Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2080307
Anup K Srivastava, Dustin M Snapper, Jiwen Zheng, Banu S Yildrim, Sandeep Srivastava, Steven C Wood
Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin (IL)-1β and IL-8 gene expression. In vivo, NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl2 ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines in vitro. These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni2+ and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis in vivo, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl2, or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions in vivo. By this approach, NiTi NP were found to be markedly angiogenic, while Ni2+ was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.
{"title":"Examining the role of nickel and NiTi nanoparticles promoting inflammation and angiogenesis.","authors":"Anup K Srivastava, Dustin M Snapper, Jiwen Zheng, Banu S Yildrim, Sandeep Srivastava, Steven C Wood","doi":"10.1080/1547691X.2022.2080307","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2080307","url":null,"abstract":"<p><p>Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin <i>(IL)-1β</i> and <i>IL-8</i> gene expression. <i>In vivo,</i> NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl<sub>2</sub> ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines <i>in vitro.</i> These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni<sup>2+</sup> and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis <i>in vivo</i>, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl<sub>2,</sub> or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions <i>in vivo</i>. By this approach, NiTi NP were found to be markedly angiogenic, while Ni<sup>2+</sup> was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"61-73"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10765802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2113840
Ulfat M Omar, Ekramy M Elmorsy, Ayat B Al-Ghafari
Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.
{"title":"Mitochondrial disruption in isolated human monocytes: an underlying mechanism for cadmium-induced immunotoxicity.","authors":"Ulfat M Omar, Ekramy M Elmorsy, Ayat B Al-Ghafari","doi":"10.1080/1547691X.2022.2113840","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2113840","url":null,"abstract":"<p><p>Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The <i>in vitro</i> study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl<sub>2</sub>]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl<sub>2</sub> on the cells was evaluated. Functionally, CdCl<sub>2</sub> treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl<sub>2</sub> also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl<sub>2</sub> treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl<sub>2</sub>-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl<sub>2</sub>-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl<sub>2</sub> upon the mitochondria within these cells.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"81-92"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10415820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2049664
Fei Yang, Min Zhao, Qinghua Sang, Changhong Yan, Zhenjun Wang
Long non-coding RNA (lncRNA) PMS2L2 has been reported to participate in endotoxin-induced inflammatory responses. As these types of responses can promote osteoarthritis (OA), it was of interest to ascertain if PMS2L2 may be involved in OA. To explore any potential participation of PMS2L2 in OA, synovial fluid was extracted from both OA patients and healthy controls (n = 62 each) and PMS2L2 expression of each sample determined by RT-qPCR. In addition, as miR-34a has a potential binding site on PMS2L2, hypothetical interactions between PMS2L2 and miR-34a in chondrocytes were analyzed by performing over-expression experiments. Furthermore, the role of PMS2L2 and miR-34a in the regulation of chondrocyte proliferation was analyzed using CCK-8 and BrdU assays. The results showed that PMS2L2 expression in OA patient synovial fluid was lower compared to that in control group fluid, and the extent of this reduction was related to disease stage. In in vitro studies, it was seen that endotoxin treatment of chondrocytes led to decreased PMS2L2 expression. It was found that PMS2L2 over-expression caused increased miR-34a expression in OA patient chondrocytes but not in cells from healthy controls. In contrast, miR-34a over-expression in either cell population did not affect PMS2L2 expression. Lastly, over-expression of both PMS2L2 and miR-34a led to inhibited chondrocyte proliferation. Of note, a combined over-expression of PMS2L2 and miR-34a resulted in stronger effects on proliferation compared to that from either single over-expression. Based on the findings that PMS2L2 is down-regulated during ongoing states of OA, and that changes in PMS2L2 expression can lead to increases in chondrocyte expression of miR-34a - resulting in inhibition of chondrocyte proliferation in OA. From these findings, one may conclude that finding means to regulate PMS2L2 could be a promising new target in the development of regimens for the treatment of OA.
