Background: Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear.
Methods: Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining.
Results: Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs.
Conclusion: SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
{"title":"Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids.","authors":"Hui Shen, Chaoxu Zhang, Qian Zhang, Qing Lv, Hao Liu, Huiya Yuan, Changliang Wang, Fanyue Meng, Yufu Guo, Jiaxin Pei, Chenyang Yu, Jinming Tie, Xiaohuan Chen, Hao Yu, Guohua Zhang, Xiaolong Wang","doi":"10.1186/s12974-024-03282-6","DOIUrl":"10.1186/s12974-024-03282-6","url":null,"abstract":"<p><strong>Background: </strong>Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear.</p><p><strong>Methods: </strong>Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining.</p><p><strong>Results: </strong>Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs.</p><p><strong>Conclusion: </strong>SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"290"},"PeriodicalIF":9.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retinal neovascularization (RNV) disease is one of the leading causes of blindness, yet the molecular underpinnings of this condition are not well understood. To delve into the critical aspects of cell-mediated angiogenesis, we analyzed our previously published single-cell data. Our analysis revealed that retinal pigment epithelium (RPE) cells serve a crucial promotional function in angiogenesis. RPE cells were regulated by N6-methyladenosine (m6A). Next, we detected several critical m6A methylase in hypoxic ARPE-19 cells and in oxygen-induced retinopathy (OIR) mice, our results revealed a significant decrease in the level of methyltransferase like 3 (METTL3). METTL3 specific inhibitor STM2457 intravitreal injection or METTL3 conditional knockout mice both showed a significantly reduced neovascularization area of retina. Additionally, the angiogenesis-related abilities of human retinal endothelial cells (HRECs) were diminished after co-cultured with ARPE-19 treated with STM2457 or sh-METTL3 in vitro. Furthermore, through the integration of Methylated RNA immunoprecipitation (MeRIP) sequencing and RNA sequencing, we discovered that the metabolic enzyme quinolinate phosphoribosyltransferase (QPRT) was directly modified by METTL3 and recognized by the YTH N6-methyladenosine RNA binding protein C1 (YTHDC1). Moreover, after over-expressing QPRT, the angiogenic abilities of HRECs were improved through the phosphorylated phosphatidylinositol-3-kinase (p-PI3K)/ phosphorylated threonine kinase (p-AKT) pathway. Collectively, our study provided a novel therapeutic target for retinal angiogenesis.
{"title":"m6A-methylase METTL3 promotes retinal angiogenesis through modulation of metabolic reprogramming in RPE cells.","authors":"Qian Zhou, Xianyang Liu, Huiping Lu, Na Li, Jiayu Meng, Jiaxing Huang, Zhi Zhang, Jiangyi Liu, Wei Fan, Wanqian Li, Xingran Li, Xiaoyan Liu, Hangjia Zuo, Peizeng Yang, Shengping Hou","doi":"10.1186/s12974-024-03279-1","DOIUrl":"10.1186/s12974-024-03279-1","url":null,"abstract":"<p><p>Retinal neovascularization (RNV) disease is one of the leading causes of blindness, yet the molecular underpinnings of this condition are not well understood. To delve into the critical aspects of cell-mediated angiogenesis, we analyzed our previously published single-cell data. Our analysis revealed that retinal pigment epithelium (RPE) cells serve a crucial promotional function in angiogenesis. RPE cells were regulated by N6-methyladenosine (m6A). Next, we