Dental caries is a dynamic disease induced by the unbalance between demineralization of dental hard tissues caused by biofilm and remineralization of them; however, although various effective remineralization methods have been well documented, it is a challenge to reestablish the balance by enhancing remineralization alone while ignoring the antibacterial therapy. Therefore, the integration of remineralizing and antibacterial technologies offers a promising strategy to halt natural caries progression in clinical practice. Here, the conception of interrupting dental caries (IDC) was proposed based on the development of dual-functional coating with remineralizing and antibacterial properties. In this study, bovine serum albumin (BSA) loaded octenidine (OCT) successfully to form a BSA-OCT composite. Subsequently, through fast amyloid-like aggregation, the phase-transited BSA-OCT (PTB-OCT) coating can be covered on teeth, resin composite, or sealant surfaces in 30 min by a simple smearing process. The PTB-OCT coating showed satisfactory effects in promoting the remineralization of demineralized enamel and dentin in vitro. Moreover, this coating also exerted significant acid-resistance stability and anti-biofilm properties. Equally importantly, this coating exhibited promising abilities in reducing the microleakage between the tooth and resin composite in vitro and preventing primary and secondary caries in vivo. In conclusion, this novel dual-functional PTB-OCT coating could reestablish the balance between demineralization and remineralization in the process of caries, thereby potentially preventing or arresting caries.
Dental biofilm pH is the most important determinant of virulence for the development of caries lesions. Confocal microscopy-based pH ratiometry allows monitoring biofilm pH with high spatial resolution. Experiments performed on simplified biofilm models under static conditions identified steep pH gradients as well as localized acidogenic foci that promote enamel demineralization. The present work used pH ratiometry to perform a comprehensive analysis of the effect of whole saliva flow on the microscale pH in complex, in situ-grown 48-h and 96-h biofilms (n = 54) from 9 healthy participants. pH was monitored in 12 areas at the biofilm bottom and top, and saliva flow with film thicknesses corresponding to those in the oral cavity was provided by an additively manufactured microfluidic flow cell. Biofilm pH was correlated to the bacterial composition, as determined by 16S rRNA gene sequencing. Biofilm acidogenicity varied considerably between participants and individual biofilms but also between different areas inside one biofilm, with pH gradients of up to 2 units. pH drops were more pronounced in 96-h than in 48-h biofilms (P = 0.0121) and virtually unaffected by unstimulated saliva flow (0.8 mm/min). Stimulated flow (8 mm/min) raised average biofilm pH to near-neutral values but it did not equilibrate vertical and horizontal pH gradients in the biofilms. pH was significantly lower at the biofilm base than at the top (P < 0.0001) and lower downstream than upstream (P = 0.0046), due to an accumulation of acids along the flow path. pH drops were positively correlated with biofilm thickness and negatively with the thickness of the saliva film covering the biofilm. Bacterial community composition was significantly different between biofilms with strong and weak pH responses but not their species richness. The present experimental study demonstrates that stimulated saliva flow, saliva film thickness, biofilm age, biofilm thickness, and bacterial composition are important modulators of microscale pH in dental biofilms.
Despite a clear need for improvement in oral health systems, progress in oral health systems transformation has been slow. Substantial gaps persist in leveraging evidence and stakeholder values for collective problem solving. To truly enable evidence-informed oral health policy making, substantial "know-how" and "know-do" gaps still need to be overcome. However, there is a unique opportunity for the oral health community to learn and evolve from previous successes and failures in evidence-informed health policy making. As stated by the Global Commission on Evidence to Address Societal Challenges, COVID-19 has created a once-in-a-generation focus on evidence, which has fast-tracked collaboration among decision makers, researchers, and evidence intermediaries. In addition, this has led to a growing recognition of the need to formalize and strengthen evidence-support systems. This article provides an overview of recent advancements in evidence-informed health policy making, including normative goals and a health systems taxonomy, the role of evidence-support and evidence-implementation systems to improve context-specific decision-making processes, the evolution of learning health systems, and the important role of citizen deliberations. The article also highlights opportunities for evidence-informed policy making to drive change in oral health systems. All in all, strengthening capacities for evidence-informed health policy making is critical to enable and enact improvements in oral health systems.