Pub Date : 2024-07-22DOI: 10.1007/s10845-024-02462-8
Pengfei Ding, Jie Zhang, Pai Zheng, Peng Zhang, Bo Fei, Ziqi Xu
Human motion prediction is crucial for facilitating human–robot collaboration in customized assembly tasks. However, existing research primarily focuses on predicting limited human motions using static global information, which fails to address the highly stochastic nature of customized assembly operations in a given region. To address this, we propose a dynamic scenario-enhanced diverse human motion prediction network that extracts dynamic collaborative features to predict highly stochastic customized assembly operations. In this paper, we present a multi-level feature adaptation network that generates information for dynamically manipulating objects. This is accomplished by extracting multi-attribute features at different levels, including multi-channel gaze tracking, multi-scale object affordance detection, and multi-modal object’s 6 degree-of-freedom pose estimation. Notably, we employ gaze tracking to locate the collaborative space accurately. Furthermore, we introduce a multi-step feedback-refined diffusion sampling network specifically designed for predicting highly stochastic customized assembly operations. This network refines the outcomes of our proposed multi-weight diffusion sampling strategy to better align with the target distribution. Additionally, we develop a feedback regulatory mechanism that incorporates ground truth information in each prediction step to ensure the reliability of the results. Finally, the effectiveness of the proposed method was demonstrated through comparative experiments and validation of assembly tasks in a laboratory environment.
{"title":"Dynamic scenario-enhanced diverse human motion prediction network for proactive human–robot collaboration in customized assembly tasks","authors":"Pengfei Ding, Jie Zhang, Pai Zheng, Peng Zhang, Bo Fei, Ziqi Xu","doi":"10.1007/s10845-024-02462-8","DOIUrl":"https://doi.org/10.1007/s10845-024-02462-8","url":null,"abstract":"<p>Human motion prediction is crucial for facilitating human–robot collaboration in customized assembly tasks. However, existing research primarily focuses on predicting limited human motions using static global information, which fails to address the highly stochastic nature of customized assembly operations in a given region. To address this, we propose a dynamic scenario-enhanced diverse human motion prediction network that extracts dynamic collaborative features to predict highly stochastic customized assembly operations. In this paper, we present a multi-level feature adaptation network that generates information for dynamically manipulating objects. This is accomplished by extracting multi-attribute features at different levels, including multi-channel gaze tracking, multi-scale object affordance detection, and multi-modal object’s 6 degree-of-freedom pose estimation. Notably, we employ gaze tracking to locate the collaborative space accurately. Furthermore, we introduce a multi-step feedback-refined diffusion sampling network specifically designed for predicting highly stochastic customized assembly operations. This network refines the outcomes of our proposed multi-weight diffusion sampling strategy to better align with the target distribution. Additionally, we develop a feedback regulatory mechanism that incorporates ground truth information in each prediction step to ensure the reliability of the results. Finally, the effectiveness of the proposed method was demonstrated through comparative experiments and validation of assembly tasks in a laboratory environment.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"47 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.1007/s10845-024-02428-w
Eleni Zavrakli, Andrew Parnell, Andrew Dickson, Subhrakanti Dey
Designing efficient closed-loop control algorithms is a key issue in Additive Manufacturing (AM), as various aspects of the AM process require continuous monitoring and regulation, with temperature being a particularly significant factor. Here we study closed-loop control for the temperatures in the extruder of a Material Extrusion AM system, specifically a Big Area Additive Manufacturing (BAAM) system. Previous approaches for temperature control in AM either require the knowledge of exact model parameters, or involve discretisation of the state and action spaces to employ traditional data-driven control techniques. On the other hand, modern algorithms that can handle continuous state and action space problems require a large number of hyperparameter tuning to ensure good performance. In this work, we circumvent the above limitations by making use of a state space temperature model while focusing on both model-based and data-driven methods. We adopt the Linear Quadratic Tracking (LQT) framework and utilise the quadratic structure of the value function in the model-based analytical solution to produce a data-driven approximation formula for the optimal controller. We demonstrate these approaches using a simulator of the temperature evolution in the extruder of a BAAM system and perform an in-depth comparison of the performance of these methods. We find that we can learn an effective controller using solely simulated input–output process data. Our approach achieves parity in performance compared to model-based controllers and so lessens the need for estimating a large number of parameters of the often intricate and complicated process model. We believe this result is an important step towards achieving autonomous intelligent manufacturing.
