Pub Date : 2024-08-05Epub Date: 2024-05-23DOI: 10.1084/jem.20232005
Victoria E Rael, Julian A Yano, John P Huizar, Leianna C Slayden, Madeleine A Weiss, Elizabeth A Turcotte, Jacob M Terry, Wenqi Zuo, Isabelle Thiffault, Tomi Pastinen, Emily G Farrow, Janda L Jenkins, Mara L Becker, Stephen C Wong, Anne M Stevens, Catherine Otten, Eric J Allenspach, Devon E Bonner, Jonathan A Bernstein, Matthew T Wheeler, Robert A Saxton, Bo Liu, Olivia Majer, Gregory M Barton
Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.
{"title":"Large-scale mutational analysis identifies UNC93B1 variants that drive TLR-mediated autoimmunity in mice and humans.","authors":"Victoria E Rael, Julian A Yano, John P Huizar, Leianna C Slayden, Madeleine A Weiss, Elizabeth A Turcotte, Jacob M Terry, Wenqi Zuo, Isabelle Thiffault, Tomi Pastinen, Emily G Farrow, Janda L Jenkins, Mara L Becker, Stephen C Wong, Anne M Stevens, Catherine Otten, Eric J Allenspach, Devon E Bonner, Jonathan A Bernstein, Matthew T Wheeler, Robert A Saxton, Bo Liu, Olivia Majer, Gregory M Barton","doi":"10.1084/jem.20232005","DOIUrl":"10.1084/jem.20232005","url":null,"abstract":"<p><p>Nucleic acid-sensing Toll-like receptors (TLR) 3, 7/8, and 9 are key innate immune sensors whose activities must be tightly regulated to prevent systemic autoimmune or autoinflammatory disease or virus-associated immunopathology. Here, we report a systematic scanning-alanine mutagenesis screen of all cytosolic and luminal residues of the TLR chaperone protein UNC93B1, which identified both negative and positive regulatory regions affecting TLR3, TLR7, and TLR9 responses. We subsequently identified two families harboring heterozygous coding mutations in UNC93B1, UNC93B1+/T93I and UNC93B1+/R336C, both in key negative regulatory regions identified in our screen. These patients presented with cutaneous tumid lupus and juvenile idiopathic arthritis plus neuroinflammatory disease, respectively. Disruption of UNC93B1-mediated regulation by these mutations led to enhanced TLR7/8 responses, and both variants resulted in systemic autoimmune or inflammatory disease when introduced into mice via genome editing. Altogether, our results implicate the UNC93B1-TLR7/8 axis in human monogenic autoimmune diseases and provide a functional resource to assess the impact of yet-to-be-reported UNC93B1 mutations.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 8","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05Epub Date: 2024-06-11DOI: 10.1084/jem.20231518
Pooja Parameswaran, Laurellee Payne, Jennifer Powers, Mehdi Rashighi, Megan H Orzalli
Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.
{"title":"A viral E3 ubiquitin ligase produced by herpes simplex virus 1 inhibits the NLRP1 inflammasome.","authors":"Pooja Parameswaran, Laurellee Payne, Jennifer Powers, Mehdi Rashighi, Megan H Orzalli","doi":"10.1084/jem.20231518","DOIUrl":"10.1084/jem.20231518","url":null,"abstract":"<p><p>Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 8","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05Epub Date: 2024-06-13DOI: 10.1084/jem.20240841
Justin Taft, Dusan Bogunovic
Genetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.org/10.1084/jem.20232005; David et al. https://doi.org/10.1084/jem.20232066).
{"title":"Traffic on the TLR expressway.","authors":"Justin Taft, Dusan Bogunovic","doi":"10.1084/jem.20240841","DOIUrl":"10.1084/jem.20240841","url":null,"abstract":"<p><p>Genetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.org/10.1084/jem.20232005; David et al. https://doi.org/10.1084/jem.20232066).</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 8","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05Epub Date: 2024-07-01DOI: 10.1084/jem.20240849
Cindy S Ma, Stuart G Tangye
Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.
{"title":"STAT3 gain of function: Too much of a good thing in the skin!","authors":"Cindy S Ma, Stuart G Tangye","doi":"10.1084/jem.20240849","DOIUrl":"10.1084/jem.20240849","url":null,"abstract":"<p><p>Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 8","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-07DOI: 10.1084/jem.20240582
Leen Hermans, Timothy E O'Sullivan
A method to precisely determine which cells respond to chemokines in vivo is currently lacking. A novel class of dual fluorescence reporter mice could help identify cells that produce and/or sense a given chemokine in vitro and in vivo (Rodrigo et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231814).
