Knowledge of insect dispersal is relevant to the control of agricultural pests, vector-borne transmission of human and veterinary pathogens, and insect biodiversity. Previous studies in a malaria endemic area of the Sahel region in West Africa revealed high-altitude, long-distance migration of insects and various mosquito species. The objective of the current study was to assess whether similar behavior is exhibited by mosquitoes and other insects around the Lake Victoria basin region of Kenya in East Africa. Insects were sampled monthly from dusk to dawn over 1 year using sticky nets suspended on a tethered helium-filled balloon. A total of 17,883 insects were caught on nets tethered at 90, 120, and 160 m above ground level; 818 insects were caught in control nets. Small insects (<0.5 cm, n = 15,250) were predominant regardless of height compared with large insects (>0.5 cm, n = 2,334) and mosquitoes (n = 299). Seven orders were identified; dipteran was the most common. Barcoding molecular assays of 184 mosquitoes identified 7 genera, with Culex being the most common (65.8%) and Anopheles being the least common (5.4%). The survival rate of mosquitoes, experimentally exposed to high-altitude overnight, was significantly lower than controls maintained in the laboratory (19% vs. 85%). There were no significant differences in mosquito survival and oviposition rate according to capture height. These data suggest that windborne dispersal activity of mosquito vectors of malaria and other diseases occurs on a broad scale in sub-Saharan Africa.
As observed in many locations worldwide, resistance to pyrethroids is common in Aedes aegypti (L.) in the southern United States and northern Mexico. Strong resistance in Aedes albopictus (Skuse) is less common and is not as well characterized. These 2 species have been undergoing range expansion and are sympatric in many locations including Houston, Texas. They are often collected from the same locations and lay eggs in the same larval habitats. In this study, we colonized both Ae. aegypti and Ae. albopictus from 4 locations in Houston and characterized insecticide resistance using permethrin as a model pyrethroid. We found differences in resistance intensity between the species at all 4 sites. Within the Ae. aegypti, resistance ratios ranged from 3.5- to 30.0-fold when compared to the ORL1952 laboratory susceptible strain. Expression of several P450s was higher than in the ORL1952 strain, but the pattern was similar between the field strains of Ae. aegypti. Higher resistance ratios did correlate with increasing percentages of the dilocus knockdown resistance (kdr) genotype. In contrast, Ae. albopictus from the 4 locations all had very low resistance ratios (<4-fold) when compared to the same laboratory susceptible strain. Five years later, we performed additional collections and characterization from the most resistant location to assess the temporal persistence of this difference in resistance between the species. The same pattern of high resistance in Ae. aegypti and low resistance in sympatric Ae. albopictus remained 5 yr later and this may have implications for operational efficacy.
Jamestown Canyon virus disease (JCVD) is a potentially neuroinvasive condition caused by the arbovirus Jamestown Canyon virus (JCV). Human cases of JCVD have increased in New Hampshire (NH) over the past decade, but vector surveillance is limited by funding and person power. We conducted mosquito surveillance with a focus on human JCVD cases south central NH during 2021. Routine surveillance with CDC miniature traps baited with CO2 (lights removed) was supplemented by a paired trapping design to test the collection efficiency of octenol, and New Jersey light traps. We performed virus testing, blood meal analysis, and compared morphological identification with DNA barcoding. Over 50,000 mosquitoes were collected representing 28 species. Twelve JCV-positive pools were derived from 6 species of more than 1,600 pools tested. Of those, Aedes excrucians/stimulans (MLE 4.95, Diptera: Culicidae, Walker, 1856, 1848), and Aedes sticticus (MLE 2.02, Meigen, 1838) had the highest JCV infection rates, and Aedes canadensis (MLE 0.13, Theobold, 1901) and Coquillettidia perturbans (0.10, Diptera: Culicidae, Walker, 1856) had the lowest infection rates. One hundred and fifty-one blood meals were matched to a vertebrate host. All putative vectors fed on the amplifying host of JCV, white-tailed deer (36-100% of bloodmeals). Putative vectors that fed on human hosts included Aedes excrucians (8%), Anopheles punctipennis (25%, Diptera: Culicidae, Say, 1823), and Coquillettidia perturbans (51%). CDC traps baited with CO2 were effective for collecting putative vectors. DNA barcoding enhanced morphological identifications of damaged specimens. We present the first ecological overview of JCV vectors in NH.
