Pub Date : 2024-10-29DOI: 10.1080/08982104.2024.2420337
Tomoki Yamada, Hiroaki Suzuki
Giant liposomes, or giant unilamellar vesicles (GUVs), have been utilized as cell-size bioreactors to replicate the physical and chemical properties of biological cells. However, conventional methods for preparing GUVs typically lack precise control over their size. Several research groups have recently developed microfluidic techniques to create monodisperse GUVs by generating water-in-oil-in-water (W/O/W) droplets with a thin oil layer that subsequently transform into GUVs. However, the formation of a thin oil shell requires the intricate control of the flow rate, which can be both challenging and unstable. In this study, we investigated the design of a two-step flow-focusing microfluidic channel to produce stable W/O/W droplets. These droplets underwent substantial oil layer reduction through spontaneous removal by fluidic shear forces. Consequently, the majority of the oil layer in the W/O/W droplets was reduced, improving uniformity of GUVs.
{"title":"Microfluidics-based stable production of monodisperse giant unilamellar vesicles by oil-phase removal from double emulsion.","authors":"Tomoki Yamada, Hiroaki Suzuki","doi":"10.1080/08982104.2024.2420337","DOIUrl":"10.1080/08982104.2024.2420337","url":null,"abstract":"<p><p>Giant liposomes, or giant unilamellar vesicles (GUVs), have been utilized as cell-size bioreactors to replicate the physical and chemical properties of biological cells. However, conventional methods for preparing GUVs typically lack precise control over their size. Several research groups have recently developed microfluidic techniques to create monodisperse GUVs by generating water-in-oil-in-water (W/O/W) droplets with a thin oil layer that subsequently transform into GUVs. However, the formation of a thin oil shell requires the intricate control of the flow rate, which can be both challenging and unstable. In this study, we investigated the design of a two-step flow-focusing microfluidic channel to produce stable W/O/W droplets. These droplets underwent substantial oil layer reduction through spontaneous removal by fluidic shear forces. Consequently, the majority of the oil layer in the W/O/W droplets was reduced, improving uniformity of GUVs.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-7"},"PeriodicalIF":3.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1080/08982104.2024.2415664
Stefano Russo, Anna Privitera, Giuliana Greco, Lucia Di Pietro, Vincenzo Cardaci, Giuseppe Carota, Maria Grazia Sarpietro, Giuseppe Caruso
Carnosine is an endogenous dipeptide characterized by a multimodal mechanism of action. However, its clinical potential is limited by serum and cytosolic carnosinases, which significantly reduce its bioavailability. Based on that, different research groups have worked on the development of new strategies able not only to prevent its rapid metabolization but also to improve its distribution and specific targeting. In the present study, the development and in vitro characterization of new liposomal formulations loaded with carnosine are described. Nanoliposomes, produced through Thin-Layer Hydration followed by Extrusion method, were first investigated for their physicochemical stability. Photon correlation spectroscopy and electrophoretic light scattering, assessing the stability of the formulations, showed a strong homogeneity-oriented tendency for up to two months. Particle size, polydispersity index, and zeta potential were determined through dynamic light scattering and electrophoretic light scattering, demonstrating an almost neutral charge of the formulation and an effective encapsulation of carnosine. The morphology assessment performed via scanning electron microscopy showed good conformity and polydispersity. Differential scanning calorimetry measurements suggest the ability of carnosine to stabilize the large unilamellar vesicles. Lastly, the newly developed carnosine-loaded liposomal formulations also showed a good safety profile in human microglia.