设计高效的闭环控制算法是增材制造(AM)的一个关键问题,因为增材制造过程的各个方面都需要持续监控和调节,其中温度是一个特别重要的因素。在此,我们研究了材料挤出 AM 系统(特别是大面积增材制造 (BAAM) 系统)挤出机温度的闭环控制。以往的 AM 温度控制方法要么需要了解精确的模型参数,要么需要对状态和动作空间进行离散化,以采用传统的数据驱动控制技术。另一方面,能够处理连续状态和动作空间问题的现代算法需要进行大量的超参数调整,以确保良好的性能。在这项工作中,我们通过使用状态空间温度模型来规避上述限制,同时关注基于模型和数据驱动的方法。我们采用线性二次跟踪(LQT)框架,并利用基于模型的分析解决方案中值函数的二次结构,为最优控制器生成数据驱动的近似公式。我们使用 BAAM 系统挤出机温度演变模拟器演示了这些方法,并对这些方法的性能进行了深入比较。我们发现,仅使用模拟输入输出过程数据就能学习到有效的控制器。与基于模型的控制器相比,我们的方法性能相当,因此减少了对往往错综复杂的工艺模型的大量参数进行估计的需要。我们相信,这一成果是实现自主智能制造的重要一步。
{"title":"Data-driven linear quadratic tracking based temperature control of a big area additive manufacturing system","authors":"Eleni Zavrakli, Andrew Parnell, Andrew Dickson, Subhrakanti Dey","doi":"10.1007/s10845-024-02428-w","DOIUrl":"https://doi.org/10.1007/s10845-024-02428-w","url":null,"abstract":"<p>Designing efficient closed-loop control algorithms is a key issue in Additive Manufacturing (AM), as various aspects of the AM process require continuous monitoring and regulation, with temperature being a particularly significant factor. Here we study closed-loop control for the temperatures in the extruder of a Material Extrusion AM system, specifically a Big Area Additive Manufacturing (BAAM) system. Previous approaches for temperature control in AM either require the knowledge of exact model parameters, or involve discretisation of the state and action spaces to employ traditional data-driven control techniques. On the other hand, modern algorithms that can handle continuous state and action space problems require a large number of hyperparameter tuning to ensure good performance. In this work, we circumvent the above limitations by making use of a state space temperature model while focusing on both model-based and data-driven methods. We adopt the Linear Quadratic Tracking (LQT) framework and utilise the quadratic structure of the value function in the model-based analytical solution to produce a data-driven approximation formula for the optimal controller. We demonstrate these approaches using a simulator of the temperature evolution in the extruder of a BAAM system and perform an in-depth comparison of the performance of these methods. We find that we can learn an effective controller using solely simulated input–output process data. Our approach achieves parity in performance compared to model-based controllers and so lessens the need for estimating a large number of parameters of the often intricate and complicated process model. We believe this result is an important step towards achieving autonomous intelligent manufacturing.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"13 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.1007/s10845-024-02467-3
Mayur A. Makhesana, Prashant J. Bagga, Kaushik M. Patel, Haresh D. Patel, Aditya Balu, Navneet Khanna
Automatic tool condition monitoring becomes crucial in metal cutting because tool wear impacts the final product’s quality. The optical microscope approach for assessing tool wear is offline, time-consuming, and subject to measurement error by humans. To accomplish this, the machine must be stopped, and the tool must be removed, which causes downtime. As a result, numerous research attempts have been made to develop robust systems for direct tool wear measurement during machining. Therefore, the proposed work focused on developing a direct tool condition monitoring system using machine vision to calculate tool wear parameters, specifically flank wear. The cutting tool insert images are collected using a machine vision setup equipped with an industrial camera, bi-telecentric lens, and a proper illumination system during the machining of AISI 4140 steel. The comparative analysis of image processing algorithms for tool wear measurement is proposed under the selected machining environment. The wear boundary is extracted using digital image processing tools such as image enhancement, image segmentation, image morphology operation, and edge detection. The wear amount on the tool insert is extracted and recorded using the Hough line transformation function and pixel scanning. The comparison of results revealed the measurement accuracy and repeatability of the proposed image processing algorithm with a maximum of 6.25% and minimum of 1.10% error compared to manual measurement. Hence, the proposed approach eliminates manual measurements and improves the machining productivity.