detected several critical m6A methylase in hypoxic ARPE-19 cells and in oxygen-induced retinopathy (OIR) mice, our results revealed a significant decrease in the level of methyltransferase like 3 (METTL3). METTL3 specific inhibitor STM2457 intravitreal injection or METTL3 conditional knockout mice both showed a significantly reduced neovascularization area of retina. Additionally, the angiogenesis-related abilities of human retinal endothelial cells (HRECs) were diminished after co-cultured with ARPE-19 treated with STM2457 or sh-METTL3 in vitro. Furthermore, through the integration of Methylated RNA immunoprecipitation (MeRIP) sequencing and RNA sequencing, we discovered that the metabolic enzyme quinolinate phosphoribosyltransferase (QPRT) was directly modified by METTL3 and recognized by the YTH N6-methyladenosine RNA binding protein C1 (YTHDC1). Moreover, after over-expressing QPRT, the angiogenic abilities of HRECs were improved through the phosphorylated phosphatidylinositol-3-kinase (p-PI3K)/ phosphorylated threonine kinase (p-AKT) pathway. Collectively, our study provided a novel therapeutic target for retinal angiogenesis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"289"},"PeriodicalIF":9.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1186/s12974-024-03270-w
Stefano Angiari, Tommaso Carlucci, Simona L Budui, Simone D Bach, Silvia Dusi, Julia Walter, Elena Ellmeier, Alyssa Schnabl, Anika Stracke, Natalie Bordag, Cansu Tafrali, Rina Demjaha, Michael Khalil, Gabriele Angelini, Eleonora Terrabuio, Enrica C Pietronigro, Elena Zenaro, Carlo Laudanna, Barbara Rossi, Gabriela Constantin
Background: Immune cell metabolism governs the outcome of immune responses and contributes to the development of autoimmunity by controlling lymphocyte pathogenic potential. In this study, we evaluated the metabolic profile of myelin-specific murine encephalitogenic T cells, to identify novel therapeutic targets for autoimmune neuroinflammation.
Methods: We performed metabolomics analysis on actively-proliferating encephalitogenic T cells to study their overall metabolic profile in comparison to resting T cells. Metabolomics, phosphoproteomics, in vitro functional assays, and in vivo studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), were then implemented to evaluate the effect of metabolic targeting on autoreactive T cell pathogenicity. Finally, we confirmed the translational potential of our targeting approach in human pro-inflammatory T helper cell subsets and in T cells from MS patients.
Results: We found that autoreactive encephalitogenic T cells display an altered coenzyme A (CoA) synthesis pathway, compared to resting T cells. CoA fueling with the CoA precursor pantethine (PTTH) affected essential immune-related processes of myelin-specific T cells, such as cell proliferation, cytokine production, and cell adhesion, both in vitro and in vivo. Accordingly, pre-clinical treatment with PTTH before disease onset inhibited the development of EAE by limiting T cell pro-inflammatory potential in vivo. Importantly, PTTH also significantly ameliorated the disease course when administered after disease onset in a therapeutic setting. Finally, PTTH reduced pro-inflammatory cytokine production by human T helper 1 (Th1) and Th17 cells and by T cells from MS patients, confirming its translational potential.
Conclusion: Our data demonstrate that CoA fueling with PTTH in pro-inflammatory and autoreactive T cells may represent a novel therapeutic approach for the treatment of autoimmune neuroinflammation.
