Pub Date : 2024-12-02DOI: 10.1080/1061186X.2024.2434908
Viana Manrique-Suárez, Bryan A Mangui Catota, Frank Camacho Casanova, Nery A Jara Mendoza, Maria A Contreras Vera, Rafael Maura Pérez, Fátima Reyes López, Roberto Toledo Alonso, Pablo Ignacio Castro Henriquez, Oliberto Sánchez Ramos
Effective drug delivery to the central nervous system (CNS) remains a challenge due to the blood-brain barrier (BBB). Macromolecules such as proteins and peptides are unable to cross BBB and have poor therapeutic efficacy due to little or no drug distribution. A promising alternative is the conjugation of a drug to a shuttle molecule that can reach the CNS via receptor-mediated transcytosis (RMT). Several receptors have been described for RMT, such as low-density lipoprotein receptor-related protein 1 (LRP1). We used phage display technology combined with an in vitro BBB model to identify LRP1 ligands. A single domain antibody (dAb) library was used to enrich for species that selectively bind to immobilised LRP1 ligand. We obtained a novel nanobody, dAb D11, that selectively binds to LRP1 receptor and mediates in vitro internalisation of phage particles in brain endothelial cells, with a dissociation constant Kd of 183.1 ± 85.8 nM. The high permeability of D11 was demonstrated by an in vivo biodistribution assay in mice. We discovered D11, the first LRP1 binding dAb with BBB permeability. Our findings will contribute to the development of RMT-based drugs for the treatment of CNS diseases.
{"title":"Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB.","authors":"Viana Manrique-Suárez, Bryan A Mangui Catota, Frank Camacho Casanova, Nery A Jara Mendoza, Maria A Contreras Vera, Rafael Maura Pérez, Fátima Reyes López, Roberto Toledo Alonso, Pablo Ignacio Castro Henriquez, Oliberto Sánchez Ramos","doi":"10.1080/1061186X.2024.2434908","DOIUrl":"https://doi.org/10.1080/1061186X.2024.2434908","url":null,"abstract":"<p><p>Effective drug delivery to the central nervous system (CNS) remains a challenge due to the blood-brain barrier (BBB). Macromolecules such as proteins and peptides are unable to cross BBB and have poor therapeutic efficacy due to little or no drug distribution. A promising alternative is the conjugation of a drug to a shuttle molecule that can reach the CNS via receptor-mediated transcytosis (RMT). Several receptors have been described for RMT, such as low-density lipoprotein receptor-related protein 1 (LRP1). We used phage display technology combined with an <i>in vitro</i> BBB model to identify LRP1 ligands. A single domain antibody (dAb) library was used to enrich for species that selectively bind to immobilised LRP1 ligand. We obtained a novel nanobody, dAb D11, that selectively binds to LRP1 receptor and mediates <i>in vitro</i> internalisation of phage particles in brain endothelial cells, with a dissociation constant Kd of 183.1 ± 85.8 nM. The high permeability of D11 was demonstrated by an <i>in vivo</i> biodistribution assay in mice. We discovered D11, the first LRP1 binding dAb with BBB permeability. Our findings will contribute to the development of RMT-based drugs for the treatment of CNS diseases.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-10"},"PeriodicalIF":4.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano-based drug delivery systems (DDSs) have demonstrated the ability to address challenges posed by therapeutic agents, enhancing drug efficiency and reducing side effects. Various nanoparticles (NPs) are utilised as DDSs with unique characteristics, leading to diverse applications across different diseases. However, the complexity, cost and time-consuming nature of laboratory processes, the large volume of data, and the challenges in data analysis have prompted the integration of artificial intelligence (AI) tools. AI has been employed in designing, characterising and manufacturing drug delivery nanosystems, as well as in predicting treatment efficiency. AI's potential to personalise drug delivery based on individual patient factors, optimise formulation design and predict drug properties has been highlighted. By leveraging AI and large datasets, developing safe and effective DDSs can be accelerated, ultimately improving patient outcomes and advancing pharmaceutical sciences. This review article investigates the role of AI in the development of nano-DDSs, with a focus on their therapeutic applications. The use of AI in DDSs has the potential to revolutionise treatment optimisation and improve patient care.