{"title":"Development and <i>in vitro</i> characterization of new carnosine-loaded liposomal formulations.","authors":"Stefano Russo, Anna Privitera, Giuliana Greco, Lucia Di Pietro, Vincenzo Cardaci, Giuseppe Carota, Maria Grazia Sarpietro, Giuseppe Caruso","doi":"10.1080/08982104.2024.2415664","DOIUrl":"https://doi.org/10.1080/08982104.2024.2415664","url":null,"abstract":"<p><p>Carnosine is an endogenous dipeptide characterized by a multimodal mechanism of action. However, its clinical potential is limited by serum and cytosolic carnosinases, which significantly reduce its bioavailability. Based on that, different research groups have worked on the development of new strategies able not only to prevent its rapid metabolization but also to improve its distribution and specific targeting. In the present study, the development and <i>in vitro</i> characterization of new liposomal formulations loaded with carnosine are described. Nanoliposomes, produced through Thin-Layer Hydration followed by Extrusion method, were first investigated for their physicochemical stability. Photon correlation spectroscopy and electrophoretic light scattering, assessing the stability of the formulations, showed a strong homogeneity-oriented tendency for up to two months. Particle size, polydispersity index, and zeta potential were determined through dynamic light scattering and electrophoretic light scattering, demonstrating an almost neutral charge of the formulation and an effective encapsulation of carnosine. The morphology assessment performed via scanning electron microscopy showed good conformity and polydispersity. Differential scanning calorimetry measurements suggest the ability of carnosine to stabilize the large unilamellar vesicles. Lastly, the newly developed carnosine-loaded liposomal formulations also showed a good safety profile in human microglia.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1080/08982104.2024.2410748
Nazanin Kianinejad, Reza Razeghifard, Hossein H Omidian, Yadollah Omidi, Young M Kwon
Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A2 (PLA2) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA2, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.
{"title":"Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A<sub>2</sub>.","authors":"Nazanin Kianinejad, Reza Razeghifard, Hossein H Omidian, Yadollah Omidi, Young M Kwon","doi":"10.1080/08982104.2024.2410748","DOIUrl":"https://doi.org/10.1080/08982104.2024.2410748","url":null,"abstract":"<p><p>Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A<sub>2</sub> (PLA<sub>2</sub>) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA<sub>2</sub>, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1080/08982104.2024.2405131
Kübra Uçar Baş, Aslıhan Ağaçdiken, Elif Didem Örs Demet, Dilem Tuğal Aslan, Tuba Reçber, Süleyman Can Öztürk, Tugba Gulsun, Mustafa Çelebier, Zeynep Göktaş
Naringenin may play a role in browning by increasing thermogenic gene expression. In this study, we encapsulated naringenin using a liposomal formulation and examined the effects of both free and l...
{"title":"Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice","authors":"Kübra Uçar Baş, Aslıhan Ağaçdiken, Elif Didem Örs Demet, Dilem Tuğal Aslan, Tuba Reçber, Süleyman Can Öztürk, Tugba Gulsun, Mustafa Çelebier, Zeynep Göktaş","doi":"10.1080/08982104.2024.2405131","DOIUrl":"https://doi.org/10.1080/08982104.2024.2405131","url":null,"abstract":"Naringenin may play a role in browning by increasing thermogenic gene expression. In this study, we encapsulated naringenin using a liposomal formulation and examined the effects of both free and l...","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"5 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1080/08982104.2024.2401800
E Loscertales,J Mateo,S España
This study investigates drug-loaded liposomes designed for controlled release under ionizing radiation to refine cancer treatment precision. Liposomes as carriers enable targeted chemotherapy delivery, reducing healthy tissue damage risk. Liposomes containing poly- or mono-unsaturated fatty acids and various sensitizing agents were assessed for responsiveness to UV light and γ photon irradiation including rose bengal (RB), protoporphyrin IX (PPIX), verteporfin (VP), cercosporin (CERC) and hypericin (HYP). Carboxyfluorescein (CF) was used as a surrogate for drug release measurements. VP and PPIX induced rapid drug release and lipid peroxidation under UV light, while RB prompted quick drug release under UV light and a modest immediate release under γ irradiation, eventually reaching full release a few hours after irradiation, demonstrating dose-dependent effects. Smaller liposomes displayed accelerated release, emphasizing size-dependent kinetics. In vitro analyses evaluated radiosensitizing effects of RB-loaded liposomes. Clonogenic assays indicated that RB-filled liposomes had minimal direct radiobiological effects but increased indirect radiation damage, as shown by the curvature of the cell survival curve. Our study sheds light on factors influencing liposomal drug release under ionizing radiation, spotlighting RB as a promising radiosensitizer requiring further investigation for cancer therapy potential.
