Direct comparison with in situ measurements serves as the primary method for validating TROPOMI SIF products. However, due to geometric errors in satellite data, the exact spatial extent of the nominal validation pixel may not align with the in situ site perfectly. In addressing this challenge, this study proposed, for the first time, a method to precisely identify the validation pixels matching with in situ sites. Moreover, the accuracy of the TROPOMI SIF product was reevaluated with the improved geolocation match method between the satellite pixel and the corresponding in situ site. The results indicate that ignoring the geometric errors of TROPOMI pixels can result in a 49% probability of mismatch between the validation pixel and the in situ site. The errors caused by geolocation mismatch mainly come from two aspects. One is the incorrect extraction of the validation pixel, with a maximum error of 1.385 mWm−2 sr−1 nm−1. The other is the pixel-scale reference “truth,” which resulted from the improper upscaling function of in situ measurements, and the maximum of this kind of error was 0.445 mWm−2 sr−1 nm−1. With this improved geolocation match method, the TROPOMI SIF product showed a RMSE of 0.58 mWm−2 sr−1 nm−1, a bias of 0.19 mWm−2 sr−1 nm−1, and a R2 of 0.51, which indicate a better performance than without considering geometric location matching errors.
{"title":"Validation of TROPOMI SIF Products With Improved Geolocation Match Between In Situ and Satellite Measurements","authors":"Qicheng Zeng, Xiaodan Wu, Rongqi Tang, Jing Pei, Xianglei Du, Fei Pan, Jianguang Wen, Qing Xiao","doi":"10.1029/2024JG008235","DOIUrl":"https://doi.org/10.1029/2024JG008235","url":null,"abstract":"<p>Direct comparison with in situ measurements serves as the primary method for validating TROPOMI SIF products. However, due to geometric errors in satellite data, the exact spatial extent of the nominal validation pixel may not align with the in situ site perfectly. In addressing this challenge, this study proposed, for the first time, a method to precisely identify the validation pixels matching with in situ sites. Moreover, the accuracy of the TROPOMI SIF product was reevaluated with the improved geolocation match method between the satellite pixel and the corresponding in situ site. The results indicate that ignoring the geometric errors of TROPOMI pixels can result in a 49% probability of mismatch between the validation pixel and the in situ site. The errors caused by geolocation mismatch mainly come from two aspects. One is the incorrect extraction of the validation pixel, with a maximum error of 1.385 mWm<sup>−2</sup> sr<sup>−1</sup> nm<sup>−1</sup>. The other is the pixel-scale reference “truth,” which resulted from the improper upscaling function of in situ measurements, and the maximum of this kind of error was 0.445 mWm<sup>−2</sup> sr<sup>−1 </sup>nm<sup>−1</sup>. With this improved geolocation match method, the TROPOMI SIF product showed a RMSE of 0.58 mWm<sup>−2</sup> sr<sup>−1 </sup>nm<sup>−1</sup>, a bias of 0.19 mWm<sup>−2</sup> sr<sup>−1 </sup>nm<sup>−1</sup>, and a <i>R</i><sup>2</sup> of 0.51, which indicate a better performance than without considering geometric location matching errors.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Placitu, S. J. van de Velde, A. Hylén, P. O. J. Hall, E. K. Robertson, M. Eriksson, M. Leermakers, N. Mehta, S. Bonneville
Marine sediments bury ∼160 Tg of organic carbon (OC) annually and represent an essential component of the global carbon cycle. OC burial is inherently multifactorial; however, in the past decade, the role of iron in regulating OC burial via the formation of organo-mineral associations, known as “rusty carbon sink,” has been extensively studied. Despite widespread recognition, the origin of the OC preserved within these associations and the effect of the bottom-water oxygenation on their stability are still debated. Here, we investigate the rusty carbon sink in sediments collected across transects from the head to mouth of three Swedish fjords presenting contrasting bottom-water oxygenation regimes (the oxic Hake fjord, seasonally hypoxic Gullmar fjord, and anoxic By fjord). We found that the oxygenation regimes, the intensity of benthic iron cycling or the OC origin have little to no influence on the amount of OC bound to Fe (OC – Fe). The lack of correlation with any of the parameters studied, in combination with an increase in the OC – Fe in the fjords with riverine input suggest, at least partially, an allochthonous origin of these organo-mineral associations. Our results also show that the rusty carbon sink plays a modest role in the OC burial in these fjords (∼6% OC is bound to Fe). While these fjords still represent important OC burial hotspots with an average of ∼35 g C m−2 buried annually, the OC burial is controlled by other sedimentary processes, such as the high mass accumulation rates found in these fjord systems.
