Tungsten (W) and Cerium (Ce) doped nanoTitanium oxide (TiO2) nanophotocatalyst were prepared by the sol-gel method and their photodegradation effect against atrazine herbicide were investigated. The doping of the nanocatalyst took place at 50 °C within a time interval of 120 minutes. The prepared gel was dried and calcined in the oven at 350 °C for 75 minutes. The XRD result revealed that the synthesized nanocatalyst was 16.7 nm in size with a mostly monoclinic structure. With FTIR spectra, characteristic peaks of TiO2 were found at 516 cm-1, Ti-O-Ce at 1104 cm-1, and W-O with a single bond at 1609 cm-1. Scanning electron microscope analysis revealed the surface morphology of synthesized nanophotocatalyst. The photocatalytic activity of synthesized nanocatalyst was tested on the degradation of atrazine herbicide (ATZ) under visible and UV light in a batch reactor. The efficiency of nanocatalyst was compared for effective utilization. About 46.5 % of photocatalytic activity was observed without UV light irradiation within 120 minutes. The photocatalytic activity of W-Ce co-doped TiO2 to degrade atrazine further increased up to 99.1 % when the solution was irradiated under UV light. Factors like pH, time, and concentration of nanocatalyst were optimized to check the photocatalytic activity of nanocatalyst on ATZ. It was concluded that nanocatalyst showed an efficient photocatalytic degradation at pH 6 within 120 mins time interval after exposure to UV light.
{"title":"Synthesis of Tungsten-Cerium Doped Titanium Oxide Nanocatalyst to Remediate Water by the Degradation of Atrazine Herbicide","authors":"Haider Ali, N. Bashir, Adnan Rauf, Hajira Haroon, Sehrish Naz, Salma Shad","doi":"10.4028/p-hb1aa7","DOIUrl":"https://doi.org/10.4028/p-hb1aa7","url":null,"abstract":"Tungsten (W) and Cerium (Ce) doped nanoTitanium oxide (TiO2) nanophotocatalyst were prepared by the sol-gel method and their photodegradation effect against atrazine herbicide were investigated. The doping of the nanocatalyst took place at 50 °C within a time interval of 120 minutes. The prepared gel was dried and calcined in the oven at 350 °C for 75 minutes. The XRD result revealed that the synthesized nanocatalyst was 16.7 nm in size with a mostly monoclinic structure. With FTIR spectra, characteristic peaks of TiO2 were found at 516 cm-1, Ti-O-Ce at 1104 cm-1, and W-O with a single bond at 1609 cm-1. Scanning electron microscope analysis revealed the surface morphology of synthesized nanophotocatalyst. The photocatalytic activity of synthesized nanocatalyst was tested on the degradation of atrazine herbicide (ATZ) under visible and UV light in a batch reactor. The efficiency of nanocatalyst was compared for effective utilization. About 46.5 % of photocatalytic activity was observed without UV light irradiation within 120 minutes. The photocatalytic activity of W-Ce co-doped TiO2 to degrade atrazine further increased up to 99.1 % when the solution was irradiated under UV light. Factors like pH, time, and concentration of nanocatalyst were optimized to check the photocatalytic activity of nanocatalyst on ATZ. It was concluded that nanocatalyst showed an efficient photocatalytic degradation at pH 6 within 120 mins time interval after exposure to UV light.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"53 1","pages":"47 - 63"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82949478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammet Erdöl, A. E. S. Konukman, Ahmet Sinan Öktem
Using a new heuristic procedure, the influence of graphene reinforcement on Young's modulus of crosslinked epoxy was analyzed. Graphene reinforcement was investigated for 1%, 2%, 3%, and 4% weight ratios. Graphene sheet edges were functionalized with hydrogen atoms and were placed middle of simulation cells. Simulation cell sizes were determined such that the graphene sheets were non-periodic. Thus, the edge effects of graphene sheets could be observed in dynamic simulations. The heuristic protocol is used for the crosslinking process of epoxy. It is less sophisticated than the multi-step iterative approach and is utilized for various components. It also updates higher-order covalent bond and partial charge terms in real-time to prevent inaccurate chemical couplings caused by ignoring angle-based covalent terms. Crosslinked epoxy structures were created by 80% with this new heuristic protocol as a matrix structure. To analyze the multiple variations with the same amount of molecules in each weight ratio, each simulation cell was built as three individual samples, and the standard deviation values were calculated. Young's modulus of the nanocomposite system was then calculated using a constant-strain energy minimization approach. The inter-atomic and intra-atomic interactions were described using the Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field. As expected, the Young Modulus of epoxy resin increased with the addition of graphene reinforcement. This increase in Young's modulus was calculated by 6% for 1% graphene reinforcement, 10% for 2% graphene reinforcement, 14% for 3% graphene reinforcement, and 16% for 4% graphene reinforcement. As the graphene reinforcement ratio increases, the increase in Young's modulus tends to diminish. It's also worth noting that the MD simulation results in this work were in close agreement with the experimental results published in the literature. Both qualitative and quantitative numerical results show the effect of the abovementioned parameters. They will provide gain energy and time for prior synthesizing the new materials and serve as benchmark solutions for future comparisons of numerical and experimental results.