Lucilia eximia (Wiedemann, 1819) (Diptera: Calliphoridae) is a blowfly with medical and forensic importance that shows genetic and color variation, however, these variations have not justified the description of new species. But in forensic entomology an accurate identification of species and subpopulations is crucial. We explored the genetic variation of L. eximia from eight localities, in five natural regions in Colombia using two mitochondrial fragments, including the standard locus for insect identification COI and the Cytb-tRNA-Ser-ND1 region. We found significant differentiation at COI and Cytb-tRNA-Ser-ND1 level, characterizing two lineages and revealing a deep and significant genetic split. High values of FST and genetic distances supported the two lineages. The origin of the divergence of L. eximia remains to discover. Examining whether the lineages have diverse ecological and biological behaviors could be a significant impact on the use of L. eximia in forensic and medical science. Our results could have relevant implications for the use of post-mortem interval estimation based on insect evidence, as well as our sequences improve the database used in DNA-based methods for identifying forensically important flies.
In diapausing mosquitoes, cold tolerance and prolonged lifespan are important features that are crucial for overwintering success. In the mosquito Culex pipiens, we suggest that PDZ domain-containing protein (PDZ) (post synaptic density protein [PSD95], drosophila disc large tumor suppressor [Dlg1], and zonula occludens-1 protein [zo-1]) domain-containing protein is involved with these diapause features for overwintering survival in Culex mosquitoes. The expression level of pdz was significantly higher in diapausing adult females in the early stage in comparison to their nondiapausing counterparts. Suppression of the gene that encodes PDZ by RNA interference significantly decreased actin accumulation in the midgut of early-stage adult diapausing females. Inhibition of pdz also significantly reduced the survivability of diapausing females which indicates that this protein could play a key role in preserving the midgut tissues during early diapause.
Investigating new avenues of mosquito control is an important area of entomological research. Examining the effects of various compounds on mosquito biology contributes to the foundation of knowledge from which novel control methods can be built. Caffeine, in particular, is a commonly consumed compound that has not been thoroughly studied for its potential in disrupting the natural life cycle of mosquitoes. In this exploratory study, we analyzed caffeine's effect on the blood-feeding behavior, survival, and fecundity of Aedes albopictus Skuse (Diptera: Culicidae) mosquitoes. Two outcomes, blood-feeding behavior and fecundity, were analyzed in the first experiment in which mosquitoes were exposed to caffeine doses ranging from 0.2 to 2.4 mg/ml. We found a negative linear relationship between dose and fecundity, but no significant impact on blood-feeding behavior. Adjustments were made to the experimental design in which mosquitoes were exposed to doses ranging from 2.5 to 20 mg/ml. From this experiment, we found that caffeine negatively affected blood-feeding behavior, survival, and fecundity especially at higher concentrations. These results suggest that caffeine could be a potential target for future mosquito control research.
Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) were collected from 432 locations across New York State (NYS) during the summer and autumn of 2015-2020 to determine the prevalence and geographic distribution of Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) and coinfections with other tick-borne pathogens. A total of 48,386 I. scapularis were individually analyzed using a multiplex real-time polymerase chain reaction assay to simultaneously detect the presence of Bo. miyamotoi, Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae). Overall prevalence of Bo. miyamotoi in host-seeking nymphs and adults varied geographically and temporally at the regional level. The rate of polymicrobial infection in Bo. miyamotoi-infected ticks varied by developmental stage, with certain co-infections occurring more frequently than expected by chance. Entomological risk of exposure to Bo. miyamotoi-infected nymphal and adult ticks (entomological risk index [ERI]) across NYS regions in relation to human cases of Bo. miyamotoi disease identified during the study period demonstrated spatial and temporal variation. The relationship between select environmental factors and Bo. miyamotoi ERI was explored using generalized linear mixed effects models, resulting in different factors significantly impacting ERI for nymphs and adult ticks. These results can inform estimates of Bo. miyamotoi disease risk and further our understanding of Bo. miyamotoi ecological dynamics in regions where this pathogen is known to occur.
Thermal tolerance greatly influences the geographic distribution, seasonality, and feeding habits of mosquitoes; this study aimed to examine the impacts of species, sex, and diet on thermal tolerance in mosquitoes. We found that Culex quinquefasciatus was inherently significantly more cold tolerant than Aedes aegypti, while Ae. aegypti had improved heat tolerance compared to Cx. quinquefasciatus. There were no differences in thermal tolerance between sexes within either species. We observed similar levels of cold tolerance between all diets tested, but observed decreased heat tolerance in mannitol-fed mosquitoes. Our results suggest that although dietary factors such as sugar alcohols and sugars may play a role in thermal tolerance in mosquitoes, there are likely physiological and genetic factors that can have a greater influence on the limits of thermal tolerance within a species.