背景:免疫细胞代谢控制着免疫反应的结果,并通过控制淋巴细胞的致病潜能促进自身免疫的发展。在这项研究中,我们评估了髓鞘特异性小鼠致脑 T 细胞的代谢谱,以确定治疗自身免疫性神经炎症的新靶点:我们对活跃增殖的致脑T细胞进行了代谢组学分析,以研究它们与静息T细胞相比的整体代谢特征。然后在实验性自身免疫性脑脊髓炎(EAE)(一种多发性硬化症(MS)的小鼠模型)中实施代谢组学、磷酸蛋白组学、体外功能测定和体内研究,以评估代谢靶向对自身反应性 T 细胞致病性的影响。最后,我们在人类促炎 T 辅助细胞亚群和多发性硬化症患者的 T 细胞中证实了我们的靶向方法的转化潜力:我们发现,与静息 T 细胞相比,自反应性致脑 T 细胞的辅酶 A(CoA)合成途径发生了改变。用辅酶A前体泛影葡胺(PTTH)作为辅酶A燃料会影响髓鞘特异性T细胞在体外和体内与免疫相关的基本过程,如细胞增殖、细胞因子产生和细胞粘附。因此,在发病前用PTTH进行临床前治疗,可通过限制体内T细胞促炎潜能来抑制EAE的发展。重要的是,PTTH 还能在发病后的治疗过程中明显改善病程。最后,PTTH 减少了人类 T 辅助细胞 1(Th1)和 Th17 细胞以及多发性硬化症患者 T 细胞产生的促炎细胞因子,证实了其转化潜力:我们的数据表明,用 PTTH 为促炎性和自反应性 T 细胞提供 CoA 燃料可能是治疗自身免疫性神经炎症的一种新疗法。
{"title":"Coenzyme A fueling with pantethine limits autoreactive T cell pathogenicity in experimental neuroinflammation.","authors":"Stefano Angiari, Tommaso Carlucci, Simona L Budui, Simone D Bach, Silvia Dusi, Julia Walter, Elena Ellmeier, Alyssa Schnabl, Anika Stracke, Natalie Bordag, Cansu Tafrali, Rina Demjaha, Michael Khalil, Gabriele Angelini, Eleonora Terrabuio, Enrica C Pietronigro, Elena Zenaro, Carlo Laudanna, Barbara Rossi, Gabriela Constantin","doi":"10.1186/s12974-024-03270-w","DOIUrl":"10.1186/s12974-024-03270-w","url":null,"abstract":"<p><strong>Background: </strong>Immune cell metabolism governs the outcome of immune responses and contributes to the development of autoimmunity by controlling lymphocyte pathogenic potential. In this study, we evaluated the metabolic profile of myelin-specific murine encephalitogenic T cells, to identify novel therapeutic targets for autoimmune neuroinflammation.</p><p><strong>Methods: </strong>We performed metabolomics analysis on actively-proliferating encephalitogenic T cells to study their overall metabolic profile in comparison to resting T cells. Metabolomics, phosphoproteomics, in vitro functional assays, and in vivo studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), were then implemented to evaluate the effect of metabolic targeting on autoreactive T cell pathogenicity. Finally, we confirmed the translational potential of our targeting approach in human pro-inflammatory T helper cell subsets and in T cells from MS patients.</p><p><strong>Results: </strong>We found that autoreactive encephalitogenic T cells display an altered coenzyme A (CoA) synthesis pathway, compared to resting T cells. CoA fueling with the CoA precursor pantethine (PTTH) affected essential immune-related processes of myelin-specific T cells, such as cell proliferation, cytokine production, and cell adhesion, both in vitro and in vivo. Accordingly, pre-clinical treatment with PTTH before disease onset inhibited the development of EAE by limiting T cell pro-inflammatory potential in vivo. Importantly, PTTH also significantly ameliorated the disease course when administered after disease onset in a therapeutic setting. Finally, PTTH reduced pro-inflammatory cytokine production by human T helper 1 (Th1) and Th17 cells and by T cells from MS patients, confirming its translational potential.</p><p><strong>Conclusion: </strong>Our data demonstrate that CoA fueling with PTTH in pro-inflammatory and autoreactive T cells may represent a novel therapeutic approach for the treatment of autoimmune neuroinflammation.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"287"},"PeriodicalIF":9.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1186/s12974-024-03275-5
Christine Vazquez, Seble G Negatu, Carl D Bannerman, Sowmya Sriram, Guo-Li Ming, Kellie A Jurado
Neural stem cells have intact innate immune responses that protect them from virus infection and cell death. Yet, viruses can antagonize such responses to establish neuropathogenesis. Using a forebrain organoid model system at two developmental time points, we identified that neural stem cells, in particular radial glia, are basally primed to respond to virus infection by upregulating several antiviral interferon-stimulated genes. Infection of these organoids with a neuropathogenic Enterovirus-D68 strain, demonstrated the ability of this virus to impede immune activation by blocking interferon responses. Together, our data highlight immune gene signatures present in different types of neural stem cells and differential viral capacity to block neural-specific immune induction.