{"title":"Long non-coding RNA PMS2L2 is down-regulated in osteoarthritis and inhibits chondrocyte proliferation by up-regulating miR-34a.","authors":"Fei Yang, Min Zhao, Qinghua Sang, Changhong Yan, Zhenjun Wang","doi":"10.1080/1547691X.2022.2049664","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2049664","url":null,"abstract":"<p><p>Long non-coding RNA (lncRNA) PMS2L2 has been reported to participate in endotoxin-induced inflammatory responses. As these types of responses can promote osteoarthritis (OA), it was of interest to ascertain if PMS2L2 may be involved in OA. To explore any potential participation of PMS2L2 in OA, synovial fluid was extracted from both OA patients and healthy controls (<i>n</i> = 62 each) and PMS2L2 expression of each sample determined by RT-qPCR. In addition, as miR-34a has a potential binding site on PMS2L2, hypothetical interactions between PMS2L2 and miR-34a in chondrocytes were analyzed by performing over-expression experiments. Furthermore, the role of PMS2L2 and miR-34a in the regulation of chondrocyte proliferation was analyzed using CCK-8 and BrdU assays. The results showed that PMS2L2 expression in OA patient synovial fluid was lower compared to that in control group fluid, and the extent of this reduction was related to disease stage. In <i>in vitro</i> studies, it was seen that endotoxin treatment of chondrocytes led to decreased PMS2L2 expression. It was found that PMS2L2 over-expression caused increased miR-34a expression in OA patient chondrocytes but not in cells from healthy controls. In contrast, miR-34a over-expression in either cell population did not affect PMS2L2 expression. Lastly, over-expression of both PMS2L2 and miR-34a led to inhibited chondrocyte proliferation. Of note, a combined over-expression of PMS2L2 and miR-34a resulted in stronger effects on proliferation compared to that from either single over-expression. Based on the findings that PMS2L2 is down-regulated during ongoing states of OA, and that changes in PMS2L2 expression can lead to increases in chondrocyte expression of miR-34a - resulting in inhibition of chondrocyte proliferation in OA. From these findings, one may conclude that finding means to regulate PMS2L2 could be a promising new target in the development of regimens for the treatment of OA.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"74-80"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10765808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2113841
Yu-Ling Wei, Teresa Wegesser, Scott Kuhns, Jonathan Werner, Hervé Lebrec, Xiaoting Wang
The potential for effector functions of therapeutic antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), is a biological activity of interest for characterization, regardless of if ADCC is an intended primary pharmacological effect. The composition of the conserved antibody Fc glycan can vary as a function of post-translational processing which may affect the binding affinity to Fc receptors, leading to a change of effector activity. Ordesekimab (AMG 714 or PRV-015), a fully human immunoglobulin G1-kappa anti-interleukin (IL)-15 monoclonal antibody, is in clinical development for celiac disease. The binding of ordesekimab to IL-15 inhibits the interaction of IL-15 with the IL-2Rβ and common γ chain of the IL-15 receptor complex, but not with the IL-15Rα chain. Therefore, the simultaneous binding of ordesekimab to the Fcγ receptor (R) IIIα expressed on natural killer (NK) cells and to the IL-15/IL-15Rα complex on cells such as monocytes may theoretically enable ADCC toward the IL-15Rα-expressing cells. The high mannose (HM) levels on the Fc glycan were found to vary in different lots of ordesekimab resulting from refinements to the manufacturing process, and the impact on ordesekimab-mediated ADCC activity was evaluated in in vivo and in vitro studies. A review of nonclinical and clinical data found no evidence of ordesekimab-induced depletion of monocytes, or cytotoxicity in organs with wide IL-15Rα expression, suggesting a lack of in vivo ADCC activity. In addition, in vitro peripheral blood mononuclear cells-based ADCC assay did not reveal any cytolytic effect of ordesekimab with various levels of HM content when cocultured with recombinant human IL-15. Taken together, these data demonstrate that ADCC is not a potential liability for ordesekimab and does not contribute to the reduction of IL-15-mediated inflammation, the intended pharmacological effect.