{"title":"Investigation of Graphene Reinforcement Effect on Young's Modulus of Cross-Linked Epoxy Nanocomposites by a New Heuristic Protocol","authors":"Muhammet Erdöl, A. E. S. Konukman, Ahmet Sinan Öktem","doi":"10.4028/p-15ha92","DOIUrl":"https://doi.org/10.4028/p-15ha92","url":null,"abstract":"Using a new heuristic procedure, the influence of graphene reinforcement on Young's modulus of crosslinked epoxy was analyzed. Graphene reinforcement was investigated for 1%, 2%, 3%, and 4% weight ratios. Graphene sheet edges were functionalized with hydrogen atoms and were placed middle of simulation cells. Simulation cell sizes were determined such that the graphene sheets were non-periodic. Thus, the edge effects of graphene sheets could be observed in dynamic simulations. The heuristic protocol is used for the crosslinking process of epoxy. It is less sophisticated than the multi-step iterative approach and is utilized for various components. It also updates higher-order covalent bond and partial charge terms in real-time to prevent inaccurate chemical couplings caused by ignoring angle-based covalent terms. Crosslinked epoxy structures were created by 80% with this new heuristic protocol as a matrix structure. To analyze the multiple variations with the same amount of molecules in each weight ratio, each simulation cell was built as three individual samples, and the standard deviation values were calculated. Young's modulus of the nanocomposite system was then calculated using a constant-strain energy minimization approach. The inter-atomic and intra-atomic interactions were described using the Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field. As expected, the Young Modulus of epoxy resin increased with the addition of graphene reinforcement. This increase in Young's modulus was calculated by 6% for 1% graphene reinforcement, 10% for 2% graphene reinforcement, 14% for 3% graphene reinforcement, and 16% for 4% graphene reinforcement. As the graphene reinforcement ratio increases, the increase in Young's modulus tends to diminish. It's also worth noting that the MD simulation results in this work were in close agreement with the experimental results published in the literature. Both qualitative and quantitative numerical results show the effect of the abovementioned parameters. They will provide gain energy and time for prior synthesizing the new materials and serve as benchmark solutions for future comparisons of numerical and experimental results.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"33 1","pages":"1 - 25"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86348183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Popovych, I. Budzulyak, M. Khemii, R. Ilnytskyi, L. Yablon
To improve the specific capacitance, power and energy of electrical energy storage devices, in particular hybrid capacitors, various methods of cathode material modification are used. One of the methods of modifying nanostructured materials without applying high temperatures, pressures and long reaction times is ultrasonic treatment. Although the interaction of ultrasound with the structure and surface of electrode materials is well enough studied, there are few works that investigate the optimal duration of ultrasonic treatment and its relationship with the capacitive characteristics of these materials. Therefore, we investigated the efficiency of ultrasonic dispersion of nanocrystalline nickel molybdate hydrate for 15, 60 and 90 minutes. The appearance of two cathodic peaks on cyclic voltammetry patterns was analyzed and the charge / discharge mechanism of the electrode based on nanocrystalline NiMoO4 hydrate was presented. Based on the results of potentiodynamic and galvanostatic studies the specific capacitances of the initial NiMoO4 and the material modified by ultrasound for 15, 60 and 90 minutes were calculated. The proton diffusion coefficients of nickel molybdate hydrate were determined on the basis of the Randles–Sevcik equation. NiMoO4 subjected to ultrasonic dispersion for 60 min as a cathode material in a hybrid electrochemical system was tested.