{"title":"Antiviral immunity within neural stem cells distinguishes Enterovirus-D68 strain differences in forebrain organoids.","authors":"Christine Vazquez, Seble G Negatu, Carl D Bannerman, Sowmya Sriram, Guo-Li Ming, Kellie A Jurado","doi":"10.1186/s12974-024-03275-5","DOIUrl":"10.1186/s12974-024-03275-5","url":null,"abstract":"<p><p>Neural stem cells have intact innate immune responses that protect them from virus infection and cell death. Yet, viruses can antagonize such responses to establish neuropathogenesis. Using a forebrain organoid model system at two developmental time points, we identified that neural stem cells, in particular radial glia, are basally primed to respond to virus infection by upregulating several antiviral interferon-stimulated genes. Infection of these organoids with a neuropathogenic Enterovirus-D68 strain, demonstrated the ability of this virus to impede immune activation by blocking interferon responses. Together, our data highlight immune gene signatures present in different types of neural stem cells and differential viral capacity to block neural-specific immune induction.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"288"},"PeriodicalIF":9.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12974-024-03269-3
Saskia Räuber, Andreas Schulte-Mecklenbeck, Alice Willison, Ramona Hagler, Marius Jonas, Duygu Pul, Lars Masanneck, Christina B Schroeter, Kristin S Golombeck, Stefanie Lichtenberg, Christine Strippel, Marco Gallus, Andre Dik, Ruth Kerkhoff, Sumanta Barman, Katharina J Weber, Stjepana Kovac, Melanie Korsen, Marc Pawlitzki, Norbert Goebels, Tobias Ruck, Catharina C Gross, Werner Paulus, Guido Reifenberger, Michael Hanke, Oliver Grauer, Marion Rapp, Michael Sabel, Heinz Wiendl, Sven G Meuth, Nico Melzer
Background: Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment.
Methods: Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches.
Results: We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment.
Conclusions: ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
背景:免疫失调是中枢神经系统(CNS)自身免疫性疾病的一个特征,其特点是过度的免疫反应,而原发性中枢神经系统肿瘤(pCNS-tumors)则显示出高度免疫抑制的实质微环境:为了深入了解中枢神经系统自身免疫和脑肿瘤免疫的发病机制,我们通过流式细胞术(FC)分析了81例自身免疫性边缘脑炎(ALE)、148例复发缓解型多发性硬化(RRMS)、33例IDH-野生型胶质瘤、9例中枢神经系统原发性弥漫大B细胞淋巴瘤(CNS-DLBCL)和110例对照组的外周血(PB)和脑脊液(CSF)。此外,我们还通过流式细胞术结合无监督计算方法,对独立队列中的20名RRMS和18名IDH-野生型胶质母细胞瘤患者的PB与19名对照组进行了深入的免疫分型:我们发现,与对照组相比,ALE、RRMS 和 pCNS 肿瘤患者的外周和鞘内适应性免疫发生了改变,主要影响 T 细胞 (Tc),但也影响 B 细胞 (Bc)。ALE、RRMS和中枢神经系统肿瘤的T细胞活化标志物HLA-DR的表达量较高,中枢神经系统肿瘤中的表达量甚至比ALE或RRMS中的表达量更高。胶质母细胞瘤患者表现出T细胞衰竭的迹象,而在RRMS患者中却不明显。PB的深入表征显示,RRMS和胶质母细胞瘤患者的T效应细胞和记忆细胞主要存在差异,Bc细胞也发生了类似的改变,包括非典型Bc、CD19+CD20-双阴性Bc和浆细胞。PB和CSF mFC以及CSF常规参数能可靠地区分ALE和RRMS与中枢神经系统肿瘤,从而有助于早期诊断和治疗:ALE、RRMS和中枢神经系统肿瘤主要在HLA-DR+ Tc、记忆Tc、衰竭Tc和Bc亚群中表现出不同但部分重叠的变化,为疾病的发病机制提供了见解。此外,mFC 还具有诊断潜力,有助于早期诊断和治疗。