{"title":"Send it, receive it, quick erase it: A mouse model to decipher chemokine communication.","authors":"Leen Hermans, Timothy E O'Sullivan","doi":"10.1084/jem.20240582","DOIUrl":"10.1084/jem.20240582","url":null,"abstract":"<p><p>A method to precisely determine which cells respond to chemokines in vivo is currently lacking. A novel class of dual fluorescence reporter mice could help identify cells that produce and/or sense a given chemokine in vitro and in vivo (Rodrigo et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231814).</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 7","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-09DOI: 10.1084/jem.20221122
Tamara Kögl, Hsin-Fang Chang, Julian Staniek, Samuel C C Chiang, Gudrun Thoulass, Jessica Lao, Kristoffer Weißert, Viviane Dettmer-Monaco, Kerstin Geiger, Paul T Manna, Vivien Beziat, Mana Momenilandi, Szu-Min Tu, Selina J Keppler, Varsha Pattu, Philipp Wolf, Laurence Kupferschmid, Stefan Tholen, Laura E Covill, Karolina Ebert, Tobias Straub, Miriam Groß, Ruth Gather, Helena Engel, Ulrich Salzer, Christoph Schell, Sarah Maier, Kai Lehmberg, Tatjana I Cornu, Hanspeter Pircher, Mohammad Shahrooei, Nima Parvaneh, Roland Elling, Marta Rizzi, Yenan T Bryceson, Stephan Ehl, Peter Aichele, Sandra Ammann
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
SYNTAXIN-11(STX11)是一种SNARE蛋白,在CD8 T细胞或NK细胞的免疫突触处介导细胞毒性颗粒与质膜的融合。STX11变体的常染色体隐性遗传会损害细胞毒性颗粒的外泌功能,从而导致家族性嗜血细胞淋巴组织细胞增多症4型(FHL-4)。在几例 FHL-4 患者中,我们还观察到了低丙种球蛋白血症、幼稚 B 细胞频率升高以及双阴性 DN2:DN1 B 细胞比率升高,这表明 STX11 在体液免疫中的作用迄今尚未得到承认。对 Stx11 基因缺陷小鼠的详细分析显示,CD4 T 细胞对 B 细胞的帮助受损,这与生殖中心的形成受到破坏、同种型类转换减少和抗体效价低有关。从机理上讲,Stx11-/-CD4 T细胞的膜融合功能受损,导致CD107a和CD40L表面动员能力下降,IL-2和IL-10分泌减少。我们的研究结果突显了 STX11 在 CD4 T 细胞 SNARE 介导的膜贩运和囊泡外排中的关键作用,这对 CD4 T 细胞与 B 细胞的成功互动非常重要。STX11的缺乏会损害CD4 T细胞依赖的B细胞分化和体液反应。
{"title":"Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect.","authors":"Tamara Kögl, Hsin-Fang Chang, Julian Staniek, Samuel C C Chiang, Gudrun Thoulass, Jessica Lao, Kristoffer Weißert, Viviane Dettmer-Monaco, Kerstin Geiger, Paul T Manna, Vivien Beziat, Mana Momenilandi, Szu-Min Tu, Selina J Keppler, Varsha Pattu, Philipp Wolf, Laurence Kupferschmid, Stefan Tholen, Laura E Covill, Karolina Ebert, Tobias Straub, Miriam Groß, Ruth Gather, Helena Engel, Ulrich Salzer, Christoph Schell, Sarah Maier, Kai Lehmberg, Tatjana I Cornu, Hanspeter Pircher, Mohammad Shahrooei, Nima Parvaneh, Roland Elling, Marta Rizzi, Yenan T Bryceson, Stephan Ehl, Peter Aichele, Sandra Ammann","doi":"10.1084/jem.20221122","DOIUrl":"10.1084/jem.20221122","url":null,"abstract":"<p><p>SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 7","pages":""},"PeriodicalIF":15.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-06DOI: 10.1084/jem.20240545
Adam J Rose, Sarah H Lockie
New studies (Tang et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231395) describe a liver stress pathway that is activated by certain chemotherapeutic drugs, which in turn induces a peptide hormone which partially mediates the lower food intake and body weight loss during chemotherapy treatment.
{"title":"Stress relief of chemo illness.","authors":"Adam J Rose, Sarah H Lockie","doi":"10.1084/jem.20240545","DOIUrl":"10.1084/jem.20240545","url":null,"abstract":"<p><p>New studies (Tang et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231395) describe a liver stress pathway that is activated by certain chemotherapeutic drugs, which in turn induces a peptide hormone which partially mediates the lower food intake and body weight loss during chemotherapy treatment.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 7","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-11DOI: 10.1084/jem.20231442
Lingzi Hong, Tomasz Herjan, Xing Chen, Leah L Zagore, Katarzyna Bulek, Han Wang, Chi-Fu Jeffrey Yang, Donny D Licatalosi, Xiaoxia Li, Xiao Li
The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.
{"title":"Act1 drives chemoresistance via regulation of antioxidant RNA metabolism and redox homeostasis.","authors":"Lingzi Hong, Tomasz Herjan, Xing Chen, Leah L Zagore, Katarzyna Bulek, Han Wang, Chi-Fu Jeffrey Yang, Donny D Licatalosi, Xiaoxia Li, Xiao Li","doi":"10.1084/jem.20231442","DOIUrl":"10.1084/jem.20231442","url":null,"abstract":"<p><p>The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 7","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}