{"title":"Comparative analysis of different machine vision algorithms for tool wear measurement during machining","authors":"Mayur A. Makhesana, Prashant J. Bagga, Kaushik M. Patel, Haresh D. Patel, Aditya Balu, Navneet Khanna","doi":"10.1007/s10845-024-02467-3","DOIUrl":"https://doi.org/10.1007/s10845-024-02467-3","url":null,"abstract":"<p>Automatic tool condition monitoring becomes crucial in metal cutting because tool wear impacts the final product’s quality. The optical microscope approach for assessing tool wear is offline, time-consuming, and subject to measurement error by humans. To accomplish this, the machine must be stopped, and the tool must be removed, which causes downtime. As a result, numerous research attempts have been made to develop robust systems for direct tool wear measurement during machining. Therefore, the proposed work focused on developing a direct tool condition monitoring system using machine vision to calculate tool wear parameters, specifically flank wear. The cutting tool insert images are collected using a machine vision setup equipped with an industrial camera, bi-telecentric lens, and a proper illumination system during the machining of AISI 4140 steel. The comparative analysis of image processing algorithms for tool wear measurement is proposed under the selected machining environment. The wear boundary is extracted using digital image processing tools such as image enhancement, image segmentation, image morphology operation, and edge detection. The wear amount on the tool insert is extracted and recorded using the Hough line transformation function and pixel scanning. The comparison of results revealed the measurement accuracy and repeatability of the proposed image processing algorithm with a maximum of 6.25% and minimum of 1.10% error compared to manual measurement. Hence, the proposed approach eliminates manual measurements and improves the machining productivity.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"151 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1007/s10845-024-02454-8
Shiyong Wang, Jiaxian Li, Qingsong Jiao, Fang Ma
Production scheduling has a significant role when optimizing production objectives such as production efficiency, resource utilization, cost control, energy-saving, and emission reduction. Currently, deep reinforcement learning-based production scheduling methods achieve roughly equivalent precision as the widely used meta-heuristic algorithms while exhibiting higher efficiency, along with powerful generalization abilities. Therefore, this new paradigm has drawn much attention and plenty of research results have been reported. By reviewing available deep reinforcement learning models for the job shop scheduling problems, the typical design patterns and pattern combinations of the common components, i.e., agent, environment, state, action, and reward, were identified. Around this essential contribution, the architecture and procedure of training deep reinforcement learning scheduling models and applying resultant scheduling solvers were generalized. Furthermore, the key evaluation indicators were summarized and the promising research areas were outlined. This work surveys several deep reinforcement learning models for a range of production scheduling problems.