{"title":"Artificial intelligence in nanotechnology for treatment of diseases.","authors":"Soroush Heydari, Niloofar Masoumi, Erfan Esmaeeli, Seyed Mohammad Ayyoubzadeh, Fatemeh Ghorbani-Bidkorpeh, Mahnaz Ahmadi","doi":"10.1080/1061186X.2024.2393417","DOIUrl":"10.1080/1061186X.2024.2393417","url":null,"abstract":"<p><p>Nano-based drug delivery systems (DDSs) have demonstrated the ability to address challenges posed by therapeutic agents, enhancing drug efficiency and reducing side effects. Various nanoparticles (NPs) are utilised as DDSs with unique characteristics, leading to diverse applications across different diseases. However, the complexity, cost and time-consuming nature of laboratory processes, the large volume of data, and the challenges in data analysis have prompted the integration of artificial intelligence (AI) tools. AI has been employed in designing, characterising and manufacturing drug delivery nanosystems, as well as in predicting treatment efficiency. AI's potential to personalise drug delivery based on individual patient factors, optimise formulation design and predict drug properties has been highlighted. By leveraging AI and large datasets, developing safe and effective DDSs can be accelerated, ultimately improving patient outcomes and advancing pharmaceutical sciences. This review article investigates the role of AI in the development of nano-DDSs, with a focus on their therapeutic applications. The use of AI in DDSs has the potential to revolutionise treatment optimisation and improve patient care.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1247-1266"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-22DOI: 10.1080/1061186X.2024.2390628
Melanie Walter, Hannah Weißbach, Florian Gembardt, Sagor Halder, Kathrin Schorr, Daniel Fleischmann, Vladimir Todorov, Christian Hugo, Achim Goepferich
A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery via active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.
治疗系膜细胞相关疾病(如 IgA 肾病、糖尿病肾病或狼疮性肾炎)的一个主要缺陷是肾小球系膜的药物可用性差,而这些疾病往往会发展为终末期肾病。通过纳米颗粒的主动靶向给药,利用颗粒表面附着的配体识别靶细胞,以增加间质的生物分布,是克服这一障碍的一种很有前景的策略。然而,尽管已经介绍了几种肾小球组织靶向方法,但迄今为止还没有任何研究证明纳米颗粒有能力提供足够的药物量,并结合适当的纳米颗粒靶向保留时间,在系膜中引发相关的生物效应。在我们的研究中,我们将诱导铁突变的模型化合物依拉斯汀封装到模拟腺病毒的间质细胞靶向纳米粒子中,通过铁突变依赖性组织学变化直接观察生物效应。通过目视显微镜和组织学切片分析,我们不仅能在靶细胞内定位注射颗粒 10 天,还能证明其在肾小球内的生物活性。总之,我们研究了仿腺病毒纳米粒子的特性,它是一种非常适合治疗间质细胞相关疾病的给药平台,还为潜在的肾脏疾病模型奠定了基础。
{"title":"Long-term residence and efficacy of adenovirus-mimetic nanoparticles in renal target tissue.","authors":"Melanie Walter, Hannah Weißbach, Florian Gembardt, Sagor Halder, Kathrin Schorr, Daniel Fleischmann, Vladimir Todorov, Christian Hugo, Achim Goepferich","doi":"10.1080/1061186X.2024.2390628","DOIUrl":"10.1080/1061186X.2024.2390628","url":null,"abstract":"<p><p>A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery <i>via</i> active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1320-1332"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-01DOI: 10.1080/1061186X.2023.2299724
Yi-Huang Liu, Juan Chen, Xiang Chen, Hong Liu
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
{"title":"Factors of faecal microbiota transplantation applied to cancer management.","authors":"Yi-Huang Liu, Juan Chen, Xiang Chen, Hong Liu","doi":"10.1080/1061186X.2023.2299724","DOIUrl":"10.1080/1061186X.2023.2299724","url":null,"abstract":"<p><p>The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"101-114"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-01DOI: 10.1080/1061186X.2024.2309575
Muskan Sharma, Parodi Alessandro, Sanith Cheriyamundath, Manu Lopus
Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.