{"title":"Strategies to evaluate potential effector function of glycan variants: a case study of ordesekimab (AMG 714 or PRV-015).","authors":"Yu-Ling Wei, Teresa Wegesser, Scott Kuhns, Jonathan Werner, Hervé Lebrec, Xiaoting Wang","doi":"10.1080/1547691X.2022.2113841","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2113841","url":null,"abstract":"<p><p>The potential for effector functions of therapeutic antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), is a biological activity of interest for characterization, regardless of if ADCC is an intended primary pharmacological effect. The composition of the conserved antibody F<sub>c</sub> glycan can vary as a function of post-translational processing which may affect the binding affinity to F<sub>c</sub> receptors, leading to a change of effector activity. Ordesekimab (AMG 714 or PRV-015), a fully human immunoglobulin G<sub>1</sub>-kappa anti-interleukin (IL)-15 monoclonal antibody, is in clinical development for celiac disease. The binding of ordesekimab to IL-15 inhibits the interaction of IL-15 with the IL-2Rβ and common γ chain of the IL-15 receptor complex, but not with the IL-15Rα chain. Therefore, the simultaneous binding of ordesekimab to the F<sub>cγ</sub> receptor (R) IIIα expressed on natural killer (NK) cells and to the IL-15/IL-15Rα complex on cells such as monocytes may theoretically enable ADCC toward the IL-15Rα-expressing cells. The high mannose (HM) levels on the F<sub>c</sub> glycan were found to vary in different lots of ordesekimab resulting from refinements to the manufacturing process, and the impact on ordesekimab-mediated ADCC activity was evaluated in <i>in vivo</i> and <i>in vitro</i> studies. A review of nonclinical and clinical data found no evidence of ordesekimab-induced depletion of monocytes, or cytotoxicity in organs with wide IL-15Rα expression, suggesting a lack of <i>in vivo</i> ADCC activity. In addition, <i>in vitro</i> peripheral blood mononuclear cells-based ADCC assay did not reveal any cytolytic effect of ordesekimab with various levels of HM content when cocultured with recombinant human IL-15. Taken together, these data demonstrate that ADCC is not a potential liability for ordesekimab and does not contribute to the reduction of IL-15-mediated inflammation, the intended pharmacological effect.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"109-116"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10766329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trichloroethylene hypersensitivity syndrome (THS), mainly caused by occupational exposure to trichloroethylene (TCE), can give rise to serious and fatal hepatic damage. To date, the precise mechanisms of hepatic damage in THS remain unclear. Recent studies showed that reactive oxygen species (ROS) play a core role in cell death and inflammatory response. Therefore, the present study sought to explore whether ROS-mediated inflammatory responses contribute to the hepatic damage in TCE sensitization. To this end, a mouse model of TCE sensitization was established; in some cases, hosts were pretreated with tempol, an ROS scavenger. The results showed that TCE sensitization caused hepatic pathological/functional changes, ROS generation, and oxidative stress, alterations of the anti-oxidant defense Nrf2/HO-1/NLRP3 pathway, and pro-inflammatory cytokine formation in the liver. ROS scavenging via pretreatment with tempol was found not only to inhibit the hepatic oxidative stress, but also to regulate Nrf2/HO-1/NLRP3 pathway activity. In all cases, tempol was able to mitigate the pathologic changes induced by TCE sensitization. In summary, the results here demonstrated a novel molecular mechanism wherein ROS-mediated inflammatory responses play a central role in TCE-induced liver damage. Therapies targeting ROS scavenging could help to protect against hepatic damage by regulating Nrf2/HO-1/NLRP3 pathway activities in TCE-sensitized hosts.