{"title":"Design patterns of deep reinforcement learning models for job shop scheduling problems","authors":"Shiyong Wang, Jiaxian Li, Qingsong Jiao, Fang Ma","doi":"10.1007/s10845-024-02454-8","DOIUrl":"https://doi.org/10.1007/s10845-024-02454-8","url":null,"abstract":"<p>Production scheduling has a significant role when optimizing production objectives such as production efficiency, resource utilization, cost control, energy-saving, and emission reduction. Currently, deep reinforcement learning-based production scheduling methods achieve roughly equivalent precision as the widely used meta-heuristic algorithms while exhibiting higher efficiency, along with powerful generalization abilities. Therefore, this new paradigm has drawn much attention and plenty of research results have been reported. By reviewing available deep reinforcement learning models for the job shop scheduling problems, the typical design patterns and pattern combinations of the common components, i.e., agent, environment, state, action, and reward, were identified. Around this essential contribution, the architecture and procedure of training deep reinforcement learning scheduling models and applying resultant scheduling solvers were generalized. Furthermore, the key evaluation indicators were summarized and the promising research areas were outlined. This work surveys several deep reinforcement learning models for a range of production scheduling problems.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s10845-024-02435-x
Congfang Huang, David Blondheim, Shiyu Zhou
Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling (T^2) statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.
制造生产系统中的过程监控和异常检测对生产操作的一致性、可靠性和质量至关重要,因此开发了大量异常检测方法。在这项工作中,对代表性的基于无监督 X 射线图像的异常检测方法进行了比较研究。研究考虑并比较了基于统计、物理和深度学习的降维方法以及不同的异常检测标准。对真实世界的 X 射线图像数据进行了模拟异常和真实异常的案例研究。以霍特林(T^2)统计量作为检测标准的灰度共现矩阵在模拟异常案例中取得了最佳性能,总体检测准确率达到 96%。以重建误差为标准的主成分分析法在真实异常情况下的检测率最高,达到 90.6%。考虑到图像数据在智能制造过程中的可用性越来越高,这项研究将提供非常有用的知识,并会有广泛的受众。
{"title":"A comparison study on anomaly detection methods in manufacturing process monitoring with X-ray images","authors":"Congfang Huang, David Blondheim, Shiyu Zhou","doi":"10.1007/s10845-024-02435-x","DOIUrl":"https://doi.org/10.1007/s10845-024-02435-x","url":null,"abstract":"<p>Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling <span>(T^2)</span> statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"83 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1007/s10845-024-02447-7
Bernadin Namoano, Christina Latsou, John Ahmet Erkoyuncu
Anomaly detection in multivariate time-series data is critical for monitoring asset conditions, enabling prompt fault detection and diagnosis to mitigate damage, reduce downtime and enhance safety. Existing literature predominately emphasises temporal dependencies in single-channel data, often overlooking interrelations between features in multivariate time-series data and across multiple channels. This paper introduces G-BOCPD, a novel graphical model-based annotation method designed to automatically detect anomalies in multi-channel multivariate time-series data. To address internal and external dependencies, G-BOCPD proposes a hybridisation of the graphical lasso and expectation maximisation algorithms. This approach detects anomalies in multi-channel multivariate time-series by identifying segments with diverse behaviours and patterns, which are then annotated to highlight variations. The method alternates between estimating the concentration matrix, which represents dependencies between variables, using the graphical lasso algorithm, and annotating segments through a minimal path clustering method for a comprehensive understanding of variations. To demonstrate its effectiveness, G-BOCPD is applied to multichannel time-series obtained from: (i) Diesel Multiple Unit train engines exhibiting faulty behaviours; and (ii) a group of train doors at various degradation stages. Empirical evidence highlights G-BOCPD's superior performance compared to previous approaches in terms of precision, recall and F1-score.