{"title":"Electrochemical Behavior of Nanocrystalline NiMoO4 Hydrate Modified by Ultrasound","authors":"O. Popovych, I. Budzulyak, M. Khemii, R. Ilnytskyi, L. Yablon","doi":"10.4028/p-n9054o","DOIUrl":"https://doi.org/10.4028/p-n9054o","url":null,"abstract":"To improve the specific capacitance, power and energy of electrical energy storage devices, in particular hybrid capacitors, various methods of cathode material modification are used. One of the methods of modifying nanostructured materials without applying high temperatures, pressures and long reaction times is ultrasonic treatment. Although the interaction of ultrasound with the structure and surface of electrode materials is well enough studied, there are few works that investigate the optimal duration of ultrasonic treatment and its relationship with the capacitive characteristics of these materials. Therefore, we investigated the efficiency of ultrasonic dispersion of nanocrystalline nickel molybdate hydrate for 15, 60 and 90 minutes. The appearance of two cathodic peaks on cyclic voltammetry patterns was analyzed and the charge / discharge mechanism of the electrode based on nanocrystalline NiMoO4 hydrate was presented. Based on the results of potentiodynamic and galvanostatic studies the specific capacitances of the initial NiMoO4 and the material modified by ultrasound for 15, 60 and 90 minutes were calculated. The proton diffusion coefficients of nickel molybdate hydrate were determined on the basis of the Randles–Sevcik equation. NiMoO4 subjected to ultrasonic dispersion for 60 min as a cathode material in a hybrid electrochemical system was tested.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"38 1","pages":"145 - 154"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87928124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Hadef, K. Kamli, B. Zaidi, S. Boulkhessaim, B. Chouial
Tin disulfide (SnS2) thin films have drawn worldwide attention because of their outstanding performance and earth-abundant constituents. However, problems such as coexistence of complex secondary phases (SnS, Sn2S3), the band tailing issue, and bulk defects need to be addressed for further efficiency improvement. In this regard, the present work is intended for the treatment of one of these problems. Herein, a single phase SnS2 has been obtained using an ultrasonic spray pyrolysis method. which is confirmed by X-ray diffraction (XRD) and energy dispersive X-rays (EDXs) characterization techniques. The substrate temperatures (Ts) were increased from 250 °C to 450 °C, and this significantly improved the film's characteristics, which varied from an amorphous phase and a mixture of crystalline phases, SnS2 and SnS (for the films obtained at Ts = 250 and 300 °C) to a SnS2 pure phase with a hexagonal structure (for Ts ≥ 350 °C). The morphological, optical, and electrical properties of SnS2 films are greatly improved by temperature increases too, especially for the film obtained at 450 °C. This suggests that there are opportunities for further efficiency by using the as-deposited SnS2 thin film at 450 °C.
{"title":"Study of Substrate Temperatures Effects on the Properties of Ultrasonically Sprayed SnS2 Thin Films","authors":"Z. Hadef, K. Kamli, B. Zaidi, S. Boulkhessaim, B. Chouial","doi":"10.4028/p-2rx1mg","DOIUrl":"https://doi.org/10.4028/p-2rx1mg","url":null,"abstract":"Tin disulfide (SnS2) thin films have drawn worldwide attention because of their outstanding performance and earth-abundant constituents. However, problems such as coexistence of complex secondary phases (SnS, Sn2S3), the band tailing issue, and bulk defects need to be addressed for further efficiency improvement. In this regard, the present work is intended for the treatment of one of these problems. Herein, a single phase SnS2 has been obtained using an ultrasonic spray pyrolysis method. which is confirmed by X-ray diffraction (XRD) and energy dispersive X-rays (EDXs) characterization techniques. The substrate temperatures (Ts) were increased from 250 °C to 450 °C, and this significantly improved the film's characteristics, which varied from an amorphous phase and a mixture of crystalline phases, SnS2 and SnS (for the films obtained at Ts = 250 and 300 °C) to a SnS2 pure phase with a hexagonal structure (for Ts ≥ 350 °C). The morphological, optical, and electrical properties of SnS2 films are greatly improved by temperature increases too, especially for the film obtained at 450 °C. This suggests that there are opportunities for further efficiency by using the as-deposited SnS2 thin film at 450 °C.