{"title":"ROS-mediated inflammatory response in liver damage via regulating the Nrf2/HO-1/NLRP3 pathway in mice with trichloroethylene hypersensitivity syndrome.","authors":"Feng Wang, Yiting Hong, Wei Jiang, Yican Wang, Muyue Chen, Dandan Zang, Qixing Zhu","doi":"10.1080/1547691X.2022.2111003","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2111003","url":null,"abstract":"<p><p>Trichloroethylene hypersensitivity syndrome (THS), mainly caused by occupational exposure to trichloroethylene (TCE), can give rise to serious and fatal hepatic damage. To date, the precise mechanisms of hepatic damage in THS remain unclear. Recent studies showed that reactive oxygen species (ROS) play a core role in cell death and inflammatory response. Therefore, the present study sought to explore whether ROS-mediated inflammatory responses contribute to the hepatic damage in TCE sensitization. To this end, a mouse model of TCE sensitization was established; in some cases, hosts were pretreated with tempol, an ROS scavenger. The results showed that TCE sensitization caused hepatic pathological/functional changes, ROS generation, and oxidative stress, alterations of the anti-oxidant defense Nrf2/HO-1/NLRP3 pathway, and pro-inflammatory cytokine formation in the liver. ROS scavenging via pretreatment with tempol was found not only to inhibit the hepatic oxidative stress, but also to regulate Nrf2/HO-1/NLRP3 pathway activity. In all cases, tempol was able to mitigate the pathologic changes induced by TCE sensitization. In summary, the results here demonstrated a novel molecular mechanism wherein ROS-mediated inflammatory responses play a central role in TCE-induced liver damage. Therapies targeting ROS scavenging could help to protect against hepatic damage by regulating Nrf2/HO-1/NLRP3 pathway activities in TCE-sensitized hosts.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"100-108"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10417278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2088904
Linda Allais, Alicia Perbet, Fabienne Condevaux, Jean-Paul Briffaux, Marc Pallardy
Although an extrapolation from the clinical experience in adults can often be considered to support the pediatric use for most pharmaceutical compounds, differences in safety profiles between adult and pediatric patients can be observed. The developing immune system may be affected due to exaggerated pharmacological or non-expected effects of a new drug. Toxicology studies in juvenile animals could therefore be required to better evaluate the safety profile of any new pharmaceutical compound targeting the pediatric population. The Göttingen minipig is now considered a useful non-rodent species for non-clinical safety testing of human pharmaceuticals. However, knowledge on the developing immune system in juvenile minipigs is still limited. The objective of the work reported here was to evaluate across-age proportions of main immune cells circulating in blood or residing in lymphoid organs (thymus, spleen, lymph nodes) in Göttingen Minipigs. In parallel, the main immune cell populations from healthy and immunocompromised piglets were compared following treatment with cyclosporin A (CsA) at 10 mg/kg/day for 4 wk until weaning. The study also assessed functionality of immune responses using an in-vivo model after "Keyhole limpet hemocyanin" (KLH) immunization and an ex-vivo lymph proliferation assay after stimulation with Concanavalin A. The results demonstrated variations across age in circulating immune cell populations including CD21+ B-cells, αβ-T- and γδ-T-cells, NK cells, and monocytes. CsA-induced changes in immune functions were only partially recovered by 5 mo after the end of treatment, whereas the immune cell populations affected by the treatment returned to normal levels in animals of the same age. Taken together, the study here shows that in this model, the immune function endpoints were more sensitive than the immunophenotyping endpoints.
{"title":"Immunosafety evaluation in Juvenile Göttingen Minipigs.","authors":"Linda Allais, Alicia Perbet, Fabienne Condevaux, Jean-Paul Briffaux, Marc Pallardy","doi":"10.1080/1547691X.2022.2088904","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2088904","url":null,"abstract":"<p><p>Although an extrapolation from the clinical experience in adults can often be considered to support the pediatric use for most pharmaceutical compounds, differences in safety profiles between adult and pediatric patients can be observed. The developing immune system may be affected due to exaggerated pharmacological or non-expected effects of a new drug. Toxicology studies in juvenile animals could therefore be required to better evaluate the safety profile of any new pharmaceutical compound targeting the pediatric population. The Göttingen minipig is now considered a useful non-rodent species for non-clinical safety testing of human pharmaceuticals. However, knowledge on the developing immune system in juvenile minipigs is still limited. The objective of the work reported here was to evaluate across-age proportions of main immune cells circulating in blood or residing in lymphoid organs (thymus, spleen, lymph nodes) in Göttingen Minipigs. In parallel, the main immune cell populations from healthy and immunocompromised piglets were compared following treatment with cyclosporin A (CsA) at 10 mg/kg/day for 4 wk until weaning. The study also assessed functionality of immune responses using an <i>in-vivo</i> model after \"Keyhole limpet hemocyanin\" (KLH) immunization and an <i>ex-vivo</i> lymph proliferation assay after stimulation with Concanavalin A. The results demonstrated variations across age in circulating immune cell populations including CD21<sup>+</sup> B-cells, αβ-T- and γδ-T-cells, NK cells, and monocytes. CsA-induced changes in immune functions were only partially recovered by 5 mo after the end of treatment, whereas the immune cell populations affected by the treatment returned to normal levels in animals of the same age. Taken together, the study here shows that in this model, the immune function endpoints were more sensitive than the immunophenotyping endpoints.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"41-52"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10420995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2143968
Annemijne E T van den Berg, Maud Plantinga, Dick Vethaak, Kas J Adriaans, Marianne Bol-Schoenmakers, Juliette Legler, Joost J Smit, Raymond H H Pieters
Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.