多变量时间序列数据中的异常检测对于监测资产状况至关重要,可以及时发现和诊断故障,从而减轻损害、减少停机时间并提高安全性。现有文献主要强调单通道数据中的时间依赖性,往往忽略了多变量时间序列数据和跨多通道特征之间的相互关系。本文介绍了 G-BOCPD,这是一种基于图形模型的新型注释方法,旨在自动检测多通道多变量时间序列数据中的异常情况。为了解决内部和外部依赖性问题,G-BOCPD 提出了图形套索算法和期望最大化算法的混合算法。这种方法通过识别具有不同行为和模式的片段来检测多通道多变量时间序列中的异常,然后对这些片段进行注释以突出变化。该方法交替使用图形套索算法估算表示变量间依赖关系的浓度矩阵,并通过最小路径聚类方法注释片段,以全面了解变化情况。为证明其有效性,G-BOCPD 被应用于多通道时间序列,这些时间序列来自:(i) 表现出故障行为的柴油多联式列车发动机;(ii) 处于不同退化阶段的一组列车车门。经验证据表明,G-BOCPD 在精确度、召回率和 F1 分数方面都优于之前的方法。
{"title":"Multi-channel anomaly detection using graphical models","authors":"Bernadin Namoano, Christina Latsou, John Ahmet Erkoyuncu","doi":"10.1007/s10845-024-02447-7","DOIUrl":"https://doi.org/10.1007/s10845-024-02447-7","url":null,"abstract":"<p>Anomaly detection in multivariate time-series data is critical for monitoring asset conditions, enabling prompt fault detection and diagnosis to mitigate damage, reduce downtime and enhance safety. Existing literature predominately emphasises temporal dependencies in single-channel data, often overlooking interrelations between features in multivariate time-series data and across multiple channels. This paper introduces G-BOCPD, a novel graphical model-based annotation method designed to automatically detect anomalies in multi-channel multivariate time-series data. To address internal and external dependencies, G-BOCPD proposes a hybridisation of the graphical lasso and expectation maximisation algorithms. This approach detects anomalies in multi-channel multivariate time-series by identifying segments with diverse behaviours and patterns, which are then annotated to highlight variations. The method alternates between estimating the concentration matrix, which represents dependencies between variables, using the graphical lasso algorithm, and annotating segments through a minimal path clustering method for a comprehensive understanding of variations. To demonstrate its effectiveness, G-BOCPD is applied to multichannel time-series obtained from: (i) Diesel Multiple Unit train engines exhibiting faulty behaviours; and (ii) a group of train doors at various degradation stages. Empirical evidence highlights G-BOCPD's superior performance compared to previous approaches in terms of precision, recall and F1-score.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"55 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1007/s10845-024-02460-w
Andrea Pieressa, Giacomo Baruffa, Marco Sorgato, Giovanni Lucchetta
This study introduces a novel approach using Physics-Informed Neural Networks (PINN) to predict weld line visibility in injection-molded components based on process parameters. Leveraging PINNs, the research aims to minimize experimental tests and numerical simulations, thus reducing computational efforts, to make the classification models for surface defects more easily implementable in an industrial environment. By correlating weld line visibility with the Frozen Layer Ratio (FLR) threshold, identified through limited experimental data and simulations, the study generates synthetic datasets for pre-training neural networks. This study demonstrates that a quality classification model pre-trained with PINN-generated datasets achieves comparable performance to a randomly initialized network in terms of Recall and Area Under the Curve (AUC) metrics, with a substantial reduction of 78% in the need for experimental points. Furthermore, it achieves similar accuracy levels with 74% fewer experimental points. The results demonstrate the robustness and accuracy of neural networks pre-trained with PINNs in predicting weld line visibility, offering a promising approach to minimizing experimental efforts and computational resources.