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"18 1","pages":"105 - 118"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89593162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanthanum strontium manganite (La0.6Sr0.4MnO3) nanoparticles have been synthesized by sol-gel auto combustion method. Four sets of LSMO nanoparticles have been synthesized by varying the reaction pH from 10 to 13. LSMO nanoparticles were further functionalized with Polyvinylpyrrolidone (PVP). Structural properties of LSMO nanoparticles were determined by powder X-ray diffraction. Rietveld refinement of diffractograms revealed that irrespective of synthesis conditions, LSMO nanoparticles were synthesized with rhombohedral and orthorhombic crystal phases. Magnetic properties (saturation magnetization, domain magnetization and Curie temperature) of LSMO nanoparticles have been determined by vibration sample magnetometer. Synthesized LSMO nanoparticles are soft ferromagnetic and possesses Curie temperature in between 360 – 370 K. Their saturation magnetization increases with increases in reaction pH, which is in good agreement with the corresponding increase in their rhombohedral phase fraction. PVP coated LSMO nanoparticles when exposed to AC magnetic field produces magnetic hyperthermia temperature (45 °C) within 10 minutes of exposure. Hyperthermia efficiency of LSMO nanoparticles measured in terms of specific loss power (SLP) increases with magnetic field frequency and field strength and it decreases with nanoparticle concentration. LSMO nanoparticles synthesized at pH 10, 11 and 12 are suitable for the magnetic hyperthermia therapy of cancer while the one synthesized at pH 13 is not suitable for magnetic hyperthermia as it could not produce the requisite temperature of 45 °C needed to induce cell apoptosis in in-vivo experiments. Highest hyperthermia efficiency (15.69 W/g) was observed for PVP coated LSMO nanoparticles (concentration: 12.5 mg/mL) synthesized at pH 10 when exposed to an AC magnetic field of strength 10 mT and field frequency of 935.6 KHz.
{"title":"Magnetic Hyperthermia of Polyvinylpyrrolidone Coated La0.6Sr0.4MnO3 Nanoparticles Synthesized by Sol-Gel Auto Combust Method","authors":"Yashpreet, B. Chudasama","doi":"10.4028/p-c1h50r","DOIUrl":"https://doi.org/10.4028/p-c1h50r","url":null,"abstract":"Lanthanum strontium manganite (La0.6Sr0.4MnO3) nanoparticles have been synthesized by sol-gel auto combustion method. Four sets of LSMO nanoparticles have been synthesized by varying the reaction pH from 10 to 13. LSMO nanoparticles were further functionalized with Polyvinylpyrrolidone (PVP). Structural properties of LSMO nanoparticles were determined by powder X-ray diffraction. Rietveld refinement of diffractograms revealed that irrespective of synthesis conditions, LSMO nanoparticles were synthesized with rhombohedral and orthorhombic crystal phases. Magnetic properties (saturation magnetization, domain magnetization and Curie temperature) of LSMO nanoparticles have been determined by vibration sample magnetometer. Synthesized LSMO nanoparticles are soft ferromagnetic and possesses Curie temperature in between 360 – 370 K. Their saturation magnetization increases with increases in reaction pH, which is in good agreement with the corresponding increase in their rhombohedral phase fraction. PVP coated LSMO nanoparticles when exposed to AC magnetic field produces magnetic hyperthermia temperature (45 °C) within 10 minutes of exposure. Hyperthermia efficiency of LSMO nanoparticles measured in terms of specific loss power (SLP) increases with magnetic field frequency and field strength and it decreases with nanoparticle concentration. LSMO nanoparticles synthesized at pH 10, 11 and 12 are suitable for the magnetic hyperthermia therapy of cancer while the one synthesized at pH 13 is not suitable for magnetic hyperthermia as it could not produce the requisite temperature of 45 °C needed to induce cell apoptosis in in-vivo experiments. Highest hyperthermia efficiency (15.69 W/g) was observed for PVP coated LSMO nanoparticles (concentration: 12.5 mg/mL) synthesized at pH 10 when exposed to an AC magnetic field of strength 10 mT and field frequency of 935.6 KHz.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"57 1","pages":"27 - 46"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87513837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.