{"title":"Environmentally weathered polystyrene particles induce phenotypical and functional maturation of human monocyte-derived dendritic cells.","authors":"Annemijne E T van den Berg, Maud Plantinga, Dick Vethaak, Kas J Adriaans, Marianne Bol-Schoenmakers, Juliette Legler, Joost J Smit, Raymond H H Pieters","doi":"10.1080/1547691X.2022.2143968","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2143968","url":null,"abstract":"<p><p>Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP <i>in vitro</i> by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These <i>in vitro</i> data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"125-133"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10422921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2142705
Morris Madzime, Annette J Theron, Ronald Anderson, Gregory R Tintinger, Helen C Steel, Pieter W A Meyer, Jan G Nel, Charles Feldman, Theresa M Rossouw
Dolutegravir is a highly potent HIV integrase strand transfer inhibitor that is recommended for first-line anti-retroviral treatment in all major treatment guidelines. A recent study has shown that people taking this class of anti-retroviral treatment have a substantially higher risk of early-onset cardiovascular disease, a condition shown previously to be associated with increased platelet reactivity. To date, few studies have explored the effects of dolutegravir on platelet activation. Accordingly, the current study was undertaken with the primary objective of investigating the effects of dolutegravir on the reactivity of human platelets in vitro. Platelet-rich plasma, isolated platelets, or buffy coat cell suspensions prepared from the blood of healthy adults were treated with dolutegravir (2.5-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin, or a thromboxane A2 receptor agonist U46619. Expression of platelet CD62P (P-selectin), formation of heterotypic neutrophil:platelet aggregates, and calcium (Ca2+) fluxes were measured using flow cytometry and fluorescence spectrometry, respectively. Dolutegravir caused dose-related potentiation of ADP-, thrombin- and U46619-activated expression of CD62P by platelets, as well as a significant increases in formation of neutrophil:platelet aggregates. These effects were paralleled by a spontaneous, receptor-independent elevation in cytosolic Ca2+ that appears to underpin the mechanism by which the antiretroviral agent augments the responsiveness of these cells to ADP, thrombin and U46619. The most likely mechanism of dolutegravir-mediated increases in platelet cytosolic Ca2+ relates to a combination of lipophilicity and divalent/trivalent metal-binding and/or chelating properties of the anti-retroviral agent. These properties are likely to confer ionophore-type activities on dolutegravir that would promote movement of Ca2+ across the plasma membrane, delivering the cation to the cytosol where it would augment Ca2+-dependent intracellular signaling mechanisms. These effects of dolutegravir may lead to hyper-activation of platelets which, if operative in vivo, may contribute to an increased risk for cardiometabolic co-morbidities.
{"title":"Dolutegravir potentiates platelet activation by a calcium-dependent, ionophore-like mechanism.","authors":"Morris Madzime, Annette J Theron, Ronald Anderson, Gregory R Tintinger, Helen C Steel, Pieter W A Meyer, Jan G Nel, Charles Feldman, Theresa M Rossouw","doi":"10.1080/1547691X.2022.2142705","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2142705","url":null,"abstract":"<p><p>Dolutegravir is a highly potent HIV integrase strand transfer inhibitor that is recommended for first-line anti-retroviral treatment in all major treatment guidelines. A recent study has shown that people taking this class of anti-retroviral treatment have a substantially higher risk of early-onset cardiovascular disease, a condition shown previously to be associated with increased platelet reactivity. To date, few studies have explored the effects of dolutegravir on platelet activation. Accordingly, the current study was undertaken with the primary objective of investigating the effects of dolutegravir on the reactivity of human platelets <i>in vitro.