碳纳米管(CNT)是碳的管状同素异形体,由碳原子组成管状结构。碳纳米管具有高比表面积、化学稳定性和丰富的电子多芳香族结构,这有助于提高其载药能力。因此,碳纳米管在包括癌症在内的多种生物医学应用中得到了广泛的探索。通过采用智能制造策略,可以设计出专门针对癌细胞的碳纳米管。这种靶向给药方法不仅能最大限度地发挥 CNTs 的治疗功效,还能最大限度地减少潜在的副作用。碳纳米管还可用于光热疗法(PTT)和免疫疗法,光热疗法使用光敏剂产生活性氧(ROS)来杀死癌细胞。关于后者,基于 CNT 的制剂可以优先靶向肿瘤内的调节性 T 细胞。CNTS 还是高效的抗原递呈剂。凭借光声、荧光和拉曼成像功能,CNT 还是出色的诊断工具。此外,金或银纳米粒子等金属纳米粒子与碳纳米管相结合,可制成纳米生物传感器来测量生物反应。本综述将重点介绍目前有关碳纳米管治疗潜力的知识、与大规模生产碳纳米管相关的挑战、可能的副作用以及在探索其临床应用时需要考虑的重要参数。
{"title":"Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges.","authors":"Muskan Sharma, Parodi Alessandro, Sanith Cheriyamundath, Manu Lopus","doi":"10.1080/1061186X.2024.2309575","DOIUrl":"10.1080/1061186X.2024.2309575","url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"287-299"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-01DOI: 10.1080/1061186X.2024.2309566
Xuewei Cui, Zhong He, Jianjia Liang, Mulan Wei, Zhiyong Guo, Yiqing Zhou, Ye Qin, Zhangshuang Deng
Dehydrocurvularin (DCV) is a promising lead compound for anti-cancer therapy. Unfortunately, the development of DCV-based drugs has been hampered by its poor solubility and bioavailability. Herein, we prepared a DCV-loaded mPEG-PLGA nanoparticles (DCV-NPs) with improved drug properties and therapeutic efficacy. The spherical and discrete particles of DCV-NPs had a uniform diameter of 101.8 ± 0.45 nm and negative zeta potential of -22.5 ± 1.12 mV (pH = 7.4), and its entrapment efficiency (EE) and drug loading (DL) were ∼53.28 ± 1.12 and 10.23 ± 0.30%, respectively. In vitro the release of DCV-NPs lasted for more than 120 h in a sustained-release pattern, its antiproliferation efficacy towards breast cancer cell lines (MCF-7, MDA-MB-231, and 4T1) was better than that of starting drug DCV, and it could be efficiently and rapidly internalised by breast cancer cells. In vivo DCV-NPs were gradually accumulated in tumour areas of mice and significantly suppressed tumour growth. In summary, loading water-insoluble DCV onto nanoparticles has the potential to be an effective agent for breast cancer therapy with injectable property and tumour targeting capacity.