{"title":"Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies.","authors":"Saskia Räuber, Andreas Schulte-Mecklenbeck, Alice Willison, Ramona Hagler, Marius Jonas, Duygu Pul, Lars Masanneck, Christina B Schroeter, Kristin S Golombeck, Stefanie Lichtenberg, Christine Strippel, Marco Gallus, Andre Dik, Ruth Kerkhoff, Sumanta Barman, Katharina J Weber, Stjepana Kovac, Melanie Korsen, Marc Pawlitzki, Norbert Goebels, Tobias Ruck, Catharina C Gross, Werner Paulus, Guido Reifenberger, Michael Hanke, Oliver Grauer, Marion Rapp, Michael Sabel, Heinz Wiendl, Sven G Meuth, Nico Melzer","doi":"10.1186/s12974-024-03269-3","DOIUrl":"10.1186/s12974-024-03269-3","url":null,"abstract":"<p><strong>Background: </strong>Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment.</p><p><strong>Methods: </strong>Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches.</p><p><strong>Results: </strong>We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19<sup>+</sup>CD20<sup>-</sup> double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment.</p><p><strong>Conclusions: </strong>ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR<sup>+</sup> Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"286"},"PeriodicalIF":9.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s12974-024-03272-8
Peter M Andrew, Jeremy A MacMahon, Pedro N Bernardino, Yi-Hua Tsai, Brad A Hobson, Valerie A Porter, Sydney L Huddleston, Audrey S Luo, Donald A Bruun, Naomi H Saito, Danielle J Harvey, Amy Brooks-Kayal, Abhijit J Chaudhari, Pamela J Lein
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
{"title":"Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate.","authors":"Peter M Andrew, Jeremy A MacMahon, Pedro N Bernardino, Yi-Hua Tsai, Brad A Hobson, Valerie A Porter, Sydney L Huddleston, Audrey S Luo, Donald A Bruun, Naomi H Saito, Danielle J Harvey, Amy Brooks-Kayal, Abhijit J Chaudhari, Pamela J Lein","doi":"10.1186/s12974-024-03272-8","DOIUrl":"10.1186/s12974-024-03272-8","url":null,"abstract":"<p><p>Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS<sup>+</sup> proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1<sup>+</sup> microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3<sup>+</sup> pro-inflammatory and S100A10<sup>+</sup> anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"285"},"PeriodicalIF":9.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12974-024-03271-9
Hannah A Staley, Janna E Jernigan, MacKenzie L Bolen, Ann M Titus, Noelle Neighbarger, Cassandra Cole, Kelly B Menees, Rebecca L Wallings, Malú Gámez Tansey
Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.