{"title":"A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy.","authors":"E Loscertales,J Mateo,S España","doi":"10.1080/08982104.2024.2401800","DOIUrl":"https://doi.org/10.1080/08982104.2024.2401800","url":null,"abstract":"This study investigates drug-loaded liposomes designed for controlled release under ionizing radiation to refine cancer treatment precision. Liposomes as carriers enable targeted chemotherapy delivery, reducing healthy tissue damage risk. Liposomes containing poly- or mono-unsaturated fatty acids and various sensitizing agents were assessed for responsiveness to UV light and γ photon irradiation including rose bengal (RB), protoporphyrin IX (PPIX), verteporfin (VP), cercosporin (CERC) and hypericin (HYP). Carboxyfluorescein (CF) was used as a surrogate for drug release measurements. VP and PPIX induced rapid drug release and lipid peroxidation under UV light, while RB prompted quick drug release under UV light and a modest immediate release under γ irradiation, eventually reaching full release a few hours after irradiation, demonstrating dose-dependent effects. Smaller liposomes displayed accelerated release, emphasizing size-dependent kinetics. In vitro analyses evaluated radiosensitizing effects of RB-loaded liposomes. Clonogenic assays indicated that RB-filled liposomes had minimal direct radiobiological effects but increased indirect radiation damage, as shown by the curvature of the cell survival curve. Our study sheds light on factors influencing liposomal drug release under ionizing radiation, spotlighting RB as a promising radiosensitizer requiring further investigation for cancer therapy potential.","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"29 1","pages":"1-12"},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-01DOI: 10.1080/08982104.2023.2274428
Ekaterina S Shchegravina, Daria S Tretiakova, Alsu R Sitdikova, Sofia D Usova, Ivan A Boldyrev, Anna S Alekseeva, Elena V Svirshchevskaya, Elena L Vodovozova, Alexey Yu Fedorov
Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.
{"title":"Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release.","authors":"Ekaterina S Shchegravina, Daria S Tretiakova, Alsu R Sitdikova, Sofia D Usova, Ivan A Boldyrev, Anna S Alekseeva, Elena V Svirshchevskaya, Elena L Vodovozova, Alexey Yu Fedorov","doi":"10.1080/08982104.2023.2274428","DOIUrl":"10.1080/08982104.2023.2274428","url":null,"abstract":"<p><p>Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"399-410"},"PeriodicalIF":4.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-15DOI: 10.1080/08982104.2023.2280829
Xiaochen Chen, Yiwei Wang, Changzhu Li, Zichun Hua, Haiying Cui, Lin Lin
Eugenol, as a natural antibacterial agent, has been widely studied for its inhibitory effect on the common food-borne pathogen Staphylococcus aureus (S. aureus). However, the widespread application of eugenol is still limited by its instability and volatility. Herein, γ-polyglutamic acid coated eugenol cationic liposomes (pGA-ECLPs) were successfully constructed by self-assembly with an average particle size of 170.7 nm and an encapsulation efficiency of 36.2%. The formation of pGA shell significantly improved the stability of liposomes, and the encapsulation efficiency of eugenol only decreased by 20.7% after 30 days of storage at 4 °C. On the other hand, the pGA layer can be hydrolyzed by S. aureus, achieving effective control of release through response to bacterial stimuli. The application experiments further confirmed that pGA-ECLPs effectively prolonged the antibacterial effect of eugenol in fresh chicken without causing obvious sensory effects on the food. The above results of this study provide an important reference for extending the action time of natural antibacterial substances and developing new stimuli-responsive antibacterial systems.
{"title":"Antibacterial effect of protease-responsive cationic eugenol liposomes modified by gamma-polyglutamic acid against <i>Staphylococcus aureus</i>.","authors":"Xiaochen Chen, Yiwei Wang, Changzhu Li, Zichun Hua, Haiying Cui, Lin Lin","doi":"10.1080/08982104.2023.2280829","DOIUrl":"10.1080/08982104.2023.2280829","url":null,"abstract":"<p><p>Eugenol, as a natural antibacterial agent, has been widely studied for its inhibitory effect on the common food-borne pathogen <i>Staphylococcus aureus</i> (<i>S. aureus</i>). However, the widespread application of eugenol is still limited by its instability and volatility. Herein, γ-polyglutamic acid coated eugenol cationic liposomes (pGA-ECLPs) were successfully constructed by self-assembly with an average particle size of 170.7 nm and an encapsulation efficiency of 36.2%. The formation of pGA shell significantly improved the stability of liposomes, and the encapsulation efficiency of eugenol only decreased by 20.7% after 30 days of storage at 4 °C. On the other hand, the pGA layer can be hydrolyzed by <i>S. aureus</i>, achieving effective control of release through response to bacterial stimuli. The application experiments further confirmed that pGA-ECLPs effectively prolonged the antibacterial effect of eugenol in fresh chicken without causing obvious sensory effects on the food. The above results of this study provide an important reference for extending the action time of natural antibacterial substances and developing new stimuli-responsive antibacterial systems.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"411-420"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107591491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-12-07DOI: 10.1080/08982104.2023.2285973
Marite Skrinda-Melne, Janis Locs, Andra Grava, Arita Dubnika
Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.