{"title":"Structural, Optical and Ionic Properties of PVA Capped CuS Quantum Dots","authors":"S. Nath, P. Kalita","doi":"10.4028/p-i9y6sp","DOIUrl":"https://doi.org/10.4028/p-i9y6sp","url":null,"abstract":"Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"102 1","pages":"119 - 133"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75804931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Lafhal, E. M. Jalal, A. Hasnaoui, H. Saadi, N. Hachem, M. Madani, M. El Bouziani
The magnetic and thermal properties of a ferrimagnetic mixed spin-1 and spin-2 cubic Ising nanowire are studied by using the Monte Carlo simulation. The influences of the nearest (JAB) and next-nearest neighbor (JA and JB) exchange interactions and the single-ion anisotropies (DA and DB) on the critical and compensation temperatures are illustrated. Moreover, the phase diagrams on the (temperature, anisotropy) plane are plotted for several values of JA/|JAB|. The system shows very rich and interesting behaviors, namely first and second order phase transitions, tricritical points and compensation phenomenon. Finally, the dependence of hysteresis loops on the anisotropies, the exchange interactions and the temperature is also investigated.
{"title":"Magnetic Behavior of Ising Nanowire with Mixed Integer Spins: A Monte Carlo Study","authors":"A. Lafhal, E. M. Jalal, A. Hasnaoui, H. Saadi, N. Hachem, M. Madani, M. El Bouziani","doi":"10.4028/p-m5cw02","DOIUrl":"https://doi.org/10.4028/p-m5cw02","url":null,"abstract":"The magnetic and thermal properties of a ferrimagnetic mixed spin-1 and spin-2 cubic Ising nanowire are studied by using the Monte Carlo simulation. The influences of the nearest (JAB) and next-nearest neighbor (JA and JB) exchange interactions and the single-ion anisotropies (DA and DB) on the critical and compensation temperatures are illustrated. Moreover, the phase diagrams on the (temperature, anisotropy) plane are plotted for several values of JA/|JAB|. The system shows very rich and interesting behaviors, namely first and second order phase transitions, tricritical points and compensation phenomenon. Finally, the dependence of hysteresis loops on the anisotropies, the exchange interactions and the temperature is also investigated.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"74 1","pages":"155 - 168"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75076888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shifa Wang, S. Tang, Huajing Gao, Chuan Yu, Han Yang, Xianlun Yu, Xi Ping Chen, Leiming Fang, Dengfeng Li
One step polyacrylamide gel method was used to synthesize the ZnO/MgO adsorbents and the adsorption behavior with Congo red (CR) from wastewater was extensively investigated. Various advanced techniques were applied to confirm the ZnO/MgO adsorbents consist of Zn, C, Mg and O elements and do not contain any other impurity elements. With the increase of MgO content, the morphology of ZnO/MgO adsorbent changes from the agglomeration of large particles to evenly dispersed fine particles and then to icicle structure. Results demonstrated that the adsorption process of ZnO/MgO adsorbents was significantly affected by the change in initial dye solution pH, initial adsorbent dosage, contact time and reaction temperature. The optimum pH, adsorbent dosage, contact time and reaction temperature is 9.81, 2 g /L, 65 min and 293 K, respectively. The maximum adsorption capacity of ZnO/MgO (nZnO:nMgO = 8:2) adsorbents (295.138 mg/g) for the adsorption of CR dye was approximately double that of previous reports (125 mg/g). The adsorption equilibrium data are well fitted by the Freundlich and Langmuir isotherm models. Thermodynamic studies indicate that the adsorption process of ZnO/MgO adsorbents is an exothermic process. Based on the experimental and theoretical analysis, the adsorption mechanism for the ZnO/MgO adsorbents consisted of hydrogen bonding, n-π interaction and electrostatic interaction. The present work pioneers the potential application of ZnO/MgO adsorbents for the adsorption of CR dye and further provides experimental evidence for the synthesis of other adsorbents.