{"title":"Limited Organic Carbon Burial by the Rusty Carbon Sink in Swedish Fjord Sediments","authors":"S. Placitu, S. J. van de Velde, A. Hylén, P. O. J. Hall, E. K. Robertson, M. Eriksson, M. Leermakers, N. Mehta, S. Bonneville","doi":"10.1029/2024JG008277","DOIUrl":"https://doi.org/10.1029/2024JG008277","url":null,"abstract":"<p>Marine sediments bury ∼160 Tg of organic carbon (OC) annually and represent an essential component of the global carbon cycle. OC burial is inherently multifactorial; however, in the past decade, the role of iron in regulating OC burial via the formation of organo-mineral associations, known as “rusty carbon sink,” has been extensively studied. Despite widespread recognition, the origin of the OC preserved within these associations and the effect of the bottom-water oxygenation on their stability are still debated. Here, we investigate the rusty carbon sink in sediments collected across transects from the head to mouth of three Swedish fjords presenting contrasting bottom-water oxygenation regimes (the oxic Hake fjord, seasonally hypoxic Gullmar fjord, and anoxic By fjord). We found that the oxygenation regimes, the intensity of benthic iron cycling or the OC origin have little to no influence on the amount of OC bound to Fe (OC – Fe). The lack of correlation with any of the parameters studied, in combination with an increase in the OC – Fe in the fjords with riverine input suggest, at least partially, an allochthonous origin of these organo-mineral associations. Our results also show that the rusty carbon sink plays a modest role in the OC burial in these fjords (∼6% OC is bound to Fe). While these fjords still represent important OC burial hotspots with an average of ∼35 g C m<sup>−2</sup> buried annually, the OC burial is controlled by other sedimentary processes, such as the high mass accumulation rates found in these fjord systems.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil carbon decomposition is primarily driven by microbial activities and is regulated by factors which stimulate or impede microbial functions. Deep podzolized carbon (DPC), found in the United States Southeastern Coastal Plain, is situated well below the soil surface in horizons isolated from active plant input. This carbon is characterized by high C:N ratios (>30) which could reflect nutrient limitation of microbial decomposition. To uncover the energy or nutrient limitation on DPC degradation, a 90-day priming experiment was performed with soils from the surface horizon and DPC horizons (i.e., Bh1 and Bh2) received the additions of 13C-labeled alanine and glucose. This resulted in prominent priming effects: addition of alanine increased basal decomposition of soil organic carbon by 918 ± 51% and 737 ± 7% in Bh2 and Bh1, respectively. Glucose relative priming was 505 ± 28% in Bh1 and 606 ± 77% of basal respiration in Bh2. These strong responses to substrate input highlight the susceptibility of DPC to loss when microbial carbon and nutrient constraints are alleviated. After 90 days, glucose addition increased the microbial biomass in DPC horizons relative to alanine addition, with the latter showing no difference from ultrapure-water control. The response of the microbial biomass indicates constraint by a lack of energy sources both by the paucity of labile substrates and reduced availability of organic matter as a result of podzolization. Our study has important implications for predicting the response of DPC in Coastal Plain soils in the context of land management and global change.