{"title":"Alzheimer's disease-associated protective variant Plcg2-P522R modulates peripheral macrophage function in a sex-dimorphic manner.","authors":"Hannah A Staley, Janna E Jernigan, MacKenzie L Bolen, Ann M Titus, Noelle Neighbarger, Cassandra Cole, Kelly B Menees, Rebecca L Wallings, Malú Gámez Tansey","doi":"10.1186/s12974-024-03271-9","DOIUrl":"10.1186/s12974-024-03271-9","url":null,"abstract":"<p><p>Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"280"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12974-024-03273-7
Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen
<p><strong>Background: </strong>Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD).</p><p><strong>Methods: </strong>In this clinical prospective study, treatment-naïve patients with nAMD, intermediate AMD (iAMD) and healthy controls were recruited and systemic complement proteins C3, C3a and C5a were investigated with electrochemiluminescence immunoassays, and Creg expression (CD35, CD46 and CD59) on T cells (CD4 + and CD8+) and monocytes (classical, intermediate and non-classical) investigated with flow cytometry. Treatment response in nAMD patients was evaluated after loading dose and after one year, and categorized as good, partial or poor. Complement proteins and Creg expression levels were compared between healthy controls, iAMD and nAMD, as well as between good, partial and poor nAMD treatment response groups. Polymorphisms in the CFH and ARMS2 genes were analyzed and compared to complement proteins and Creg expression levels in nAMD patients.</p><p><strong>Results: </strong>One hundred patients with nAMD, 34 patients with iAMD and 61 healthy controls were included. 94 nAMD patients completed the 1-year follow-up. Distribution of treatment response in nAMD was 61 (65%) good, 26 (28%) partial, and 7 (7%) poor responders. The distribution of 1-year treatment response was 50 (53%) good, 33 (36%) partial, and 11 (11%) poor responders. The concentrations of systemic C3, C3a, and the C3a/C3-ratio were significantly increased in patients with nAMD compared to healthy controls (P < 0.001, P = 0.002, and P = 0.035, respectively). Systemic C3 was also increased in iAMD compared to healthy controls (P = 0.031). The proportion of CD46 + CD4 + T cells and CD59 + intermediate monocytes were significantly decreased in patients with nAMD compared to healthy controls (P = 0.018 and P = 0.042, respectively). The post-loading dose partial treatment response group had significantly lower concentrations of C3a and C5a compared to the good response group (P = 0.005 and P = 0.042, respectively). The proportion of CD35 + monocytes was significantly lower in the 1-year partial response group compared to the 1-year good response group (P = 0.039). High-risk CFH genotypes in nAMD patients was associated with increased C3a, C3a/C3-ratio, and expression levels of CD35 + CD8 + T cells and CD46 + classical monocytes, while expression level of CD46 + non-classical monocytes was decreased.</p><p><strong>Conclusion: </strong>Elevated concentrations of systemic complement proteins were found in patients with iAMD and nAMD. Decreased Creg expression levels were found in patients with nAMD. Partially responding nAMD patients had a dysre
{"title":"Complement proteins and complement regulatory proteins are associated with age-related macular degeneration stage and treatment response.","authors":"Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen","doi":"10.1186/s12974-024-03273-7","DOIUrl":"10.1186/s12974-024-03273-7","url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD).</p><p><strong>Methods: </strong>In this clinical prospective study, treatment-naïve patients with nAMD, intermediate AMD (iAMD) and healthy controls were recruited and systemic complement proteins C3, C3a and C5a were investigated with electrochemiluminescence immunoassays, and Creg expression (CD35, CD46 and CD59) on T cells (CD4 + and CD8+) and monocytes (classical, intermediate and non-classical) investigated with flow cytometry. Treatment response in nAMD patients was evaluated after loading dose and after one year, and categorized as good, partial or poor. Complement proteins and Creg expression levels were compared between healthy controls, iAMD and nAMD, as well as between good, partial and poor nAMD treatment response groups. Polymorphisms in the CFH and ARMS2 genes were analyzed and compared to complement proteins and Creg expression levels in nAMD patients.</p><p><strong>Results: </strong>One hundred patients with nAMD, 34 patients with iAMD and 61 healthy controls were included. 94 nAMD patients completed the 1-year follow-up. Distribution of treatment response in nAMD was 61 (65%) good, 26 (28%) partial, and 7 (7%) poor responders. The distribution of 1-year treatment response was 50 (53%) good, 33 (36%) partial, and 11 (11%) poor responders. The concentrations of systemic C3, C3a, and the C3a/C3-ratio were significantly increased in patients with nAMD compared to healthy controls (P < 0.001, P = 0.002, and P = 0.035, respectively). Systemic C3 was also increased in iAMD compared to healthy controls (P = 0.031). The proportion of CD46 + CD4 + T cells and CD59 + intermediate monocytes were significantly decreased in patients with nAMD compared to healthy controls (P = 0.018 and P = 0.042, respectively). The post-loading dose partial treatment response group had significantly lower concentrations of C3a and C5a compared to the good response group (P = 0.005 and P = 0.042, respectively). The proportion of CD35 + monocytes was significantly lower in the 1-year partial response group compared to the 1-year good response group (P = 0.039). High-risk CFH genotypes in nAMD patients was associated with increased C3a, C3a/C3-ratio, and expression levels of CD35 + CD8 + T cells and CD46 + classical monocytes, while expression level of CD46 + non-classical monocytes was decreased.</p><p><strong>Conclusion: </strong>Elevated concentrations of systemic complement proteins were found in patients with iAMD and nAMD. Decreased Creg expression levels were found in patients with nAMD. Partially responding nAMD patients had a dysre","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"284"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12974-024-03277-3
Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin
Background: The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.
