formula: see text].
设[公式:见文]是有序的有向图[公式:见文],[公式:见文]是大小为[公式:见文]和[公式:见文]的[公式:见文]的子集。[公式:见文]的强子图[公式:见文]称为[公式:见文]-强子图,如果[公式:见文]。一对[公式:见文]-强子图[公式:见文]和[公式:见文]被称为弧不相交,如果[公式:见文]。设[公式:见文]为[公式:见文]中弧不相交[公式:见文]-强子图的最大数目。Sun和Gutin将强子图[公式:见文]-弧连通性定义为[公式:见文]。新的参数[公式:见文]可以看作是对经典无向图边连通性的推广。本文给出了一些有向图类笛卡尔积的强子图3-弧连通性的精确值。同时,我们证明了[公式:见文]不存在依赖于[公式:见文]和[公式:见文]的上界。
{"title":"Precise Values for the Strong Subgraph 3-Arc-Connectivity of Cartesian Products of Some Digraph Classes","authors":"Yiling Dong","doi":"10.1142/s0219265921500365","DOIUrl":"https://doi.org/10.1142/s0219265921500365","url":null,"abstract":"Let [Formula: see text] be a digraph of order [Formula: see text], [Formula: see text] a subset of [Formula: see text] of size [Formula: see text] and [Formula: see text]. A strong subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-strong subgraph if [Formula: see text]. A pair of [Formula: see text]-strong subgraphs [Formula: see text] and [Formula: see text] is said to be arc-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum number of arc-disjoint [Formula: see text]-strong subgraphs in [Formula: see text]. Sun and Gutin defined the strong subgraph [Formula: see text]-arc-connectivity as [Formula: see text] The new parameter [Formula: see text] could be seen as a generalization of classical edge-connectivity of undirected graphs. In this paper, we get precise values for the strong subgraph 3-arc-connectivity of Cartesian products of some digraph classes. Also, we prove that there is no upper bound on [Formula: see text] depending on [Formula: see text] and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129251601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Broadcasting in Fully Connected Trees 全连接树的最佳广播
Pub Date : 2022-08-05 DOI: 10.1142/s0219265921500377
M. Gholami, Hovhannes A. Harutyunyan, Edward Maraachlian
Broadcasting is disseminating information in a network where a specific message must spread to all network vertices as quickly as possible. Finding the minimum broadcast time of a vertex in an arbitrary network is proven to be NP-complete. However, this problem is solvable for a few families of networks. In this paper, we present an optimal algorithm for finding the broadcast time of any vertex in a fully connected tree ([Formula: see text]) in [Formula: see text] time. An [Formula: see text] is formed by attaching arbitrary trees to vertices of a complete graph of size [Formula: see text] where [Formula: see text] is the total number of vertices in the graph.
广播是在网络中传播信息,其中特定消息必须尽可能快地传播到所有网络顶点。证明了在任意网络中寻找一个顶点的最小广播时间是np完全的。然而,这个问题对于一些网络家族是可以解决的。在本文中,我们提出了一种在[公式:见文]时间中求全连通树([公式:见文])中任意顶点的广播时间的最优算法。通过将任意树附加到大小为[公式:见文本]的完整图的顶点上形成[公式:见文本],其中[公式:见文本]是图中顶点的总数。
{"title":"Optimal Broadcasting in Fully Connected Trees","authors":"M. Gholami, Hovhannes A. Harutyunyan, Edward Maraachlian","doi":"10.1142/s0219265921500377","DOIUrl":"https://doi.org/10.1142/s0219265921500377","url":null,"abstract":"Broadcasting is disseminating information in a network where a specific message must spread to all network vertices as quickly as possible. Finding the minimum broadcast time of a vertex in an arbitrary network is proven to be NP-complete. However, this problem is solvable for a few families of networks. In this paper, we present an optimal algorithm for finding the broadcast time of any vertex in a fully connected tree ([Formula: see text]) in [Formula: see text] time. An [Formula: see text] is formed by attaching arbitrary trees to vertices of a complete graph of size [Formula: see text] where [Formula: see text] is the total number of vertices in the graph.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114633425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
J. Interconnect. Networks
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1