{"title":"The Role of Nutrient and Energy Limitation on Microbial Decomposition of Deep Podzolized Carbon: A Priming Experiment","authors":"Ryan E. Champiny, Kanika S. Inglett, Yang Lin","doi":"10.1029/2024JG008176","DOIUrl":"https://doi.org/10.1029/2024JG008176","url":null,"abstract":"<p>Soil carbon decomposition is primarily driven by microbial activities and is regulated by factors which stimulate or impede microbial functions. Deep podzolized carbon (DPC), found in the United States Southeastern Coastal Plain, is situated well below the soil surface in horizons isolated from active plant input. This carbon is characterized by high C:N ratios (>30) which could reflect nutrient limitation of microbial decomposition. To uncover the energy or nutrient limitation on DPC degradation, a 90-day priming experiment was performed with soils from the surface horizon and DPC horizons (i.e., Bh1 and Bh2) received the additions of <sup>13</sup>C-labeled alanine and glucose. This resulted in prominent priming effects: addition of alanine increased basal decomposition of soil organic carbon by 918 ± 51% and 737 ± 7% in Bh2 and Bh1, respectively. Glucose relative priming was 505 ± 28% in Bh1 and 606 ± 77% of basal respiration in Bh2. These strong responses to substrate input highlight the susceptibility of DPC to loss when microbial carbon and nutrient constraints are alleviated. After 90 days, glucose addition increased the microbial biomass in DPC horizons relative to alanine addition, with the latter showing no difference from ultrapure-water control. The response of the microbial biomass indicates constraint by a lack of energy sources both by the paucity of labile substrates and reduced availability of organic matter as a result of podzolization. Our study has important implications for predicting the response of DPC in Coastal Plain soils in the context of land management and global change.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuoyue Zhang, Ming Lu, Chenglong Wang, Chuchu Zhang, Bingying Lin, Qihang Liao, Penghua Qiu, Xinqing Zou
The fate of organic carbon (OC) in most river-dominated ocean margins (RiOMars) has undergone a noticeable transformation with the increased sediment retention engineering in watersheds. In the East China Sea (ECS), transformation in sediment and the influence of bulk OC have been broadly studied. However, the response of different mechanisms of OC protection under transformation has not been investigated, hindering our understanding of the factors that control OC deposition. In this study, we isolated different OC fractions, analyzed the basic parameters of the sediments, and compared the previous study's data to reveal how OC deposition responded to transformation. Our research indicates that transformation leads to the reduction of OC associated with minerals and sorting of OC occluded by plant debris and OC associated with minerals resulting in increased decomposition and mineralization of OC. The transformation affects the mechanism of OC binding with reactive iron (FeR), increasing FeR-protected OC content. Still, the co-precipitation mechanism and the intense redox environment in the mud deposit decrease the FeR-protected OC stability. Taken together, the impact of transformation is to increase the risk of OC decomposition and to weaken the OC preservation ability in RiOMars as carbon sinks. This study has implications for river-dominated passive margins subject to increased sediment retention engineering in watersheds worldwide and deserves more attention.
{"title":"Divergent Responses of Organic Carbon to Sedimentary Environment Transformation in a River-Dominated Marginal Sea","authors":"Zhuoyue Zhang, Ming Lu, Chenglong Wang, Chuchu Zhang, Bingying Lin, Qihang Liao, Penghua Qiu, Xinqing Zou","doi":"10.1029/2024JG008034","DOIUrl":"https://doi.org/10.1029/2024JG008034","url":null,"abstract":"<p>The fate of organic carbon (OC) in most river-dominated ocean margins (RiOMars) has undergone a noticeable transformation with the increased sediment retention engineering in watersheds. In the East China Sea (ECS), transformation in sediment and the influence of bulk OC have been broadly studied. However, the response of different mechanisms of OC protection under transformation has not been investigated, hindering our understanding of the factors that control OC deposition. In this study, we isolated different OC fractions, analyzed the basic parameters of the sediments, and compared the previous study's data to reveal how OC deposition responded to transformation. Our research indicates that transformation leads to the reduction of OC associated with minerals and sorting of OC occluded by plant debris and OC associated with minerals resulting in increased decomposition and mineralization of OC. The transformation affects the mechanism of OC binding with reactive iron (Fe<sub>R</sub>), increasing Fe<sub>R</sub>-protected OC content. Still, the co-precipitation mechanism and the intense redox environment in the mud deposit decrease the Fe<sub>R</sub>-protected OC stability. Taken together, the impact of transformation is to increase the risk of OC decomposition and to weaken the OC preservation ability in RiOMars as carbon sinks. This study has implications for river-dominated passive margins subject to increased sediment retention engineering in watersheds worldwide and deserves more attention.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin R. Delaria, Glenn M. Wolfe, Kaitlyn Blanock, Reem Hannun, Kenneth Lee Thornhill, Paul A. Newman, Leslie R. Lait, S. Randy Kawa, Jessica Alvarez, Spencer Blum, Edward Castañeda-Moya, Christopher Holmes, David Lagomasino, Sparkle Malone, Dylan Murphy, Steven F. Overbauer, Chandler Pruett, Aaron Serre, Gregory Starr, Robert Szot, Tiffany Troxler, David Yannick, Benjamin Poulter
Coastal wetlands play a significant role in the storage of “blue carbon,” indicating their importance in the carbon biogeochemistry in the coastal zone and in global climate change mitigation strategies. We present airborne eddy covariance observations of CO2 and CH4 fluxes collected in southern Florida as part of the NASA BlueFlux mission during April 2022, October 2022, February 2023, and April 2023. The flux data generated from this mission consists of over 100 flight hours and more than 6,000 km of horizontal distance over coastal saline and freshwater wetlands. We find that the spatial and temporal heterogeneity in CO2 and CH4 exchange is primarily influenced by season, vegetation type, ecosystem productivity, and soil inundation. The largest CO2 uptake fluxes of more than 20 μmol m−2 s−1 were observed over mangroves during all deployments and over swamp forests during flights in April. The greatest CH4 effluxes of more than 250 nmol m−2 s−1 were measured at the end of the wet season in October 2022 over freshwater marshes and swamp shrublands. Although the combined Everglades National Park and Big Cypress National Preserve region was a net sink for carbon, CH4 emissions reduced the ecosystem carbon uptake capacity (net CO2 exchange rates) by 11%–91%. Average total net carbon exchange rates during the flight periods were −4 to −0.2 g CO2-eq m−2 d−1. Our results highlight the importance of preserving mangrove forests and point to potential avenues of further research for greenhouse gas mitigation strategies.