Methods: The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6+/- mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6-/-: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.
Results: We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.
Conclusion: These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.
{"title":"Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice.","authors":"Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin","doi":"10.1186/s12974-024-03277-3","DOIUrl":"10.1186/s12974-024-03277-3","url":null,"abstract":"<p><strong>Background: </strong>The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.</p><p><strong>Methods: </strong>The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6<sup>+/-</sup> mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6<sup>-/-</sup>: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.</p><p><strong>Results: </strong>We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.</p><p><strong>Conclusion: </strong>These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"282"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12974-024-03263-9
Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley
Background: Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation.
Methods: Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: "multiple sclerosis"; "alemtuzumab"; and "autoimmunity". Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis.
Results: 19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development.
Conclusions: While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.
背景:阿仑妥珠单抗治疗中的继发性自身免疫性疾病(SAID)是多发性硬化症患者(pwMS)用药后可能出现的主要安全问题之一。导致这种不良事件的因素尚不十分清楚。本系统性综述的目的是评估研究阿利珠单抗在多发性硬化症患者治疗后出现 SAID 的文献,并确定可能预测这种表现的潜在生物标志物/风险因素:使用包含以下关键词的三重搜索策略从 PubMed、Embase 和 Web of Science 检索相关出版物:"多发性硬化症"、"阿仑珠单抗 "和 "自身免疫"。符合特定资格标准并调查了阿仑珠单抗治疗帕金森病后SAID发展情况的研究被纳入最终分析:19篇论文被纳入最终审查。约有 47.92% 接受阿仑珠单抗治疗的 pwMS 出现了 SAID。SAID的发生有多种生物标志物和风险因素,重点是免疫学变化,包括:同源增殖和T细胞循环增加,以及血清IL-21水平和甲状腺自身抗体基线持续升高。已知的人类白细胞抗原(HLA)风险等位基因、淋巴细胞特征或动态与SAID的发生无明显关联:结论:虽然阿仑珠单抗引发SAID的机制尚未完全明了,但多项独立研究已记录了可能有助于阐明这一现象发生机制的潜在生物标志物和风险因素。在阿仑珠单抗的免疫清除后,IL-21 驱动的同源性增殖和 T 细胞循环的增加可能会破坏耐受机制,导致阿仑珠单抗诱导的自身免疫倾向增加。有必要开展进一步的研究,以明确阿仑珠单抗治疗后引发 pwMS SAID 的生理变化。
{"title":"The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review.","authors":"Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley","doi":"10.1186/s12974-024-03263-9","DOIUrl":"10.1186/s12974-024-03263-9","url":null,"abstract":"<p><strong>Background: </strong>Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation.</p><p><strong>Methods: </strong>Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: \"multiple sclerosis\"; \"alemtuzumab\"; and \"autoimmunity\". Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis.</p><p><strong>Results: </strong>19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development.</p><p><strong>Conclusions: </strong>While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"281"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}