</i> Platelet-rich plasma, isolated platelets, or buffy coat cell suspensions prepared from the blood of healthy adults were treated with dolutegravir (2.5-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin, or a thromboxane A<sub>2</sub> receptor agonist U46619. Expression of platelet CD62P (P-selectin), formation of heterotypic neutrophil:platelet aggregates, and calcium (Ca<sup>2+</sup>) fluxes were measured using flow cytometry and fluorescence spectrometry, respectively. Dolutegravir caused dose-related potentiation of ADP-, thrombin- and U46619-activated expression of CD62P by platelets, as well as a significant increases in formation of neutrophil:platelet aggregates. These effects were paralleled by a spontaneous, receptor-independent elevation in cytosolic Ca<sup>2+</sup> that appears to underpin the mechanism by which the antiretroviral agent augments the responsiveness of these cells to ADP, thrombin and U46619. The most likely mechanism of dolutegravir-mediated increases in platelet cytosolic Ca<sup>2+</sup> relates to a combination of lipophilicity and divalent/trivalent metal-binding and/or chelating properties of the anti-retroviral agent. These properties are likely to confer ionophore-type activities on dolutegravir that would promote movement of Ca<sup>2+</sup> across the plasma membrane, delivering the cation to the cytosol where it would augment Ca<sup>2+</sup>-dependent intracellular signaling mechanisms. These effects of dolutegravir may lead to hyper-activation of platelets which, if operative <i>in vivo</i>, may contribute to an increased risk for cardiometabolic co-morbidities.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"1-8"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10418527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2067916
Fangyi Yao, Chuxin Xu, Yujie Gao, Biqi Fu, Lu Zhang, Yang Guo, Zikun Huang, Xiaozhong Wang, Junming Li, Qing Luo
Abstract As an important m6A reader, the YT521-B homology domain family 2 (YTHDF2) has been shown to regulate mRNA degradation and translation, and to be involved in inflammation. However, little is known about the role of YTHDF2 in the autoimmune-based inflammatory disease rheumatoid arthritis (RA). To begin to ascertain any role for this reader, 74 RA patients and 63 healthy controls (HC) were recruited for this study. Blood was collected from each subject and peripheral blood mononuclear cells (PBMC) isolated. Thereafter, mRNA expression of YTHDF2, interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in the cells was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The harvested blood was also assessed for a variety of parameters, including levels of C-reactive protein (CRP), erythrocyte sedimentation rates (ESR), white blood cell counts (WBC), neutrophils counts (N)/neutrophils percentages (N%), and neutrophil:lymphocyte ratios (NLR) - each markers of inflammation during RA. The results showed that YTHDF2 mRNA expression in RA patient PBMC was decreased significantly vs that in healthy control subject cells. Further, YTHDF2 mRNA expression in RA patient PBMC negatively-correlated with ESR, CRP levels, WBC counts, as well as neutrophils counts, percentages, and NLR values. In addition, it was seen that YTHDF2 mRNA expression in RA patient PBMC was associated with host serum RF levels and treatment. Moreover, it was found that mRNA expression of IL-1β, IL-6, IL-8, and TNFα was increased in PBMC from RA patients relative to in control subject cells; however, only the increased IL-1β expression was seen to be negatively-correlated with decreased YTHDF2 mRNA expression. In conclusion, the present study illustrated that YTHDF2 expression might have some regulatory role in the underlying mechanisms associated with the autoimmune disease RA and that this m6A reader could at some point represent a potential target for regulating inflammatory responses that occur during RA.