{"title":"Calcium phosphates enhanced with liposomes - the future of bone regeneration and drug delivery.","authors":"Marite Skrinda-Melne, Janis Locs, Andra Grava, Arita Dubnika","doi":"10.1080/08982104.2023.2285973","DOIUrl":"10.1080/08982104.2023.2285973","url":null,"abstract":"<p><p>Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"507-522"},"PeriodicalIF":4.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-10-31DOI: 10.1080/08982104.2023.2274424
Hideki Aizawa
Yamanashi et al., conducted a study on the absorption of cholesterol and β-sitosterol, as well as the inhibitory effect of ezetimibe (EZE). They used CaCo-2 cells to simulate the intestines and investigated how different mixed micelles, acting as carriers, were absorbed into these cells through the Niemann-Pick C1-like 1 (NPC1L1) protein. The study focused on the impact of micelle shape, size, and zeta potential on absorption and the inhibitory effect of EZE. I utilized small-angle X-ray scattering and a zeta potential measuring device to measure these characteristics. The findings revealed a two-step mechanism: NPC1L1 selectively bound micelles based on their shape and size, and once bound, the absorption was regulated by the molecular structure of the micelle components. EZE's inhibitory effect changed with micelle composition, influencing micelle size and shape. EZE initially acted on the micelle's shape and size, and then NPC1L1 selectively bound micelles based on their shape and size, allowing EZE to directly inhibit absorption by interacting with NPC1L1. This groundbreaking discovery challenges existing concepts and holds significant implications for researchers in drug development, as well as physicians and pharmacists.
{"title":"Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.","authors":"Hideki Aizawa","doi":"10.1080/08982104.2023.2274424","DOIUrl":"10.1080/08982104.2023.2274424","url":null,"abstract":"<p><p>Yamanashi et al., conducted a study on the absorption of cholesterol and β-sitosterol, as well as the inhibitory effect of ezetimibe (EZE). They used CaCo-2 cells to simulate the intestines and investigated how different mixed micelles, acting as carriers, were absorbed into these cells through the Niemann-Pick C1-like 1 (NPC1L1) protein. The study focused on the impact of micelle shape, size, and zeta potential on absorption and the inhibitory effect of EZE. I utilized small-angle X-ray scattering and a zeta potential measuring device to measure these characteristics. The findings revealed a two-step mechanism: NPC1L1 selectively bound micelles based on their shape and size, and once bound, the absorption was regulated by the molecular structure of the micelle components. EZE's inhibitory effect changed with micelle composition, influencing micelle size and shape. EZE initially acted on the micelle's shape and size, and then NPC1L1 selectively bound micelles based on their shape and size, allowing EZE to directly inhibit absorption by interacting with NPC1L1. This groundbreaking discovery challenges existing concepts and holds significant implications for researchers in drug development, as well as physicians and pharmacists.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"386-398"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71412572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-01-25DOI: 10.1080/08982104.2024.2305866
Yu Gao, Andrew N Shelling, Emma Nolan, David Porter, Euphemia Leung, Zimei Wu
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
{"title":"Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells.","authors":"Yu Gao, Andrew N Shelling, Emma Nolan, David Porter, Euphemia Leung, Zimei Wu","doi":"10.1080/08982104.2024.2305866","DOIUrl":"10.1080/08982104.2024.2305866","url":null,"abstract":"<p><p>Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2<sup>+</sup>) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2<sup>+</sup> cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 <i>vs.</i> 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (<i>p</i> < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2<sup>+</sup> breast cancer.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"489-506"},"PeriodicalIF":4.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}