{"title":"Dehydrocurvularin-loaded mPEG-PLGA nanoparticles for targeted breast cancer drug delivery: preparation, characterization, <i>in vitro</i>, and <i>in vivo</i> evaluation.","authors":"Xuewei Cui, Zhong He, Jianjia Liang, Mulan Wei, Zhiyong Guo, Yiqing Zhou, Ye Qin, Zhangshuang Deng","doi":"10.1080/1061186X.2024.2309566","DOIUrl":"10.1080/1061186X.2024.2309566","url":null,"abstract":"<p><p>Dehydrocurvularin (DCV) is a promising lead compound for anti-cancer therapy. Unfortunately, the development of DCV-based drugs has been hampered by its poor solubility and bioavailability. Herein, we prepared a DCV-loaded mPEG-PLGA nanoparticles (DCV-NPs) with improved drug properties and therapeutic efficacy. The spherical and discrete particles of DCV-NPs had a uniform diameter of 101.8 ± 0.45 nm and negative zeta potential of -22.5 ± 1.12 mV (pH = 7.4), and its entrapment efficiency (EE) and drug loading (DL) were ∼53.28 ± 1.12 and 10.23 ± 0.30%, respectively. <i>In vitro</i> the release of DCV-NPs lasted for more than 120 h in a sustained-release pattern, its antiproliferation efficacy towards breast cancer cell lines (MCF-7, MDA-MB-231, and 4T1) was better than that of starting drug DCV, and it could be efficiently and rapidly internalised by breast cancer cells. <i>In vivo</i> DCV-NPs were gradually accumulated in tumour areas of mice and significantly suppressed tumour growth. In summary, loading water-insoluble DCV onto nanoparticles has the potential to be an effective agent for breast cancer therapy with injectable property and tumour targeting capacity.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"325-333"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, we developed a novel TGN decorated erythrocyte membrane-coated poly (lactic-co-glycolic acid) nanoparticle (TRNNs). The nanoparticle significantly boosted the penetration (7.3 times) in a U-118MG and HCMEC/D3 cell co-culture BBB model in vitro. Living image was performed to assess the TRNNs distribution in vivo. The fluorescence intensity in the isolated brain of TRDNs-treated mice was about 8 times that of the DNs-treated. In the novel object recognition test, the mice after administration of TRDNs showed higher recognition index (0.414 ± 0.016) than the model group (0.275 ± 0.019). A significant increase in the number of dendritic spines from TRNNs administrated mice hippocampi neurons was observed after Golgi stain. This improvement of neurons was also confirmed by the significant high expression of PSD95 protein level in hippocampi. We measured the OD values of Aβ25-35 induced PC12 cells that pre-treatment with different nanoparticles and concluded that TRNNs had a robust neuroprotection effect. Above all, functional biomimetic nanoparticles could increase the accumulation of naringenin into brain, thereby enable the drug to exert greater therapeutic effects.
{"title":"Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer's disease.","authors":"Chang Yan, Jinlian Gu, Shun Yin, Hao Wu, Xia Lei, Fang Geng, Ning Zhang, Xiaodan Wu","doi":"10.1080/1061186X.2023.2290453","DOIUrl":"10.1080/1061186X.2023.2290453","url":null,"abstract":"<p><p>Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, we developed a novel TGN decorated erythrocyte membrane-coated poly (lactic-co-glycolic acid) nanoparticle (TRNNs). The nanoparticle significantly boosted the penetration (7.3 times) in a U-118MG and HCMEC/D3 cell co-culture BBB model <i>in vitro</i>. Living image was performed to assess the TRNNs distribution <i>in vivo</i>. The fluorescence intensity in the isolated brain of TRDNs-treated mice was about 8 times that of the DNs-treated. In the novel object recognition test, the mice after administration of TRDNs showed higher recognition index (0.414 ± 0.016) than the model group (0.275 ± 0.019). A significant increase in the number of dendritic spines from TRNNs administrated mice hippocampi neurons was observed after Golgi stain. This improvement of neurons was also confirmed by the significant high expression of PSD95 protein level in hippocampi. We measured the OD values of Aβ<sub>25-35</sub> induced PC12 cells that pre-treatment with different nanoparticles and concluded that TRNNs had a robust neuroprotection effect. Above all, functional biomimetic nanoparticles could increase the accumulation of naringenin into brain, thereby enable the drug to exert greater therapeutic effects.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"80-92"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138477775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-12DOI: 10.1080/1061186X.2023.2288995
Eyup Bilgi, David A Winkler, Ceyda Oksel Karakus
There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates.