{"title":"Enhancing weld line visibility prediction in injection molding using physics-informed neural networks","authors":"Andrea Pieressa, Giacomo Baruffa, Marco Sorgato, Giovanni Lucchetta","doi":"10.1007/s10845-024-02460-w","DOIUrl":"https://doi.org/10.1007/s10845-024-02460-w","url":null,"abstract":"<p>This study introduces a novel approach using Physics-Informed Neural Networks (PINN) to predict weld line visibility in injection-molded components based on process parameters. Leveraging PINNs, the research aims to minimize experimental tests and numerical simulations, thus reducing computational efforts, to make the classification models for surface defects more easily implementable in an industrial environment. By correlating weld line visibility with the Frozen Layer Ratio (FLR) threshold, identified through limited experimental data and simulations, the study generates synthetic datasets for pre-training neural networks. This study demonstrates that a quality classification model pre-trained with PINN-generated datasets achieves comparable performance to a randomly initialized network in terms of Recall and Area Under the Curve (AUC) metrics, with a substantial reduction of 78% in the need for experimental points. Furthermore, it achieves similar accuracy levels with 74% fewer experimental points. The results demonstrate the robustness and accuracy of neural networks pre-trained with PINNs in predicting weld line visibility, offering a promising approach to minimizing experimental efforts and computational resources.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"25 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1007/s10845-024-02453-9
Ossama Abou Ali Modad, Jason Ryska, Abdallah Chehade, Georges Ayoub
In this manuscript, we present a comprehensive overview of true digital twin applications within the manufacturing industry, specifically delving into advancements in sheet metal forming. A true digital twin is a virtual representation of a physical process or production system, enabling bidirectional data exchange between the physical and digital domains and facilitating real-time optimization of performance and decision-making through synchronized data from sensors. Hence, we will highlight the difference between Industry 4.0 and the digital twin concept, which is considered synonymous with Industry 5.0. Additionally, we will be outlining the relationship between the true digital twin and Zero Defect Manufacturing. In manufacturing processes, including sheet metal stamping, the advantages of high production speed, cost-effective tooling, and consistent component production are counterbalanced by the challenge of dimensional variability in finished parts, which is influenced by process parameters. Data collection, storage, and analysis are essential for understanding manufactured parts variability, and leveraging true digital twins ensures high-quality parts production and processes optimization.
{"title":"Revolutionizing sheet metal stamping through industry 5.0 digital twins: a comprehensive review","authors":"Ossama Abou Ali Modad, Jason Ryska, Abdallah Chehade, Georges Ayoub","doi":"10.1007/s10845-024-02453-9","DOIUrl":"https://doi.org/10.1007/s10845-024-02453-9","url":null,"abstract":"<p>In this manuscript, we present a comprehensive overview of true digital twin applications within the manufacturing industry, specifically delving into advancements in sheet metal forming. A true digital twin is a virtual representation of a physical process or production system, enabling bidirectional data exchange between the physical and digital domains and facilitating real-time optimization of performance and decision-making through synchronized data from sensors. Hence, we will highlight the difference between Industry 4.0 and the digital twin concept, which is considered synonymous with Industry 5.0. Additionally, we will be outlining the relationship between the true digital twin and Zero Defect Manufacturing. In manufacturing processes, including sheet metal stamping, the advantages of high production speed, cost-effective tooling, and consistent component production are counterbalanced by the challenge of dimensional variability in finished parts, which is influenced by process parameters. Data collection, storage, and analysis are essential for understanding manufactured parts variability, and leveraging true digital twins ensures high-quality parts production and processes optimization.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"55 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teleoperation, which is a specific mode of human–robot collaboration enabling a human operator to provide instructions and monitor the actions of the robot remotely, has proved beneficial for application to hazardous and unstructured manufacturing environments. Despite the design of a command channel from human operators to robots, most existing studies on teleoperation fail to focus on the design of the feedback channel from the robot to the human operator, which plays a crucial role in reducing the cognitive load, particularly in precise and concentrated manufacturing tasks. This paper focuses on designing a feedback channel for the cognitive interface between a human operator and a robot considering human cognition. Current studies on human–robot cognitive interfaces in robot teleoperation are extensively surveyed. Further, the modalities of human cognition that foster understanding and transparency during teleoperation are identified. In addition, the human–robot cognitive interface, which utilizes the proposed multi-modal feedback channel, is developed on a teleoperated robotic grasping system as a case study. Finally, a series of experiments based on different modal feedback channels are conducted to demonstrate the effectiveness of enhancing the performance of the teleoperated grasping of fragile products and reducing the cognitive load via the objective aspects of experimental results and the subjective aspects of operator feedback.