采用一步聚丙烯酰胺凝胶法制备了氧化锌/氧化镁吸附剂,并对其对刚果红(CR)的吸附性能进行了研究。采用各种先进技术,证实ZnO/MgO吸附剂由Zn、C、Mg和O元素组成,不含任何其他杂质元素。随着MgO含量的增加,ZnO/MgO吸附剂的形貌由大颗粒团聚到均匀分散的细颗粒再到冰柱结构。结果表明,初始染料溶液pH、初始吸附剂投加量、接触时间和反应温度对ZnO/MgO吸附剂的吸附过程有显著影响。最佳pH值为9.81,吸附剂用量为2 g /L,接触时间为65 min,反应温度为293 K。ZnO/MgO (nZnO:nMgO = 8:2)吸附剂对CR染料的最大吸附量(295.138 mg/g)约为以往报道(125 mg/g)的两倍。吸附平衡数据用Freundlich和Langmuir等温模型拟合得很好。热力学研究表明,ZnO/MgO吸附剂的吸附过程是一个放热过程。通过实验和理论分析,ZnO/MgO吸附剂的吸附机理主要是氢键、n-π相互作用和静电相互作用。本研究为ZnO/MgO吸附剂在CR染料上的潜在应用开辟了道路,并为其他吸附剂的合成提供了实验依据。
{"title":"Removal of Congo Red from Wastewater Using ZnO/MgO Nanocomposites as Adsorbents: Equilibrium Isotherm Analyses, Kinetics and Thermodynamic Studies","authors":"Shifa Wang, S. Tang, Huajing Gao, Chuan Yu, Han Yang, Xianlun Yu, Xi Ping Chen, Leiming Fang, Dengfeng Li","doi":"10.4028/p-aijz91","DOIUrl":"https://doi.org/10.4028/p-aijz91","url":null,"abstract":"One step polyacrylamide gel method was used to synthesize the ZnO/MgO adsorbents and the adsorption behavior with Congo red (CR) from wastewater was extensively investigated. Various advanced techniques were applied to confirm the ZnO/MgO adsorbents consist of Zn, C, Mg and O elements and do not contain any other impurity elements. With the increase of MgO content, the morphology of ZnO/MgO adsorbent changes from the agglomeration of large particles to evenly dispersed fine particles and then to icicle structure. Results demonstrated that the adsorption process of ZnO/MgO adsorbents was significantly affected by the change in initial dye solution pH, initial adsorbent dosage, contact time and reaction temperature. The optimum pH, adsorbent dosage, contact time and reaction temperature is 9.81, 2 g /L, 65 min and 293 K, respectively. The maximum adsorption capacity of ZnO/MgO (nZnO:nMgO = 8:2) adsorbents (295.138 mg/g) for the adsorption of CR dye was approximately double that of previous reports (125 mg/g). The adsorption equilibrium data are well fitted by the Freundlich and Langmuir isotherm models. Thermodynamic studies indicate that the adsorption process of ZnO/MgO adsorbents is an exothermic process. Based on the experimental and theoretical analysis, the adsorption mechanism for the ZnO/MgO adsorbents consisted of hydrogen bonding, n-π interaction and electrostatic interaction. The present work pioneers the potential application of ZnO/MgO adsorbents for the adsorption of CR dye and further provides experimental evidence for the synthesis of other adsorbents.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"6 1","pages":"65 - 86"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81048056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hicham Bahtoun, L. Hadjeris, S. Iaiche, Tarek Diab Ounis
ZnO nanoparticles were successfully produced via a simple low cost hydrothermal method using different metal precursors. Zn (CH3COO)2), (Zn (NO3)2) and (ZnCl2) were the source materials. The obtained nanoparticles were investigated by means XRD, SEM and DRS. The XRD exhibited the high crystallinity of the pure ZnO phase with hexagonal wurtzite crystalline structure for all simples excepted for ZnO synthetized from ZnCl2 precursor. The crystallite sizes was estimated in the range of 20-37 nm. The precursor type do not affect the Eg of the nanoparticles. The bandgaps energies were between 3.21-3.22 eV. The type of precursor affect the particles morphology. SEM images revealed different morphologies. The photocatalytic activity of the synthetized ZnO NPs in comparison with that of commercial powder for the methylene blue (MB) degradation under UV irradiation, showed the appropriate activity of nanostructures obtained by Zn (NO3)2 and Zn (CH3COO)2 precursors. The first-order kinetic constant over ZnO from Zn (NO3)2 was 1.9, 3.7 and 1.5 times of ZnO commercial powder, ZnO from ZnCl2 and Zn (CH3COO)2, respectively. The ZnO NPs from Zn (NO3)2 and Zn (CH3COO)2 precursors have the best photocatalytic degradation performance with a degradation rate of 99.3% and 96.4%, respectively. The higher photocatalytic performance was probably due to the larger crystallinity, purity phase and specific morphologies than smaller particle size effect. Thus, the synthetized ZnO nanoparticles by the soft hydrothermal process are a promising candidate for the photocatalytic purposes of dyes from waters.