{"title":"Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.","authors":"Eyup Bilgi, David A Winkler, Ceyda Oksel Karakus","doi":"10.1080/1061186X.2023.2288995","DOIUrl":"10.1080/1061186X.2023.2288995","url":null,"abstract":"<p><p>There is strong interest to improve the therapeutic potential of gold nanoparticles (GNPs) while ensuring their safe development. The utility of GNPs in medicine requires a molecular-level understanding of how GNPs interact with biological systems. Despite considerable research efforts devoted to monitoring the internalisation of GNPs, there is still insufficient understanding of the factors responsible for the variability in GNP uptake in different cell types. Data-driven models are useful for identifying the sources of this variability. Here, we trained multiple machine learning models on 2077 data points for 193 individual nanoparticles from 59 independent studies to predict cellular uptake level of GNPs and compared different algorithms for their efficacies of prediction. The five ensemble learners (Xgboost, random forest, bootstrap aggregation, gradient boosting, light gradient boosting machine) made the best predictions of GNP uptake, accounting for 80-90% of the variance in the test data. The models identified particle size, zeta potential, GNP concentration and exposure duration as the most important drivers of cellular uptake. We expect this proof-of-concept study will foster the more effective use of accumulated cellular uptake data for GNPs and minimise any methodological bias in individual studies that may lead to under- or over-estimation of cellular internalisation rates.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"66-73"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-26DOI: 10.1080/1061186X.2024.2384074
Yoshiyuki Hattori, Min Tang, Junnosuke Sato, Makoto Tsuiji, Kumi Kawano
We have previously demonstrated that messenger RNA (mRNA) lipoplexes composed of N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and polyethylene glycol-cholesteryl ether (PEG-Chol) exhibited high protein expression in the lungs and spleen of mice after intravenous injection and induced high levels of antigen-specific IgG1 upon immunisation. In this study, we optimised PEG modification in mRNA lipoplexes to reduce mRNA accumulation in the lungs and evaluated the suppression of tumour growth in mice bearing mouse lymphoma E.G7-ovalbumin (OVA) tumours by immunising them with an intravenous injection of OVA mRNA lipoplexes. PEGylation of mRNA lipoplexes with 3 mol% PEG-Chol (LP-DC-1-16-3PCL) prevented agglutination of erythrocytes and reduced accumulation in the lungs. Intravenous injection of LP-DC-1-16-3PCL lipoplexes containing OVA mRNA into mice induced high levels of anti-OVA IgG1 (83,000 mU/mL) in serum, and exhibited a high cytotoxic activity (97%) against E.G7-OVA cells by the splenocytes of mice. Furthermore, immunisation with LP-DC-1-16-3PCL lipoplexes containing OVA mRNA suppressed E.G7-OVA tumour growth compared to control mRNA. Based on these results, LP-DC-1-16-3PCL lipoplexes may be an effective mRNA vaccine for inducing antibody- and cytotoxic cell-mediated immune responses to tumours through intravenous injection.
{"title":"Evaluation of mRNA lipoplexes prepared using modified ethanol injection method as a tumour vaccine.","authors":"Yoshiyuki Hattori, Min Tang, Junnosuke Sato, Makoto Tsuiji, Kumi Kawano","doi":"10.1080/1061186X.2024.2384074","DOIUrl":"10.1080/1061186X.2024.2384074","url":null,"abstract":"<p><p>We have previously demonstrated that messenger RNA (mRNA) lipoplexes composed of <i>N</i>-hexadecyl-<i>N</i>,<i>N</i>-dimethylhexadecan-1-aminium bromide (DC-1-16), 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphoethanolamine (DOPE), and polyethylene glycol-cholesteryl ether (PEG-Chol) exhibited high protein expression in the lungs and spleen of mice after intravenous injection and induced high levels of antigen-specific IgG1 upon immunisation. In this study, we optimised PEG modification in mRNA lipoplexes to reduce mRNA accumulation in the lungs and