{"title":"Expression and clinical significance of the m6A reader <i>YTHDF2</i> in peripheral blood mononuclear cells from rheumatoid arthritis patients.","authors":"Fangyi Yao, Chuxin Xu, Yujie Gao, Biqi Fu, Lu Zhang, Yang Guo, Zikun Huang, Xiaozhong Wang, Junming Li, Qing Luo","doi":"10.1080/1547691X.2022.2067916","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2067916","url":null,"abstract":"Abstract As an important m6A reader, the YT521-B homology domain family 2 (YTHDF2) has been shown to regulate mRNA degradation and translation, and to be involved in inflammation. However, little is known about the role of YTHDF2 in the autoimmune-based inflammatory disease rheumatoid arthritis (RA). To begin to ascertain any role for this reader, 74 RA patients and 63 healthy controls (HC) were recruited for this study. Blood was collected from each subject and peripheral blood mononuclear cells (PBMC) isolated. Thereafter, mRNA expression of YTHDF2, interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in the cells was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The harvested blood was also assessed for a variety of parameters, including levels of C-reactive protein (CRP), erythrocyte sedimentation rates (ESR), white blood cell counts (WBC), neutrophils counts (N)/neutrophils percentages (N%), and neutrophil:lymphocyte ratios (NLR) - each markers of inflammation during RA. The results showed that YTHDF2 mRNA expression in RA patient PBMC was decreased significantly vs that in healthy control subject cells. Further, YTHDF2 mRNA expression in RA patient PBMC negatively-correlated with ESR, CRP levels, WBC counts, as well as neutrophils counts, percentages, and NLR values. In addition, it was seen that YTHDF2 mRNA expression in RA patient PBMC was associated with host serum RF levels and treatment. Moreover, it was found that mRNA expression of IL-1β, IL-6, IL-8, and TNFα was increased in PBMC from RA patients relative to in control subject cells; however, only the increased IL-1β expression was seen to be negatively-correlated with decreased YTHDF2 mRNA expression. In conclusion, the present study illustrated that YTHDF2 expression might have some regulatory role in the underlying mechanisms associated with the autoimmune disease RA and that this m6A reader could at some point represent a potential target for regulating inflammatory responses that occur during RA.","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"53-60"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10408016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/1547691X.2022.2113842
Ian Kimber, Nicole Woeffen, Kevin Sondenheimer
There is a continuing interest in whether Bisphenol A (BPA) is able to cause adverse health effects through interaction with elements of the immune system. That interest has been fuelled further by the recent publication of a draft opinion on BPA prepared by the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). This draft opinion judged effects on the immune system to be the most sensitive health outcome, and identified BPA-induced changes in the frequency of T-helper (TH)-17 cells in the spleens of mice as being the critical effect based on an association of these cells with inflammation. Based on these evaluations the CEP Panel recommended that a revised Tolerable Daily Intake (TDI) for BPA of 0.04 ng/kg bw/day should be adopted; representing a very substantial reduction (100,000-fold) compared with the existing TDI. The purpose of this commentary is to summarize briefly the role of TH17 cells in immune responses, and to review relevant literature regarding the influence of BPA on these cells, and on inflammatory responses in the lung and respiratory allergy. The conclusion drawn is that based on uncertainties about the effects of BPA on TH17 cells and lung inflammation in mice, the absence of consistent or persuasive evidence from human studies that exposure of BPA is associated with inflammation or allergy, and unresolved questions regarding the species selectivity of immune effects induced by BPA, it is inappropriate to adopt the revised TDI. Additional research is required to explore further the influence of BPA on the immune system and immune responses.
{"title":"Bisphenol A, T<sub>H</sub>17 cells, and allergy: a commentary.","authors":"Ian Kimber, Nicole Woeffen, Kevin Sondenheimer","doi":"10.1080/1547691X.2022.2113842","DOIUrl":"https://doi.org/10.1080/1547691X.2022.2113842","url":null,"abstract":"<p><p>There is a continuing interest in whether Bisphenol A (BPA) is able to cause adverse health effects through interaction with elements of the immune system. That interest has been fuelled further by the recent publication of a draft opinion on BPA prepared by the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). This draft opinion judged effects on the immune system to be the most sensitive health outcome, and identified BPA-induced changes in the frequency of T-helper (T<sub>H</sub>)-17 cells in the spleens of mice as being the critical effect based on an association of these cells with inflammation. Based on these evaluations the CEP Panel recommended that a revised Tolerable Daily Intake (TDI) for BPA of 0.04 ng/kg bw/day should be adopted; representing a very substantial reduction (100,000-fold) compared with the existing TDI. The purpose of this commentary is to summarize briefly the role of T<sub>H</sub>17 cells in immune responses, and to review relevant literature regarding the influence of BPA on these cells, and on inflammatory responses in the lung and respiratory allergy. The conclusion drawn is that based on uncertainties about the effects of BPA on T<sub>H</sub>17 cells and lung inflammation in mice, the absence of consistent or persuasive evidence from human studies that exposure of BPA is associated with inflammation or allergy, and unresolved questions regarding the species selectivity of immune effects induced by BPA, it is inappropriate to adopt the revised TDI. Additional research is required to explore further the influence of BPA on the immune system and immune responses.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"19 1","pages":"93-99"},"PeriodicalIF":3.3,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10417275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}