{"title":"Effect of ZnO Nanoparticles Salt Precursors on Structural, Morphological, Optical and MB Photocatalytic Properties Using Hydrothermal Synthesis","authors":"Hicham Bahtoun, L. Hadjeris, S. Iaiche, Tarek Diab Ounis","doi":"10.4028/p-82qxbi","DOIUrl":"https://doi.org/10.4028/p-82qxbi","url":null,"abstract":"ZnO nanoparticles were successfully produced via a simple low cost hydrothermal method using different metal precursors. Zn (CH3COO)2), (Zn (NO3)2) and (ZnCl2) were the source materials. The obtained nanoparticles were investigated by means XRD, SEM and DRS. The XRD exhibited the high crystallinity of the pure ZnO phase with hexagonal wurtzite crystalline structure for all simples excepted for ZnO synthetized from ZnCl2 precursor. The crystallite sizes was estimated in the range of 20-37 nm. The precursor type do not affect the Eg of the nanoparticles. The bandgaps energies were between 3.21-3.22 eV. The type of precursor affect the particles morphology. SEM images revealed different morphologies. The photocatalytic activity of the synthetized ZnO NPs in comparison with that of commercial powder for the methylene blue (MB) degradation under UV irradiation, showed the appropriate activity of nanostructures obtained by Zn (NO3)2 and Zn (CH3COO)2 precursors. The first-order kinetic constant over ZnO from Zn (NO3)2 was 1.9, 3.7 and 1.5 times of ZnO commercial powder, ZnO from ZnCl2 and Zn (CH3COO)2, respectively. The ZnO NPs from Zn (NO3)2 and Zn (CH3COO)2 precursors have the best photocatalytic degradation performance with a degradation rate of 99.3% and 96.4%, respectively. The higher photocatalytic performance was probably due to the larger crystallinity, purity phase and specific morphologies than smaller particle size effect. Thus, the synthetized ZnO nanoparticles by the soft hydrothermal process are a promising candidate for the photocatalytic purposes of dyes from waters.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"4 1","pages":"87 - 104"},"PeriodicalIF":1.7,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87691310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new synthetic procedure to Metal/metal sulfide hierarchical pore array composites was described. That is, a layer of Ni-Co-S nanoflakes was in situ constructed on the Ni ordered bowl-like micro/nanoarrays through a two-step electrodeposition method with the assistance of a colloidal sphere template. Such as-grown hierarchical composites could increase the specific surface areas and provide more active sites for electrocatalytic reactions. It exhibited a high catalytic activity to glucose, with a high sensitivity of 1210.1 μM‧mM-1cm-2 and a wide linear range from 0.5 μM to 2.0 mM. This work provides another candidate material for the development of planar non-enzymatic glucose sensors.
介绍了一种合成金属/金属硫化物层次化孔阵列复合材料的新工艺。也就是说,在胶体球模板的辅助下,通过两步电沉积法在Ni有序碗状微纳米阵列上原位构建了一层Ni- co -s纳米片。这种生长的分层复合材料可以增加比表面积,并为电催化反应提供更多的活性位点。该材料对葡萄糖具有较高的催化活性,灵敏度为1210.1 μM·mM-1cm-2,线性范围为0.5 μM ~ 2.0 mM。该研究为平面非酶促葡萄糖传感器的开发提供了另一种候选材料。
{"title":"Growth of Ni-Co-S Nanoflakes on Ni Bowl-Like Micro/Nano Array as a Non-Enzymatic Electrode for Detection of Glucose","authors":"Xiaolan Tang, J. Zhao, L. Qin, Ying-Ying Xu","doi":"10.4028/p-3103ee","DOIUrl":"https://doi.org/10.4028/p-3103ee","url":null,"abstract":"A new synthetic procedure to Metal/metal sulfide hierarchical pore array composites was described. That is, a layer of Ni-Co-S nanoflakes was in situ constructed on the Ni ordered bowl-like micro/nanoarrays through a two-step electrodeposition method with the assistance of a colloidal sphere template. Such as-grown hierarchical composites could increase the specific surface areas and provide more active sites for electrocatalytic reactions. It exhibited a high catalytic activity to glucose, with a high sensitivity of 1210.1 μM‧mM-1cm-2 and a wide linear range from 0.5 μM to 2.0 mM. This work provides another candidate material for the development of planar non-enzymatic glucose sensors.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"8 1","pages":"39 - 47"},"PeriodicalIF":1.7,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83805696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}