{"title":"Design of multi-modal feedback channel of human–robot cognitive interface for teleoperation in manufacturing","authors":"Chen Zheng, Kangning Wang, Shiqi Gao, Yang Yu, Zhanxi Wang, Yunlong Tang","doi":"10.1007/s10845-024-02451-x","DOIUrl":"https://doi.org/10.1007/s10845-024-02451-x","url":null,"abstract":"<p>Teleoperation, which is a specific mode of human–robot collaboration enabling a human operator to provide instructions and monitor the actions of the robot remotely, has proved beneficial for application to hazardous and unstructured manufacturing environments. Despite the design of a command channel from human operators to robots, most existing studies on teleoperation fail to focus on the design of the feedback channel from the robot to the human operator, which plays a crucial role in reducing the cognitive load, particularly in precise and concentrated manufacturing tasks. This paper focuses on designing a feedback channel for the cognitive interface between a human operator and a robot considering human cognition. Current studies on human–robot cognitive interfaces in robot teleoperation are extensively surveyed. Further, the modalities of human cognition that foster understanding and transparency during teleoperation are identified. In addition, the human–robot cognitive interface, which utilizes the proposed multi-modal feedback channel, is developed on a teleoperated robotic grasping system as a case study. Finally, a series of experiments based on different modal feedback channels are conducted to demonstrate the effectiveness of enhancing the performance of the teleoperated grasping of fragile products and reducing the cognitive load via the objective aspects of experimental results and the subjective aspects of operator feedback.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"52 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1007/s10845-024-02455-7
Kuan-Cheng Kuo, Kuei-Yuan Chan
Pushing is a fundamental ability in mobile robotics for transporting objects when grippers are not applicable. A successful “box-pushing” requires good coordination between model prediction, pushing strategy, and motion planning, therefore presents a well-known challenge in mobile robot transportation community. However, current research often focuses on local planning for altering push direction, while global planning remains inadequate. This can lead to inefficient pushing trajectories, especially in narrow passages where robots may unintentionally push the box into a dead end due to the lack of robust global path. To address this, we propose the use of stable pushing as an effective technique and develop a unique global planning approach based on the hybrid A* algorithm. We enhance the hybrid A* algorithm by modifying the node expansion approach and incorporating a mechanism for predicting push direction, enabling the system to adapt to changing push side behavior and discover optimal pathways. Extensive simulations validate our system’s effectiveness in handling complex scenarios with limited passageways. As a result, our method significantly improves the robot’s capability to generate superior global paths for box-pushing, mitigating wasteful trajectories and enhancing overall performance.
{"title":"Stable pushing in narrow passage environment using a modified hybrid A* algorithm","authors":"Kuan-Cheng Kuo, Kuei-Yuan Chan","doi":"10.1007/s10845-024-02455-7","DOIUrl":"https://doi.org/10.1007/s10845-024-02455-7","url":null,"abstract":"<p>Pushing is a fundamental ability in mobile robotics for transporting objects when grippers are not applicable. A successful “box-pushing” requires good coordination between model prediction, pushing strategy, and motion planning, therefore presents a well-known challenge in mobile robot transportation community. However, current research often focuses on local planning for altering push direction, while global planning remains inadequate. This can lead to inefficient pushing trajectories, especially in narrow passages where robots may unintentionally push the box into a dead end due to the lack of robust global path. To address this, we propose the use of stable pushing as an effective technique and develop a unique global planning approach based on the hybrid A* algorithm. We enhance the hybrid A* algorithm by modifying the node expansion approach and incorporating a mechanism for predicting push direction, enabling the system to adapt to changing push side behavior and discover optimal pathways. Extensive simulations validate our system’s effectiveness in handling complex scenarios with limited passageways. As a result, our method significantly improves the robot’s capability to generate superior global paths for box-pushing, mitigating wasteful trajectories and enhancing overall performance.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"24 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}