evaluated the suppression of tumour growth in mice bearing mouse lymphoma E.G7-ovalbumin (OVA) tumours by immunising them with an intravenous injection of OVA mRNA lipoplexes. PEGylation of mRNA lipoplexes with 3 mol% PEG-Chol (LP-DC-1-16-3PCL) prevented agglutination of erythrocytes and reduced accumulation in the lungs. Intravenous injection of LP-DC-1-16-3PCL lipoplexes containing OVA mRNA into mice induced high levels of anti-OVA IgG1 (83,000 mU/mL) in serum, and exhibited a high cytotoxic activity (97%) against E.G7-OVA cells by the splenocytes of mice. Furthermore, immunisation with LP-DC-1-16-3PCL lipoplexes containing OVA mRNA suppressed E.G7-OVA tumour growth compared to control mRNA. Based on these results, LP-DC-1-16-3PCL lipoplexes may be an effective mRNA vaccine for inducing antibody- and cytotoxic cell-mediated immune responses to tumours through intravenous injection.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1267-1277"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Dry eye disease (DED) is often secondary to diabetes mellitus (DM).Purpose: This study is to explore the action of Wilms tumor 1-associated protein (WTAP) in DM-DED via lncRNA NEAT1 m6A methylation.Methods: DM-DED mouse models were treated with sh-WTAP/sh-NEAT1, followed by assessment of corneal epithelial damage/histopathological changes. HCE-2 cells were exposed to hyperosmotic conditions to establish in vitro DED models and treated with oe-NEAT1/sh-NEAT1/sh-WTAP/nigericin (an NLRP3 inflammasome inducer). Cell viability/apoptosis were evaluated by CCK-8/TUNEL. Levels of WTAP/NEAT1/inflammatory factors/NLRP3 inflammasome- and apoptosis-related markers were determined. m6A modification was examined by MeRIP-qPCR and NEAT1 stability was also detected.Results: DM-DED mice exhibited up-regulated WTAP/NEAT1 expression and severe corneal damage, whereas WTAP/NEAT1 knockdown alleviated inflammation/corneal damage. In hyperosmolarity-induced HCE-2 cells, NEAT1 aggravated inflammation and apoptosis, while NEAT1 knockdown suppressed NLRP3 inflammasome activation and ameliorated cell injury. Hyperosmolarity-induced WTAP expression increased m6A modification and NEAT1 mRNA stability. WTAP mediated m6A methylation of NEAT1 and NLRP3 inflammasome activation in DM-DED mice.
{"title":"Molecular mechanism of Wilms tumour 1-associated protein in diabetes-related dry eye disease by mediating m6A methylation modification of lncRNA NEAT1.","authors":"Chen Guo, Mingyi Yu, Jinghua Liu, Zhe Jia, Hui Liu, Shaozhen Zhao","doi":"10.1080/1061186X.2023.2300682","DOIUrl":"10.1080/1061186X.2023.2300682","url":null,"abstract":"<p><p><b>Background:</b> Dry eye disease (DED) is often secondary to diabetes mellitus (DM).<b>Purpose:</b> This study is to explore the action of Wilms tumor 1-associated protein (WTAP) in DM-DED via lncRNA NEAT1 m6A methylation.<b>Methods:</b> DM-DED mouse models were treated with sh-WTAP/sh-NEAT1, followed by assessment of corneal epithelial damage/histopathological changes. HCE-2 cells were exposed to hyperosmotic conditions to establish in vitro DED models and treated with oe-NEAT1/sh-NEAT1/sh-WTAP/nigericin (an NLRP3 inflammasome inducer). Cell viability/apoptosis were evaluated by CCK-8/TUNEL. Levels of WTAP/NEAT1/inflammatory factors/NLRP3 inflammasome- and apoptosis-related markers were determined. m6A modification was examined by MeRIP-qPCR and NEAT1 stability was also detected.<b>Results:</b> DM-DED mice exhibited up-regulated WTAP/NEAT1 expression and severe corneal damage, whereas WTAP/NEAT1 knockdown alleviated inflammation/corneal damage. In hyperosmolarity-induced HCE-2 cells, NEAT1 aggravated inflammation and apoptosis, while NEAT1 knockdown suppressed NLRP3 inflammasome activation and ameliorated cell injury. Hyperosmolarity-induced WTAP expression increased m6A modification and NEAT1 mRNA stability. WTAP mediated m6A methylation of NEAT1 and NLRP3 inflammasome activation in DM-DED mice.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"200-212"},"PeriodicalIF":4.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}