{"title":"Assessment of Landscape-Scale Fluxes of Carbon Dioxide and Methane in Subtropical Coastal Wetlands of South Florida","authors":"Erin R. Delaria, Glenn M. Wolfe, Kaitlyn Blanock, Reem Hannun, Kenneth Lee Thornhill, Paul A. Newman, Leslie R. Lait, S. Randy Kawa, Jessica Alvarez, Spencer Blum, Edward Castañeda-Moya, Christopher Holmes, David Lagomasino, Sparkle Malone, Dylan Murphy, Steven F. Overbauer, Chandler Pruett, Aaron Serre, Gregory Starr, Robert Szot, Tiffany Troxler, David Yannick, Benjamin Poulter","doi":"10.1029/2024JG008165","DOIUrl":"https://doi.org/10.1029/2024JG008165","url":null,"abstract":"<p>Coastal wetlands play a significant role in the storage of “blue carbon,” indicating their importance in the carbon biogeochemistry in the coastal zone and in global climate change mitigation strategies. We present airborne eddy covariance observations of CO<sub>2</sub> and CH<sub>4</sub> fluxes collected in southern Florida as part of the NASA BlueFlux mission during April 2022, October 2022, February 2023, and April 2023. The flux data generated from this mission consists of over 100 flight hours and more than 6,000 km of horizontal distance over coastal saline and freshwater wetlands. We find that the spatial and temporal heterogeneity in CO<sub>2</sub> and CH<sub>4</sub> exchange is primarily influenced by season, vegetation type, ecosystem productivity, and soil inundation. The largest CO<sub>2</sub> uptake fluxes of more than 20 μmol m<sup>−2</sup> s<sup>−1</sup> were observed over mangroves during all deployments and over swamp forests during flights in April. The greatest CH<sub>4</sub> effluxes of more than 250 nmol m<sup>−2</sup> s<sup>−1</sup> were measured at the end of the wet season in October 2022 over freshwater marshes and swamp shrublands. Although the combined Everglades National Park and Big Cypress National Preserve region was a net sink for carbon, CH<sub>4</sub> emissions reduced the ecosystem carbon uptake capacity (net CO<sub>2</sub> exchange rates) by 11%–91%. Average total net carbon exchange rates during the flight periods were −4 to −0.2 g CO<sub>2</sub>-eq m<sup>−2</sup> d<sup>−1</sup>. Our results highlight the importance of preserving mangrove forests and point to potential avenues of further research for greenhouse gas mitigation strategies.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Simard, Michael Denbina, Charles Marshak, Maxim Neumann
This study evaluates global radar-derived digital elevation models (DEMs), namely the Shuttle Radar Topography Mission (SRTM), NASADEM and GLO-30 DEMs. We evaluate their accuracy over bare-earth terrain and characterize elevation biases induced by forests using global Lidar measurements from the Ice, Cloud, and Land Elevation Satellite (ICESat)'s Geoscience Laser Altimeter System (GLAS), the Global Ecosystem Dynamics Investigation (GEDI) and the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instruments collected on locally flat terrain. Our analysis is based on error statistics calculated for each